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Early fault diagnosis of
transformer windings based on
the improved MVMD-ELM

Qiuyang Lin*, Congwei Wang, Luyi Zhang, Fengping Zhang,
Zichi Zhao, Minyi Wei, Jiaqi Liu and Cheng Li

Sanmen Nuclear Power Co., Ltd., Taizhou, Zhejiang, China

Aiming at the problems of weak early fault characteristics of transformer
windings, large noise interference and insufficient accuracy of traditional
diagnostic methods, this paper proposes an early fault diagnosis method for
transformer windings based on improved multivariable mode decomposition
and optimized Extreme Learning Machine (ELM). Firstly, taking the leakage
magnetic field as the fault characteristic state quantity, the decomposition
parameters are adaptively adjusted through Multivariate Variational Mode
Decomposition (MVMD) combined with the Dream Optimization Algorithm
(DOA), and the wavelet threshold method is combined to efficiently denoise
the noisy signal and improve the signal quality. Secondly, multi-dimensional
fault features such as correlation coefficient, asymmetry degree, distribution
difference degree and Hausdorff distance are extracted to construct the
DOA-ELM diagnostic model. The relevant parameters of ELM are optimized
by using DOA to improve the classification performance of the model. The
simulation and dynamic model experiment results show that the proposed
method can effectively identify early faults such as axial compression
deformation of windings and inter-turn short circuits. The diagnostic accuracy
rates reach 98.33% and 96.67% respectively. Compared with the traditional
Back Propagation Neural Network (BPNN) and Support Vector Machine
(SVM) methods, it has effectively improved in classification accuracy and
computational efficiency. This method provides an effective solution for
the precise diagnosis of early faults in transformer windings and has high
engineering application value.

KEYWORDS

transformer early fault diagnosis, leakage magnetic field detection, multivariate
variational mode decomposition (MVMD), dream optimization algorithm, extreme
learning machine (ELM)

1 Introduction

Transformers are core equipment in the power system, and their operating status directly
affects the stability and economic benefits of the power system (Tao et al., 2020). However,
transformers are prone to faults such as external short circuits and overloads during long-
term operation, leading to their own damage. In particular, winding faults account for nearly
48% of all transformer faults (Athikessavan et al., 2019), with inter-turn short circuits being
particularly common, accounting for about 50%–60% of winding faults (Chao et al., 2020).
These faults often progress from minor to severe ones gradually. Early fault symptoms of
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transformers refer to subtle and potential abnormal states exhibited
by the windings at the early stage of faults, which have not yet
developed into significant functional failures. These mainly include:
micrometer-scale axial/radial displacement of winding conductors
due to electromagnetic forces, slight aging or damage of local
insulation layers (without forming a short circuit but with decreased
insulation resistance), and weak inter-turn or interlayer discharges
(discharge energy <10 pC). These symptoms are characterized
by weak features and slow dynamic changes, making traditional
detection methods, such as differential protection (Xiangli et al.,
2023a), low-voltage pulse method (Hongda et al., 2020), frequency
response method (Zhongyong et al., 2019), and oil chromatography
(Yan et al., 2023), often ineffective in identifying them at this
stage due to insufficient sensitivity or delayed response. The leakage
magnetic field, as a spatial magnetic field distribution generated
by winding current, has a direct mapping relationship with the
geometric structure (number of turns, spacing, position) and
electrical state (current distribution, insulation condition) of the
winding. When the winding undergoes early deformation, small
changes in the spatial position of the wire can cause the symmetry
of the leakage magnetic field to be disrupted; When insulation
begins to deteriorate, local weak discharge can cause high-frequency
pulsation of the leakage magnetic field; Even in the initial stage
of a single turn short circuit, the circulating current at the short
circuit point can cause a detectable increase in the strength of
the surrounding leakage magnetic field (usually 5%–15% of the
normal state).Therefore, by detecting the distribution characteristics
of the leakage magnetic field with high precision, it is possible to
capture the subtle electromagnetic changes caused by early faults in
the winding (Yuanchao and Xue, 2017), providing direct physical
basis for early fault diagnosis. This is also the key reason why the
leakage magnetic field is selected as the core feature quantity in
this article.

References (Xiangli et al., 2023b; Jianfeng et al., 2024;
Xiangli et al., 2024a) conducted in-depth analysis on faults such
as winding deformation, bulging, and inter turn short circuit by
detecting leakage magnetic field signals, verifying the feasibility
of leakage magnetic field detection in transformer fault diagnosis.
Most of these studies are based on simulations or experiments under
ideal conditions, without fully considering the noise interference
issues present in actual signal measurements. However, in practical
operation stage, the leakage magnetic signal is always susceptible
to interference from transformer vibration, electromagnetic factors,
and other factors (Xiangli et al., 2024b; Mao et al., 2024). These
noises will significantly reduce the signal-to-noise ratio of the
signal, affecting the accuracy of fault feature extraction and
diagnosis. To ensure the reliability of the magnetic flux leakage
detection results, it is necessary to denoise the actual obtained
magnetic flux leakage signals. When using wavelet thresholding
to process signals in reference (Ji et al., 2018), although it can
remove noise and preserve useful characteristics, the problem of
cumbersome threshold selection and boundary effects has not
been solved; Reference (Jianfeng et al., 2023) used Variational
Mode Decomposition (VMD) to denoise the leakage magnetic field
signal, effectively separating noise and useful signal components.
However, VMD is essentially a univariate decomposition method
and is difficult to directly process multi-channel leakage magnetic
field signals; Reference (Wei et al., 2024) further proposes the

method ofMultivariateVariationalModeDecomposition (MVMD),
which extends VMD to the field of multivariate signals and
solves the problem of collaborative decomposition of multi-
channel signals. However, MVMD still faces the problem that
the decomposition mode and the penalty factor are difficult to be
adaptively optimized.

Common fault classification algorithms, such as Back
Propagation Neural Network (BPNN), Support Vector Machine
(SVM), etc., may involve excessive data processing scale, high
computational complexity, low classification efficiency and
speed, which means they are difficult to meet the needs of
current applications (Jiang et al., 2018; Wenqing et al., 2020).
In contrast, the ELM, as a single hidden layer feed forward
neural network method, randomly initializes the weights and
thresholds from the input layer to the hidden layer, and directly
analyzes and calculates the output layer weights, avoiding
tedious iterative processes and significantly improving training
efficiency. It is particularly suitable for fault diagnosis under
small sample conditions. However, ELM also has the problem
that randomly initialized parameters may lead to unstable model
performance.

Therefore, this article proposes an improved MVMD denoising
method, which adaptively adjusts the MVMD parameters through
the Dream Optimization Algorithm (DOA) and combines wavelet
thresholding to perform secondary noise reduction on the noise,
thereby achieving efficient denoising of noisy leakage magnetic
signals. Then, the denoised transformer winding fault leakage
magnetic field signal is input into the ELMmodel improved byDOA
for training, obtaining a new fault diagnosis model to achieve early
fault diagnosis of transformer windings.

2 Denoising method based on
improved MVMD

2.1 Multivariate Variational Mode
Decomposition

MVMD is a multi-extension version of VMD, which is used
to process multi-channel signal data and extract the common
oscillation mode in the magnetic leakage signal. The basic principle
is to minimize the total bandwidth of all modes in the magnetic
leakage signal by constructing a variational optimization problem,
while ensuring that the magnetic leakage signals of all channels can
be completely reconstructed (Rehman and Aftab, 2019).

Suppose that when an inter-turn short circuit or winding
deformation occurs in the transformer winding, the leakage
magnetic signal recorded by the C magnetic field sensors placed on
the winding is g(t). The g(t) is calculated using Equation 1

g(t) = [g1(t),g2(t),…gC(t)] (1)

In the formula: gC(t) is the leakage magnetic signal measured by
the CTH sensor; t is time.

The objective of MVMD is to extract K multivariable modes
uk(t) from the multi-channel leakage magnetic field signal g(t),
minimizing the total bandwidth of these modes and enabling the
complete reconstruction of the original leakage magnetic field
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signal. The optimization problem can be expressed as Equation 2:

{{{{{
{{{{{
{

minimize
{uk,c},{ωk}

{
K

∑
k=1

C

∑
c=1
‖∂t [u

k,c
+ (t)e−jωkt]‖22}

K

∑
k=1

uk,c(t) = gc(t), c = 1,2,…,C

(2)

In the formula: uk,c+ (t) is the analytical signal of the CTH channel
of the KTH mode; ωk is the center frequency of the KTH mode; ∂t
represents the partial derivative with respect to time; ‖·‖22 Represents
the L2 norm.

To solve the above-mentioned constrained optimization
problem, the augmented Lagrange function is introduced as
Equation 3:

L({uk,c}, {ωk},λc) = α
K

∑
k=1

C

∑
c=1
‖∂t[u

k,c
+ (t)e−jωkt]‖2

2

+
C

∑
c=1
‖gc(t) −

C

∑
c=1

uk,c(t)‖
2

2

+
C

∑
c=1
⟨λc(t),xc(t) −

K

∑
k=1

uk,c(t)⟩

(3)

In the formula: α is the regularization parameter, which is used
to balance the accuracy of bandwidth minimization and signal
reconstruction; λc(t) is a Lagrange multiplier used to ensure the
satisfaction of the constraint conditions.

MVMD solves the above optimization problem by alternating
direction multipliers (Dragomiretskiy and Zosso, 2014). In each
iteration, the update formulas for the modes uk,c(t) are:

un+1k,c (ω)
̂gc(ω) −∑i≠k

̂ui,c(ω) +
λ̂c(ω)
2

1+ 2α(ω−ωn
k)

2 (4)

In the Equation 4: un+1k,c
(ω) is the update of the Cth channel

of the Kth mode in the frequency domain; ̂gc(ω) is the frequency-
domain representation of the Cth channel; λ̂c(ω) is the frequency-
domain representation of Lagrange multipliers; ωn

k is the current
center frequency estimation of the kth mode.

The update formula of the center frequency ωk is Equation 5:

ωn+1
k =
∑C

c=1
∫
∞

0
ω| ̂uk,c(ω)|

2dω

∑C
c=1
∫
∞

0
| ̂uk,c(ω)|

2dω
(5)

The update formula of the Lagrange multiplier
λc(t) is Equation 6:

λ̂n+1c (ω) = λ̂
n
c (ω) + τ( ̂gc(ω) −

K

∑
k=1
̂un+1k,c (ω)) (6)

In the formula: τ is the step size parameter.
Until the following iteration stop conditions are met:

K

∑
k=1

C

∑
c=1

‖un+1k,c − u
n
k,c‖

2
2

‖unk,c‖
2
2

< ε (7)

In the Equation 7: ε is the preset threshold.

2.2 Determination of MVMD parameters
based on DOA

Although the MVMD method shows strong performance
in signal processing and fault diagnosis, the selection of its
decomposition mode number K and penalty factor α still
significantly depends on the characteristics of the input signal.
In order to optimize the decomposition effect and improve the
adaptability of the algorithm, it is necessary to adopt the parameter
optimization algorithm to adaptively adjust the key parameters. As
a regularization parameter, the α is used to balance “minimizing
modal bandwidth” and “signal reconstruction accuracy”. The larger
α, the stronger the constraint on the modal bandwidth, and the
better the frequency focusing of themodal, but it may over compress
the useful signal; If the alpha is too small, the modal bandwidth
will be wide, which can easily lead to mixing of different frequency
components. Optimization is needed to ensure that the decomposed
modal can effectively separate noise and useful signals, while
accurately reconstructing the original signal. The k value is used
to determine the number of modes extracted from multi-channel
leakage magnetic signals. A low K value can lead to mode aliasing
(incomplete separation of useful signals and noise), while a high
K value introduces redundant modes (increasing the amount of
ineffective computation). Optimization is needed to ensure that it
can fully cover the key components in the signal.

DOA is a new type of meta-heuristic optimization algorithm,
inspired by the characteristics of human dreams. By simulating
the memory retention, forgetting and self-organization behaviors in
human dreams, it designs an optimization algorithm with strong
global search ability and local optimization ability (Lang and
Gao, 2025).

The optimization process of DOA is divided into two stages:
the exploration stage and the development stage. In the exploration
stage, the algorithm conducts global search through grouping
and forgetting strategies to help the algorithm escape the local
optimum. During the development stage, the algorithm undergoes
local optimization through memory strategies and self-organizing
strategies to enhance the convergence of the algorithm.

DOA first initializes a set of random MVMD parameters
as the initial population as the starting point of the
algorithm:

Hi =Hi + rand× (Hu −Hi), i = 1,2,…N (8)

In the Equation 8: N is the population size; H i is the position of
the ith individual; H i and Hu are respectively the lower bound and
upper bound of the search space; rand is a random number.

During the exploration stage, DOA helps the algorithm break
out of local optima and expand the search range by simulating partial
forgetting and self-organizing behaviors in dreams.

Ht+1
i =H

t
bestq (9)

ht+1i,j = h
t
bestq,j + (hi,j + rand× (hu,j − hi,j))

×1
2
×(cos(π×

t+Tmax −Td

Tmax
)+ 1)

(10)

In the Equation 9: Ht
bestq is the best individual of Group q in

the tth iteration; in the Equation 10 ht+1i is the position of the ith
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individual at the t+1-st iteration; ht+1ij represents the position of the
ith individual in the jth dimension and the value when updated to
the t+1-st iteration. Hu,j and hi,j, where j represents the lower and
upper bounds of the search space in the jth dimension; t is the
number of iterations; Tmax is the maximum number of iterations;
Td is the maximum number of iterations in the exploration stage.

During the development stage, DOA utilizes the memory
strategy and global optimal information to fine-adjust the
parameters and improve the accuracy of the solution.

Ht+1
i =H

t
best (11)

ht+1i,j = h
t
best,j + (hi,j + rand× (hu,j − hi,j))

×1
2
×(cos(π× t

Tmax
)+ 1)

(12)

In the Equations 11, 12 Ht
best is the globally optimal individual.

Through the aforementioned optimization strategies, DOA
can significantly enhance the efficiency and accuracy of MVMD
parameter determination. The decomposition mode number K of
MVMD is the core parameter that affects the signal decomposition
effect: an excessively small K can lead to mode mixing (incomplete
separation of useful signals and noise), while an excessively large
K can introduce redundant modes (increasing the amount of
invalid computation and potentially carrying noise). To verify the
robustness of the model to K, based on the optimal value K = 6
obtained after DOA optimization, comparative experiments were
conducted with K = 3, 4, 5, 6, 7, 8, and 9. Meanwhile, the penalty
factor α = 946.3, DOA, and ELM parameters were kept unchanged,
and the diagnostic accuracy of the constructed model was tested
on 60 sets of data samples. When K = 5∼7, the accuracy of the
model on the test set remains stable at 97.5%–98.33%, with a
fluctuation range of only 0.83%; when K < 5 (insufficientmodalities)
or K > 7 (over-decomposition), the accuracy drops below 95%.
This suggests the existence of a broad stable range around the
optimal K value, with K = 6 after DOA optimization situated
comfortably within this range.Themodel demonstrates insensitivity
to minor fluctuations in the K value and possesses excellent
robustness. Its unique exploration and exploitation mechanism
not only effectively avoids the common local optimum problem
in traditional optimization algorithms, but also adaptively adjusts
parameters according to signal characteristics, thereby enhancing
the adaptability and robustness of the MVMDmethod.

2.3 Combined wavelet threshold method

Although the decomposition mode number and penalty factor
ofMVMDoptimized byDOAperformwell in signal decomposition
and feature extraction, there is still some residual noise in
the decomposed signal. In order to further improve the noise
reduction performance of MVMD, based on the optimization of
MVMD parameters by DOA, this paper combines the wavelet
threshold technology to perform noise reduction processing on the
decomposed signal components. Through this joint noise reduction
method, the noise components in the signal can be removed more
effectively while retaining the key features of the signal, thereby
achieving more efficient signal denoising.

The basic principle of wavelet threshold denoising is to
decompose the signal into multiple frequency bands by using
wavelet transform, then perform threshold processing on the
wavelet coefficients of each frequency band to eliminate noise,
and finally reconstruct the denoised signal through inverse wavelet
transform. Common threshold functions include hard threshold
and soft threshold. The hard threshold function directly retains
coefficients greater than the threshold. For high-frequency jitter
signals of the leakage magnetic field during faults, this hard
threshold function can lead to “oscillation artifacts” in the
reconstructed signal. On the other hand, the soft threshold function
shrinks coefficients to make the reconstructed signal smoother
and more aligned with the changing characteristics of the leakage
magnetic field. Furthermore, early faults exhibit weak changes in the
leakage magnetic field (such as a distortion rate of only 1%–5% in
the initial stage of a single-turn short circuit), and the soft threshold
function’s “shrinking rather than zeroing out” characteristic for small
coefficients can avoidmistakenly deleting key weak features, thereby
enhancing the sensitivity of subsequent fault identification.

So this paper selects the soft threshold function for processing,
and its mathematical expression is as follows Equation 13:

η(w,λ) =
{
{
{

sign(w)(|w| − λ),

0,
 
|w| ≥ θ

|w| < θ
(13)

In the formula: η(w,λ) represents the coefficient after soft
threshold processing; w is the coefficient obtained after wavelet
transform; in the Equation 14 λ is the threshold, which is used to
distinguish the effective components of the signal from the noise.
Sign is a symbolic function.

λ = σ√2 ln N (14)

σ =
median(|dj,k|)

0.6745
(15)

In the Equation 15: σ is the standard deviation of the noise,
indicating the intensity of the noise; N is the length of the leakage
magnetic field signal; dj,k are the kth high-frequency coefficients of
the jth layer after wavelet decomposition. Median is a function of
the median.

The DOA optimizes the relevant parameters of MVMD and
combines the wavelet threshold method as shown in Figure 1.

3 Transformer fault diagnosis based
on improved ELM

3.1 ELM algorithm

After denoising the measured leakage magnetic field signal by
improving MVMD and combining with the wavelet threshold, the
fault characteristic values of the signal are extracted, and the ELM
algorithm is used for fault diagnosis. The ELM network adopts
a single-hidden-layer feedforward neural network architecture. Its
core feature lies in that the connection weights wi from the network
input layer to the hidden-layer and the bias parameters bi of the
hidden-layer nodes both adopt a random initialization strategy.
Only the connection weights βi from the hidden-layer nodes to
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FIGURE 1
DOA optimizes MVMD parameters and combines wavelet threshold method.

the output layer need to be solved through matrix operations to
complete the network training (Jian et al., 2025).

First is the training process. Suppose there is a labeled training
sample set for early faults of transformers (xi, ti), i = 1,2…N, where,
xi = [xi1,xi2,…xin]

T ∈ Rn represents the sample characteristics; ti =
[ti1, ti2,… tim]

T ∈ Rm Represent the label of sample i in Class m, tij ∈
{0,1} j = 1,2…m, as shown in Formula 16, there are L hidden nodes
(L ≤ N). The mathematical model is shown as follows:

tj =
L

∑
i=1

βig(w,b,x) =
L

∑
i=1

βih(x) (16)

g(wi,bi,xi) represents the activation function of the ith node in the
hidden layer and the way to connect to the output layer. Equation 16
can be simplified as follows Equation 17:

Hβ = T (17)

The output matrix of the hidden layer is as follows
Equations 18, 19

H =
[[[[

[

g(w1,b1,x1) … g(wL,bL,x1)

⋮ ⋱ ⋮

g(w1,b1,xN) … g(wL,bL,xN)

]]]]

]N×L

(18)

β =
[[[[

[

βT1
⋮

βTL

]]]]

]L×m

T =
[[[[

[

tT1
⋮

tTN

]]]]

]N×m

(19)

The parameters of Equation 17 can be converted
into least squares solutions for calculation using
Equation 20:

min‖Hβ−T‖ (20)

The least squares solution obtained through
calculation is:

β =H+T = (HTH)−1HTT (21)

In the Equation 21: H+ represents the M-P generalized inverse
of the H matrix.

After the model training is completed, the output weight matrix
β obtained through learning is used to predict the test set data to
obtain the output result of the network. By comparing whether the
index position corresponding to the maximum value in the output
matrix matches the position of the true label of the sample, it can be
determined whether the fault type identification of the test sample
is correct.
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3.2 ELM algorithm based on DOA
optimization

Compared with the BP neural network, although the ELM has
significant advantages in terms of training speed, generalization
performance and global optimization ability, the input weights wi
and bias bi of its hidden layer nodes adopt a random initialization
strategy, resulting in the lack of tunability of neuron parameters.
To this end, in this study, the DOA is introduced to optimize
the key parameters of ELM, and the DOA-ELM hybrid model is
constructed to improve the classification accuracy and robustness
of the algorithm. Its process framework is shown in Figure 2. Firstly,
feature extraction is carried out on the denoised magnetic leakage
signal. Then, the sample data is divided into the training set and
the test set and normalized preprocessing is conducted. Finally,
the optimized DOA-ELM model is adopted to complete the fault
classification task.

4 Analysis of leakage magnetic field
characteristics in transformer winding
faults

4.1 Simulation model construction

Based on the specific parameters of a certain actual three-phase
three-column transformer, the corresponding finite element analysis
model was constructed in this paper on the ANSYS Electronics
Desktop simulation platform. This model is mainly used to study
the influence of initial faults such as winding deformation and inter-
turn short circuit on the electrical characteristics of transformers.
The specific structural parameters and electrical parameters of the
model are listed in Tables 1, 2 respectively.

When establishing the transformer simulation model,
considering the complexity of the actual structure, this study
adopts a reasonable simplification processing method. Based on
the assumption of structural symmetry, the model mainly consists
of key components such as the core, windings and yoke. Among
them, the high and low voltage windings are idealized: It is assumed
that the wires are uniformly and closely arranged, the current
distribution remains uniform, and the block modeling method
is adopted. Meanwhile, to simplify the calculation, the interference
effects of secondary factors such as the interlayer structure of the
winding, the oil tank and the supporting components on the leakage
magnetic field are temporarily not considered in the model.

When the transformer windings undergo deformation or inter-
turn short circuit faults, the spatial distribution characteristics of
the leakagemagnetic field will change significantly. Considering this
characteristic, in this paper, the leakage magnetic field parameter
is selected as the characteristic index characterizing the early fault
state of the winding. During the finite element modeling process, A
monitoring path was set around the A-phase winding on the high-
voltage side to capture the dynamic changes of the leakage magnetic
field during the fault development process. Considering that the
installation position of the optical fiber magnetic field sensor in the
actual experiment is fixed and cannot be adjusted, finally, five virtual
measurement points at fixed positions were set along this path in
the simulation model to obtain the magnetic induction intensity

data at key positions.The three-dimensional finite element model of
the transformer is shown in Figure 3. The measurement path of the
transformer and the installation position of the virtualmeasurement
points are shown in Figure 3.

4.2 Analysis of leakage magnetic field
distribution characteristics in early faults of
transformer windings

The finite element method is adopted to numerically solve the
magnetic field distribution of the transformer. By introducing the
magnetic vector position A as the calculation variable and using
the iterative algorithm to discretize the solution area, the numerical
solutions of the magnetic vector positions of each discrete node are
finally obtained (Xiangli et al., 2023b).

B = ∇×A (22)

In the Equation 22: B respects magnetic induction intensity; A
is the magnetic vector potential;▽ is the curl operator.

From the formula, it can be solved that the corresponding B
value at the corresponding position within the solution region is:

B = √(∂A
∂x
)
2
+(∂A

∂y
)
2

(23)

In the Equation 23 x: axial direction, i.e., taking partial derivative
with respect to the axial direction; y: radial direction, i.e., taking
partial derivative with respect to the radial direction.

4.2.1 Single-ended axial compression of the
high-voltage side winding

The analysis of themechanical characteristics of the transformer
winding under the action of electromagnetic force shows that the
radial magnetic field will cause an axial compressive force at the end
of the winding, making it show an axial contraction trend.The axial
magnetic field, on the other hand, generates radial expansion force,
causing the winding to expand outward. Under actual operating
conditions, when a short-circuit fault occurs, the huge short-
circuit electromotive force will destroy the dynamic stability of the
winding, resulting in permanent deformation. Given the complexity
of the operating environment and the diversity of deformation
modes, this paper only discusses the common single-mode winding
deformation faults of transformers.

Taking the axial compression deformation of the A-phase high-
voltage winding as an example, with deformation degree of 10%, the
distribution of the transformer leakagemagnetic field along different
measurement paths in the axial and radial directions is shown in
Figures 4, 5, under the condition of single-ended axial compression.

It can be known from Figure 4 that when the transformer
winding is in a normal condition, that is, without deformation, the
axial leakage magnetic field and the radial leakage magnetic field are
symmetrical. Moreover, the axial magnetic induction intensity is the
smallest at the first and last ends, reaches the maximum value in the
middle of the winding, and the amplitude variation trend is obvious
at the end of the winding. The radial magnetic induction intensity
reaches its maximum value at the beginning and end of the winding
and is in opposite directions. When it reaches the middle of the

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1645135
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Lin et al. 10.3389/fenrg.2025.1645135

FIGURE 2
Transformer fault diagnosis flowchart based on DOA-ELM.

winding, it is nearly zero. Therefore, under normal circumstances,
the leakage magnetic field intensity is mainly determined by the
axial leakage magnetic field. When the winding undergoes single-
ended axial compression, the symmetry of the leakage magnetic
field distribution on the measurement path is disrupted. With the
increase of the deformation degree, the distortion degree of the
leakage magnetic field is also getting larger and larger. For the radial
magnetic induction intensity, most of the radial magnetic induction
intensity along the measurement path has changed. Only the area
far from the deformation part has little change. The place with
the greatest change in radial magnetic induction intensity occurs
at the point where the deformation occurs. For the axial magnetic
induction intensity, the axial magnetic induction intensity along
the measurement path has all changed. The place where the axial

magnetic induction intensity changes the most occurs is near the
place where the deformation occurs.

4.2.2 Inter-turn short circuit of the high-voltage
side winding

During the operation of the transformer winding, the inter-
turn insulation may deteriorate due to insufficient short-circuit
resistance, which in turn leads to inter-turn short-circuit faults. To
study the influence of A slight inter-turn short circuit on the leakage
magnetic field, a simplified simulation model is established in this
paper: It is assumed that only the A-phase winding on the high-
voltage side has a single-turn short circuit, while the other two
phases maintain normal operation. The on-off state of the short-
circuit circuit is controlled by applying pulse voltage signals with
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TABLE 1 Transformer structure parameters.

Parameter name Value

Core diameter/mm 115

Core column spacing/mm 320

High-voltage winding height/mm 350

Inner diameter of the high-voltage winding/mm 128

Outer diameter of high-voltage winding/mm 151

Number of turns of the high-voltage winding 201

The iron core window is tall 430

Center distance of the yoke 530

Low-voltage winding height 350

Inner diameter of low-voltage winding 87

Outer diameter of low-voltage winding 107

Number of turns of low-voltage winding 139

TABLE 2 Transformer electrical parameters.

Parameter name Value Parameter name Value

Rated capacity/kVA 50 Maximum voltage/kV 3.6

Rated voltage/kV 1/0.4 No-load current/A 2.4838

Rated current/A 28.9/72.2 No-load loss/W 257.4

Rated frequency/Hz 50 Core material 30Q130

specific parameters, thereby simulating the inter-turn short-circuit
condition.

The simulation results show that when inter-turn short circuits
occur at different positions in the A-phase winding at 40 m, short-
circuit currents dozens of times the rated value will be generated in
the faulty turns, and significant leakagemagnetic field distortionwill
be caused. Figures 6, 7 show the distribution of the leakagemagnetic
field corresponding to the moment when the short-circuit current
reaches its peak, and obvious abnormalities in the magnetic field
distribution can be observed.

When an inter-turn short circuit fault occurs in the transformer
winding, its leakage magnetic field characteristics will change
significantly, as shown in Figures 6, 7. Moreover, both the radial
and axial magnetic induction intensities will show significant
enhancement. This enhancement effect can be detected not only
near the short-circuit point but also in the more distant areas.
Furthermore, the degree of magnetic field distortion shows an
obvious gradient feature, that is, the closer to the short-circuit point,
the more significant the increase in magnetic field intensity. This
phenomenon occurs because a low-impedance circuit is formed

between the short-circuit turn and the normal winding, and the
intensity of the circulating current generated in this circuit can reach
dozens of times the normal operating current (Richang et al., 2021).
As the degree of the fault intensifies, the circulating current effect
will be further amplified, thereby causing the distortion degree.

4.3 Fault feature extraction

The above analysis indicates that when early faults occur
in transformer windings, the distribution of leakage magnetic
field will exhibit regular changes in spatial symmetry, waveform
shape, amplitude differences, and positional correlation, which
can accurately reflect the operating status of the windings. To
comprehensively capture these features for accurate diagnosis,
this study selected the leakage magnetic induction intensity
at different positions of the upper, middle, and lower parts
of the winding as the key feature parameter measurement
points.Thedistribution difference, correlation coefficient,Hausdorff
distance, and asymmetry can evaluate the different characteristics
between waveforms. Therefore, monitoring the spatial distribution
characteristics of the leakage magnetic field inside the transformer
and evaluating the above indicators can effectively diagnose early
faults in the winding.

Suppose there are two leakage magnetic field curves, B0 =
{b01,b02, ...,b0n}, B = {b1,b2, ...,bn}, B0 represents the magnetic
induction intensity of the leakage magnetic field under normal
conditions, B represents themagnetic induction intensity data of the
leakage magnetic field during faults, and n represents the number of
data points.

4.3.1 Distribution difference degree
By comparing and analyzing the magnetic field data of each

measurement point, it was found that when the fault occurred in
the upper area of the winding, the cumulative deviation values of
the magnetic induction intensities collected at measurement points
4 and 5 from the normal state were significantly higher than those
at measurement points 1 and 2. Conversely, when the fault is
located at the lower part of the winding, the opposite distribution
characteristics are presented. This regular change can be used as the
basis for determining the asymmetric fault location of the winding,
and its quantitative expression is as follows Equation 24:

{{{
{{{
{

H1 =∑
n
|ΔB(x1)| −∑

n
|ΔB(x5)|

H2 =∑
n
|ΔB(x2)| −∑

n
|ΔB(x4)|

(24)

In the formula: ∑|ΔB(xi)| represents the sum of the absolute
deviations of the fault data and the normal data at the ith
measurement point at n sampling points. Based on the difference
in magnetic field distribution between normal working conditions
and symmetrical faults, a characteristic threshold interval is set for
fault location: when the characteristic value exceeds the upper limit
of the threshold, it is marked as 1, that is, the lower fault; When it
is lower than the lower limit, it is marked as 0, that is, the upper
part is faulty. If it is within the threshold range, it is marked as 0.05,
that is, the middle fault. Furthermore, for the asymmetric winding
structure, the asymmetry degree parameter and the distribution
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FIGURE 3
Transformer measurement path and virtual measurement point distribution.

FIGURE 4
Radial magnetic induction intensity.

difference degree parameter need to be initialized to zero values for
processing.This quantificationmethod achieves the precise location
of the winding fault area by establishing the mapping relationship
between the eigenvalues and the fault location.

4.3.2 Correlation coefficient
The correlation coefficient (CC), as an effective waveform

similarity measurement index, can accurately represent the
morphological difference characteristics of the two curves. When
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FIGURE 5
Axial magnetic induction intensity.

FIGURE 6
Radial magnetic induction intensity distribution of inter-turn short circuit.
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FIGURE 7
Axial compression magnetic induction intensity distribution of single end.

analyzing asymmetric faults, the fault measurement points will
not only show amplitude changes, but also produce obvious
phase offset phenomena. This dual variation characteristic makes
the correlation coefficient particularly suitable for identifying
asymmetric faults with slight deformation. Its calculation formula is
as follows Equation 25:

C =
∑n

i=1
BiB0i

√∑n
i=1
[B0i]

2∑n
i=1
[Bi]

2
(25)

Under the normal operating conditions of the transformer, the
correlation coefficients of the two leakage magnetic field curves
usually approach 1, indicating that their waveforms have a high
degree of similarity. When faults such as winding deformation or
inter-turn short circuit occur, the CC values at each measurement
point will decrease to varying degrees. In particular, when the
fault causes significant distortion of the waveform, the CC value
may drop to the order of 0.01–0.001, reflecting severe waveform
differences. Among them, n represents the number of sampling
points and is an important parameter for calculating the correlation
coefficient.

4.3.3 Hausdorff distance
The Hausdorff distance, as an effective curve similarity

measurement index, can simultaneously reflect the comprehensive
differences in waveform shape and amplitude size. Research
shows that when a transformer malfunctions, the Hausdorff
distance between the measured leakage magnetic field curve
and the reference curve monotonically increases with the
intensification of the fault degree. Its mathematical expression is

as follows Equation 26:

{{{{{{
{{{{{{
{

H(B0,B) =max{h(B0,B),h(B,B0)}

h(B0,B) = max
B0i∈B0
{min

Bj∈B
‖B0i,Bj‖}

h(B,B0) =max
Bj∈B
{min
B0i∈B0
‖B0i,Bj‖}

(26)

4.3.4 Asymmetry
Under the normal operating state of the transformer, the

spatial distribution of the leakage magnetic field shows obvious
symmetrical characteristics. However, when asymmetric faults
occur in the windings, this symmetrical distribution feature will
change significantly, and the more severe the fault is, the more
obvious the symmetry disruption of the magnetic field distribution
will be. Based on this physical phenomenon, the asymmetry index
is used to quantify the fault characteristics, and its mathematical
expression is as follows Equation 27:

{{{{{{{
{{{{{{{
{

η1 =
∑

n
|B(x1) −B(x5)|

∑
n
|B(x1) +B(x5)|

η2 =
∑

n
|B(x2) −B(x4)|

∑
n
|B(x2) +B(x4)|

(27)

In the formula, B(xi) represents the leakage magnetic field
distribution data obtained from the ith monitoring point. When the
transformer is operating normally, the asymmetry index remains at
a relatively low level.When asymmetric faults occur, the value of this
parameter will increase significantly. Although the asymmetry index
cannot precisely locate the specific position where the fault occurs,
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FIGURE 8
Accuracy rate of the training set.

as an auxiliary diagnostic parameter, it can effectively determine
whether there is an asymmetry fault phenomenon in the winding.

5 Simulation and dynamic model
experiment verification

5.1 Simulation verification of early fault
diagnosis of transformers

After the noisy leakage magnetic field signal undergoes
the above noise reduction processing, four characteristic values,
namely, the correlation coefficient, asymmetry degree, distribution
difference degree and Hausdorff distance, are extracted. Then, the
DOA-ELM algorithm is used to realize the fault mode recognition.

In the section on building the simulation model in 4.1, it is
mentioned that the main research focuses on two types of faults:
winding deformation and inter-turn short circuit. Depending on
the location of the fault in the winding, there are specifically six
scenarios. This paper considers six common faults of transformer
windings, including inter-turn short circuit in the upper part
of the winding, inter-turn short circuit in the middle part

of the winding, inter-turn short circuit in the lower part of
the winding, compression deformation at the beginning of the
winding, compression deformation at the end of the winding, and
compression deformation at both ends of the winding. Magnetic
field data of five monitoring points are collected under each fault
condition. After feature extraction, a feature vector including the
correlation coefficient, asymmetry degree, distribution difference
degree and Hausdorff distance is formed. A total of 300 sample
datasets were constructed for the simulation, including 150 sets of
data each for inter-turn short circuit faults andwinding deformation
faults. After dividing these samples into the training set and the
test set, normalization processing was carried out respectively. To
ensure the training effect and improve the generalization ability of
the model, hierarchical random sampling was adopted to construct
the training set, including 240 groups of training data and 60 groups
of test data, and standardized preprocessing was performed on all
feature data.

Take the 240 groups of extracted training samples as one dataset,
where i = 1,2…240, bring it into the DOA-ELM classifier for
training. Among them, the number of input layer nodes of the
DOA-ELM network is 240; The number of nodes in the output
layer is the same as the dimension of the sample labels. Set the
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FIGURE 9
Accuracy rate of the test set.

TABLE 3 Performance comparison of different classification methods.

Method Training set accuracy rate (%) Test set accuracy rate (%) Test time(s)

BPNN 100 96.67 5.576

SVM 96.67 93.33 4.729

CNN 98.33 95.00 8.241

DOA-ELM 100 98.33 2.164

number of nodes i in the hidden layer to 45 and the hidden
layer activation function to “sigmoid”. Utilize the obtained output
weight matrix to conduct testing on the test dataset, and perform
comparative analysis between the DOA-ELM classification method
and the BPNN, SVM, and CNN classification methods.

The number of hidden layer nodes in BPNN is an important
factor affecting the classification performance. In order to compare
the effects of DOA-ELM and BPNN, the number of hidden layer
nodes is also set to 45, and then the training error is set to 1 ×
10−6. With “newff” as the network creation function and “train” as

the training function, “sim” is used as the test function. The kernel
function of SVM is the radial basis. Among them, the penalty factor
is 10 and the kernel parameter is 0.5. The CNN model adopts an
architecture consisting of 3 convolutional layers (with kernel sizes of
3 × 3, 5 × 5, and 3 × 3 respectively) + 2 pooling layers (max pooling,
with a stride of 2 × 2) + 1 fully connected layer. The learning rate is
set to 0.001, and the number of iterations is 50 rounds.

The classification results of the DOA-ELM method are shown
in Figures 8, 9. The operation results and comparisons of various
methods are shown in Table 3.
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FIGURE 10
Dynamic mode transformer experimental primary wiring diagram.

FIGURE 11
Experimental transformer.

As shown in Table 3, for the task of early fault classification of
transformers, the DOA-ELM method proposed in this paper has
the highest accuracy rate compared with BPNN and SVM, reaching
the highest accuracy rate of 98.33%. In terms of computational
efficiency, the testing time of BPNN, SVM, and CNN is longer than
that of DOA-ELM, making them unsuitable for rapid classification.
This indicates that the method proposed in this paper not only
exhibits excellent generalization performance, but also utilizes
feature quantities capable of characterizing the state features of early
transformer faults.

5.2 Dynamic mold test verification

To test the reliability of the fault diagnosis method in this
paper, fault verification is carried out through relevant experiments.
The primary wiring diagram is shown in Figure 10. The three-
phase transformer as shown in Figure 11 is adopted as the test
object, and the optical fiber magnetic induction detection device as
shown in Figure 12 is configured. The experimental parameters are
detailed in Table 4.

The experimental system is set up with a simulated voltage
of 1 kV. The ideal power supply is simulated using a 50kVA
transformer, and the 200 kM line is simulated using a π-type
equivalent circuit. The test transformer is a specially made three-
phase dry-type step-down transformer with a transformation
ratio of 1/0.4 kV and a Y/△ wiring method. The neutral point
of the transformer’s Y-side winding and the system neutral
line are connected to the laboratory’s dedicated grounding grid
through cables.

Turn-to-turn short circuit fault simulation: The winding
to be tested for short circuit is connected to the short
circuit controller through the tap terminal of the transformer
winding, completing the turn-to-turn short circuit simulation
experiment.

Winding deformation simulation: Through a precision
mechanical device, axial pressure is applied to the winding ends
to simulate the deformation caused by short-circuit electrodynamic
forces. Spiral-type pressure mechanisms (including a stepper motor
with aminimum adjustment of 0.01 mm) are installed at the top and
bottom of the transformer’s high-voltage winding, accompanied by
a laser displacement sensor (with an accuracy of 0.001 mm) to
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FIGURE 12
Optical fiber measurement system.

TABLE 4 Relevant parameters of dynamic simulation experiment system
and transformer.

Parameters Value Parameters Value

Power supply E 1 kV Rated capacity 50kVA

Line length l 200 km Rated voltage 1/0.4 kV

Line resistance r 2.54Ω Rated current 28.87/72.17A

Line reactance x 34.94Ω Rated frequency 50Hz

Line capacitor c 6.72 μF Short-circuit
impedance

7.60%

Load ZL 159.987 + j1.358Ω Connection group
label

Ynd11

monitor the compression in real time, achieving varying degrees of
winding deformation.

The dynamic simulation experiment not only realizes the
physical process of early faults in transformer windings, but also
ensures the reliability and repeatability of data through standardized
operations. It also provides support for the transformation of this
testing method from the laboratory to engineering applications.

5.2.1 Noise reduction of measured transformer
leakage magnetic field signal

In order to verify the feasibility of the improved MVMD
algorithm in practical applications, this paper takes the measured
data of Sensor No. 1 and Sensor No. 2 of the transformer winding
under the normal operating state as an example, and adopts the

improved MVMD method to carry out noise reduction processing
on them. Figure 13 shows the comparison between the original
magnetic leakage signal and the signal after noise reduction using
the method proposed in this paper. Figure 14 respectively show
the modal diagrams after the decomposition of MVMD and their
corresponding spectral diagrams.

To further verify the superiority of the denoising method
proposed in this paper, Table 5 compares the performance indicators
of different denoising methods, including signal-to-noise ratio,
mean square error and cross-correlation number.

It can be known from Table 5 that the signal-to-noise ratio of
the traditional wavelet threshold method is relatively low, indicating
that it has certain limitations when processing complex signals.
In contrast, both the VMD and MVMD methods have significant
improvements in signal-to-noise ratio, mean square error, and
the number of cross-correlations, demonstrating better denoising
effects. However, the method proposed in this paper is superior
to VMD and MVMD in terms of signal-to-noise ratio, mean
square error and cross-correlation number, indicating that it has
significant advantages in suppressing noise interference, improving
signal quality and maintaining the integrity of signal characteristics.
This provides more reliable data support for the subsequent fault
diagnosis of transformers.

5.2.2 Dynamic model verification of fault
diagnosis model

After noise reduction processing of the collected magnetic
field signals, the DOA-ELM algorithm was used to conduct
fault diagnosis on the 90 groups of samples obtained from
the experiment. Among the data of the 90 groups of samples,
there were 60 groups of inter-turn short circuit faults and 30
groups of winding deformation faults. The classification results
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FIGURE 13
Comparison of denoising methods in this paper.

are shown in Figure 15. The experimental data indicate that the
diagnostic model proposed in this paper can effectively distinguish
different types of transformer faults and has a high recognition
accuracy rate.

5.3 Distribution of fault sample categories
and analysis of data balance

5.3.1 Sample category distribution table
The classification distribution of simulation experiment samples

and the classification distribution of dynamic simulation experiment
samples are shown in Tables 6, 7.

5.3.2 Analysis of the impact of data imbalance on
model performance

In the simulation experiment, the sample size of 6 types
of faults was evenly distributed (all 50 groups), accounting for

16.67% of the total. This balanced distribution can avoid the
model being biased towards the majority class due to differences
in sample size, ensuring that each fault feature is fully learned
during the training process. The experimental results show that
the DOA-ELM model has a recognition accuracy of over 96%
for all types of faults (with an average accuracy of 98.0%
for inter turn short circuit faults and 97.5% for deformation
faults), verifying the stability performance of the model under
balanced data.

In the dynamic simulation experiment, there were 20 groups
of inter turn short circuit faults (upper, middle, and lower
sections) each (accounting for 22.22%), while there were 10
groups of deformation faults (head, end, and two ends) each
(accounting for 11.11%), indicating a certain degree of imbalance
(quantity ratio 2:1). The results showed that the accuracy of
deformation type faults with a small sample size was slightly
lower (a difference of 3.34%), but the overall accuracy remained
at 95.56%. This indicates that the DOA-ELM model has strong
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FIGURE 14
Modes and spectrograms after MVMD decomposition.

TABLE 5 Comparison of denoising methods.

Method Signal-to-noise ratio Mean square error Mutual relation number

Wavelet threshold method 18.8973 dB 0.8233 0.8421

VMD 22.7192 dB 0.1282 0.9843

MVMD 25.6531 dB 0.0812 0.9853

The method of this article 28.3263 dB 0.0544 0.9993

generalization ability through DOA optimized parameters,
and still has good recognition performance for small sample
categories. The impact of data imbalance is within an acceptable
range.

The balanced data from the simulation experiment validated
the stable identification ability of the model for various types of
faults; The slight imbalance in the dynamic simulation experiment
resulted in a slight decrease in the accuracy of a few classes, but
did not significantly affect the overall performance. Therefore, the
proposed method has a certain adaptability to data distribution,
and even with slight imbalances, it can still meet engineering
requirements.

The balanced distribution data from the simulation experiment
validated the stable identification ability of the model for various
types of faults; The slight imbalance distribution data in the
dynamic simulation experiment resulted in a slight decrease in
the accuracy of a few classes, but did not significantly affect the
overall performance. Therefore, the proposed method has a certain
adaptability to data distribution, and even with slight imbalances, it
can still meet engineering requirements.

6 Conclusion

This paper proposes an early fault diagnosis method for
transformer windings based on improved MVMD denoising and
optimized ELM. Firstly, a finite element model of the transformer
was established using ANSYS. The distribution characteristics of
the leakage magnetic field under fault conditions such as axial
compression deformation of thewinding and inter-turn short circuit
were simulated and analyzed. Multi-dimensional fault features
such as the correlation coefficient, asymmetry degree, distribution
difference degree and Hausdorff distance were extracted as the
diagnostic basis. Secondly, the correlation decomposition mode
number K and penalty factor α of MVMD are adaptively adjusted
through the DOA, and the secondary noise reduction processing
of the noisy magnetic leakage signal is carried out in combination
with the wavelet threshold method, which improves the signal-
to-noise ratio and feature retention ability of the signal. Finally,
an ELM fault diagnosis model based on DOA optimization was
constructed. By adaptively adjusting the input weights and bias
parameters of the network, the classification performance of the
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FIGURE 15
Dynamic mold verification.

TABLE 6 Distribution of sample categories in simulation experiments.

Fault type Sample quantity (group) Percentage (%)

Interturn short circuit in the upper section 50 16.67

Interturn short circuit in the middle section 50 16.67

Interturn short circuit in the lower section 50 16.67

Compression deformation at the beginning 50 16.67

Compression deformation at the end 50 16.67

Compression deformation at both ends 50 16.67

Total 300 100

TABLE 7 Distribution of sample categories in dynamic simulation experiments.

Fault type Sample quantity (group) Percentage (%)

Interturn short circuit in the upper section 20 22.22

Interturn short circuit in the middle section 20 22.22

Interturn short circuit in the lower section 20 22.22

Compression deformation at the beginning 10 11.11

Compression deformation at the end 10 11.11

Compression deformation at both ends 10 11.11

Total 90 100
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model was improved. Verified through simulation and dynamic
model experiments, the results show that the proposed method has
excellent performance in the early fault diagnosis of transformer
windings. The accuracy rate of the simulation experiment reaches
98.33%, and the accuracy rate of the dynamic model experiment
reaches 95.56%, which is superior to the traditional BPNN and SVM
methods. This method has obvious advantages in signal processing
and fault classification, providing an effective technicalmeans for the
precise diagnosis of early faults in transformer windings and having
certain working value.
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