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Reliable fault detection is essential for ensuring the safe and efficient operation
of electrochemical energy storage systems, including lithium-ion batteries
and transformer. However, the performance of machine learning-based
fault diagnosis models is often degraded in practice due to label noise in
training data, caused by sensor inaccuracies, ambiguous fault transitions, and
imperfect labeling processes. This paper proposes a lightweight and effective
kernel-based data rectification framework to improve the robustness of fault
detection under noisy label conditions. The method identifies and discards
low-density data points that are statistically more likely to be mislabeled,
using kernel density estimation and a tunable data discarding strategy. The
approach is computationally efficient, classifier-agnostic, and easily applicable
to existing fault diagnosis pipelines. We evaluate the proposed method on
two datasets: simulated lithium-ion battery voltage data under various fault
scenarios, and transformer winding oscillationwave data undermultiple winding
fault conditions. The results demonstrate that the rectification framework
significantly improves classification accuracy across both Support Vector
Machine (SVM) and Extreme Learning Machine (ELM) classifiers. Furthermore,
the choice of discarding ratio is shown to be critical, with optimal performance
achieved when the ratio is tuned close to the underlying noise level. These
results highlight the potential of the proposed method to enhance the reliability
of fault diagnosis in electrochemical energy storage systems. Future work will
explore adaptive strategies to automatically optimize the rectification strength
without requiring prior knowledge of the noise rate, and extend the framework
to multi-sensor and multi-modal monitoring scenarios.

KEYWORDS

fault diagnosis, robust classification, kernel density estimation, label noise, lithium-ion
batteries, transformer windings

1 Introduction

Ensuring the safe and reliable operation of electrochemical energy storage systems
is of critical importance across a wide range of industrial, transportation, and grid
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applications. Among these systems, lithium-ion batteries and
transformer windings represent two key components with extensive
deployments. Lithium-ion batteries are widely used in electric
vehicles (Şen et al., 2024), renewable energy storage systems
(Wali et al., 2024; Hasan et al., 2025), and portable electronics
(Zubi et al., 2018), while power transformers are essential assets for
stable and efficient electric power transmission and distribution (??).
Faults in lithium-ion batteries, such as short circuits, overcharging,
and over-discharging, can cause severe performance degradation,
accelerate aging, and in extreme cases, trigger thermal runaway
and fire hazards (Wang et al., 2024; Tahir and Tenbohlen, 2023).
Likewise, transformer winding faults, including axial displacement,
local buckling, inter-disc short circuits, and inter-turn short circuits,
can compromise insulation integrity and lead to catastrophic
transformer failures (Pei et al., 2023). Therefore, timely and accurate
fault detection is a crucial function to ensure the safety, reliability,
and longevity of these electrochemical energy storage systems in
practical applications.

Recent advances in data-driven fault diagnosis leverage
sensor measurements and machine learning techniques to
automatically classify the states of electrochemical energy storage
systems, including lithium-ion batteries and transformer windings
(Kouhestani et al., 2023; Abdolrasol et al., 2024; Wang et al., 2024;
Tahir and Tenbohlen, 2023; Pei et al., 2023; Deng et al., 2023;
Hong et al., 2021). However, in practical applications, the quality of
labeled training data is often compromised. Sensor noise, ambiguous
fault transitions, and manual or heuristic labeling processes
introduce label noise, where a significant fraction of training labels
may be incorrect or inconsistent (Fan et al., 2025). Such label noise
severely degrades the performance and reliability of supervised
learning models (Goodfellow et al., 2016), posing a major obstacle
to deploying robust fault detection frameworks in real-world energy
storage systems. In the case of lithium-ion batteries, mislabelingmay
arise from overlapping voltage patterns during early-stage faults or
human annotation errors. Likewise, for transformer windings, data-
driven classifiers trained on frequency response analysis (FRA)
or vibration signals are also vulnerable to labeling errors, given
the subtle and complex nature of winding deformation and short-
circuit phenomena. These challenges motivate the development of
robust fault detection methods that can tolerate mislabeled data and
preserve high diagnostic accuracy.

Although various robust learning techniques have been
developed in the machine learning literature to address label
noise, many of these approaches suffer from high computational
complexity or require prior knowledge of the noise rate (Zhang et al.,
2021;Han et al., 2018a; Goldberger andBen-Reuven, 2017; Yao et al.,
2020; Shen et al., 2024), which is typically unknown in practice.
Moreover, these methods are often difficult to tune and deploy in
resource-constrained hardware for battery or transformer winding
fault detection (Wu et al., 2025).

In this paper, we propose a simple and efficient kernel-based
data rectification framework for robust battery fault detection
under noisy label conditions. Our method leverages kernel density
estimation (KDE) to identify and discard data points located in
low-density regions of the feature space, where noisy labels are
statistically more likely to occur. The approach is computationally
lightweight, classifier-agnostic.

We conduct comprehensive experiments on both simulated
lithium-ion battery voltage data and transformer winding fault
data, covering normal and various fault scenarios, with different
synthetic label noise patterns. Our results demonstrate that the
proposed rectification method consistently improves classification
accuracy across both Support Vector Machine (SVM) and Extreme
Learning Machine (ELM) classifiers. Furthermore, we analyze the
sensitivity of the method to the rectification strength (controlled by
a discarding ratio δ), and provide practical insights on its application
to Lithium-Ion Batteries and Transformer Windings. The main
contributions of this paper are summarized as follows:

• We propose a lightweight kernel-based data rectification
method to enhance the robustness of fault detection under
label noise.
• We demonstrate the effectiveness of the method across

different classifiers and noise scenarios, without requiring
knowledge of the true noise rate.
• We provide practical guidance on tuning the rectification

process, and discuss its applicability to real-world fault
detection problems in electrochemical energy storage systems.

2 Methods

2.1 Challenging issue of fault diagnosis
with noisy labels

Formally, let

Dnorm ≔ {(xi,yi)}
N
i=1 (1)

denote a dataset comprising sensor readings xi ∈ X ⊂ ℝn and their
corresponding ground-truth labels yi ∈ Y = {1,…,c} ⊂ ℕ, which
indicate whether the system is in a normal, minor fault, severe
fault, or another state. This dataset Dnorm is typically used to train
a parameterized classification model Cθ

1 by solving the following
optimization problem:

minθ∈Θ

N

∑
i=1

ℓ(yi, ŷ
est
i )

s.t. ŷesti = Cθ(xi).
(2)

Here, ℓ(⋅) denotes a loss function, such as the squared error or
cross-entropy. Let θ⋆norm be the solution of problemEquation 2. Note
that θ⋆norm will vary depending on the dataset used. Therefore, the
training process can be viewed as a mapping from a dataset family
F to the optimal parameter θ⋆norm, denoted by T :F → Θ.

However, in practical deployments, the fault labels yi are often
corrupted due to the following reasons:

• Ambiguity in defining fault boundaries (e.g., gradual
degradation processes).
• Sensor noise and latency, which can lead to a mismatch

between the actual fault occurrence and its recorded label.

1 Cθ may represent a support vector machine, polynomial function, deep

neural network, or another model class.
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FIGURE 1
Intuitive explanation of the challenging issue by the label noises.

• Manual or heuristic-based labeling procedures, which may
introduce bias or inconsistencies.

As a result, the dataset may contain noisy labels, i.e., ỹi = yi +
δyi ≠ yi with non-negligible probability. That is, the available dataset
corresponds to a noisy-labeled version, defined as

Dnoisy ≔ {(xi, ỹi)}
N
i=1. (3)

Using Dnoisy for training yields a different model
parameter, given by

θ̃∗noisy = T (Dnoisy), (4)

which may result in poor predictive accuracy and weak
generalization due to overfitting the noisy labels. Consequently,
the resulting classification model is unreliable in safety-
critical applications such as system fault detection. The above-
described problem and issue are summarized in an intuitive way
presented in Figure 1. To address this challenge, it is necessary to
propose a robust classification framework that aims to learn accurate
decision boundaries despite the presence of label noise.

2.2 Framework of the proposed robust
fault diagnosis

As shown in Figure 2, instead of directly using the noisy-labeled
dataset Dnoisy for classifier training, this paper introduce a dataset
rectification process to filter or clean the data prior to training.
This rectification is defined as a mapping R:F → F , which outputs
a rectified dataset Drect consisting of estimated clean data points.
Let N̂rect denote the number of samples in Drect. Importantly,
the proposed robust fault diagnosis framework aims not only to
optimize the parameter vector θ but also to design the rectification
algorithm R, thereby enhancing the robustness of the diagnostic
model. The classification (or regression) problem incorporating the
rectification algorithm R(⋅) is formulated as follows:

minθ∈Θ

N̂rect

∑
i=1

ℓ(yi, ŷ
est
i )

s.t. ŷesti = Cθ(xi),
(xi,yi) ∈Drect, ∀i = 1,…, N̂rect,
Drect =R(Dnoisy) .

(5)

The following subsections provide detailed explanations of the
key components of our proposed framework:

• The construction of the rectification algorithm R using a
kernel-based approach, along with a theoretical justification
of how this rectification improves the robustness of fault
diagnosis;
• A comparative analysis between the proposed kernel-

based rectification method and several existing approaches,
highlighting the practical advantages of our method for
real-world deployment;
• A complete description of the robust fault detection

algorithm that integrates the rectification process into the
training pipeline.

2.3 Kernel-based rectification

2.3.1 Preliminary assumption
Let Creal:X → Y denote the function that represents the

true underlying relationship between a sensor reading x and its
corresponding fault-level label y in a system.That is, for every x ∈ X ,
y = Creal(x) holds. This paper refers to Creal(⋅) as the real classifier.
For k = 1,…,c, define the input set Xk by

Xk ≔ {x ∈ X :Creal(x) = k}. (6)

Note that ⋃ck=1Xk = X holds. Following the setup in Shen et al.
(2024), this study assumes that noisy labels ỹ are randomly assigned
to samples x drawn from an independent and identically distributed
(i.i.d.) process, which is a reasonable assumption in practical data
collection settings. For any class k = 1,…,c, let p̃(x ∣ ỹ = k) denote
the conditional probability density function of x given the noisy label
ỹ = k. This study makes the following assumption:

p̃(x ∣ ỹ(x) = k, x ∈ Xk) > p̃(x ∣ ỹ(x) = k, x ∉ Xk). (7)

This assumption states that, within the noisy dataset, the density
of inputs x that are correctly labeled is greater than that of inputs
incorrectly labeled. Such an assumption is practically reasonable, as
label noise in real-world datasets typically arises from measurement
inaccuracies or labeling errors, yet correctly labeled data should still
form the majority. Moreover, this condition is rather weak, as it
merely requires that the correct-label density be marginally greater
than the incorrect-label density.

2.3.2 Kernel-based data cleaning
Note that the normal datasetDnorm and the noisy datasetDnoisy

share a common component, namely, the set of sensor readings
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FIGURE 2
Framework of the proposed method.

Xdata ≔ {xi}
N
i=1. Furthermore,Xdata can be partitioned into cdisjoint

subsets as follows:

X̃data,k ≔ {xi ∈ Xdata ∣ ỹi = k} , k = 1,…,c. (8)

Consequently, the dataset Dnoisy can also be partitioned into c
disjoint subsets as follows:

Dnoisy,k ≔ {(xi, ỹi) ∈Dnoisy ∣ ỹi = k} , k = 1,…,c. (9)

Specifically, xi,k, i = 1,…, Ñk is used to represent a point in
X̃data,k with Ñk as the data point number of X̃data,k. Each set X̃data,k,
for k = 1,…,c, is assumed to be independently and identically drawn
from a probability distribution with an unknown density function
f̃k(x). Kernel density estimation (KDE) is employed to estimate this
density f̃k(x) based on the dataset X̃data,k. Let f̂kde,k(x) denote the
kernel density estimator computed from X̃data,k, defined by

f̂kde,k(x) =
1

Ñkh

Ñk

∑
i=1

Ker(
x − xi,k

h
), ∀i = 1,…, Ñk, xi,k ∈ X̃data,k

(10)

where Ker(⋅) is a kernel function and h is a smoothing parameter
known as the bandwidth.

The bandwidth parameter h in the kernel density estimator
was selected using Silverman’s rule of thumb, which is a widely
adopted, data-driven method for kernel bandwidth selection.
Specifically, we used

h = 1.06σ̂kÑ
−1/5
k , (11)

where σ̂k is the standard deviation of the observed feature samples.
Various kernel functions are commonly used, including uniform,
triangular, biweight, triweight, Epanechnikov (parabolic), normal,
and others. Owing to its desirable mathematical properties, the
normal kernel is frequently adopted, with the kernel function given
by the standard normal density:

Ker(
x − xi,k

h
) = 1

σ√2π
exp(−
(x − xi,k)2

2h2σ2 ), (12)

where σ > 0 denotes the standard deviation. In kernel-based data
cleaning, the kernel density estimate f̂kde,k(⋅) is used to determine
whether each data point should be retained or discarded from the
training set. Let pth,k denote a density threshold for f̂kde,k(⋅). Then,
the rectified dataset Drect,k is defined as follows:

Drect,k ≔ {(xi, ỹi) ∈Dnoisy ∣ ỹi = k, f̂kde,k(xi) > pth,k} . (13)

For any given density threshold pth,k, the corresponding
empirical outlier ratio is defined as

rout(pth,k) ≔ Nout( fths)/Ñk, (14)

where Ñout,k(pth,k) is the number of samples in X̃data,k whose
estimated density is below pth,k. Note that Drect,k satisfies the
property Drect,k1

∩Drect,k2
= ∅ if k1 ≠ k2, since the dataset is

partitioned according to ỹi = k. The complete rectified dataset is
then defined by

Drect =
c

⋃
k=1

Drect,k. (15)

This paper adopts the following binary search procedure to
determine the density threshold pth,k:

• Set a discarding ratio δ ∈ (0,1). Specifically, a proportion of δ
in each Dnoisy,k, for k = 1,…,c, should be discarded.
• Initialize pmin

th,k and pmax
th,k such that

rout(p
min
th,k ) < δ < rout(p

max
th,k ) (16)

• Iteratively update the midpoint

pmid
th,k ≔ (p

min
th,k + p

max
th,k )/2 (17)

and evaluate rout(p
mid
th,k );

• If rout(p
mid
th,k ) > δ, update pmax

th,k ≔ p
mid
th,k ; otherwise, set pmin

th,k ≔
pmid
th,k .

After a fixed number of iterations, the binary search converges
to a threshold pδth,k such that rout(p

δ
th,k) ≈ δ. It is worth noting that

the above algorithm achieves effective data cleaning performance
comparable to the method presented in Shen et al. (2024), while
offering significantly greater computational efficiency. The key
mechanism by which the proposed method enhances robustness
against label noise lies in its use of kernel density estimation to
identify and retain data points located in regions of high data
density. Intuitively, in high-density regions of the feature space, the
probability of encountering incorrectly labeled samples is relatively
low, as these regions are well-supported by the true data distribution
corresponding to each class. Conversely,mislabeled or noisy samples
are more likely to appear in low-density regions, where the overlap
between classes or inconsistencies in the labeling process are more
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Require: Noisy labeled dataset Dnoisy = {(xi, ỹi)}
N
i=1;

  desired discarding ratio δ ∈ (0,1); kernel function

  Ker(⋅); bandwidth h.

Ensure Trained robust classifier Cθ.

1: Partition Dnoisy into class-wise subsets: X̃data,k =

     {xi ∣ ỹi = k} for k = 1,…,c.

2: for each class k = 1 to c do

3:  Estimate density f̂kde,k(x) via KDE on

      X̃data,k using Equation 10.

4:  Initialize p
min
th,k and p

max
th,k such that rout(p

min
th,k) < δ <

     rout(p
max
th,k ).

5:  while stopping criterion not met do

6:   Compute midpoint: p
mid
th,k ≔ (p

min
th,k +p

max
th,k )/2.

7:   Evaluate rout(p
mid
th,k).

8:   if rout(p
mid
th,k) > δ then

9:    Update p
max
th,k ≔ p

mid
th,k.

10:   else

11:    Update p
min
th,k ≔ p

mid
th,k.

12:   end if

13:  end while

14:  Construct rectified dataset for class k:

       Drect,k ≔ {(xi, ỹi) ∈Dnoisy ∣ ỹi = k, f̂kde,k(xi) > p
δ
th,k}.

15: end for

16: Aggregate rectified dataset:

       Drect =
c

⋃
k=1

Drect,k.

17: Train classifier Cθ on Drect by solving

      optimization problem Equation 5.

18: return Trained robust classifier Cθ. =0

Algorithm 1. Robust Fault Detection Algorithm.

prevalent. By explicitly discarding samples whose estimated density
falls below a carefully selected threshold, the proposed method
effectively filters out a significant proportion of potential label noise,
while preserving the core structure of each class in the training
data. This selective data retention substantially reduces the risk of
overfitting to noisy labels and improves the generalization ability
of the resulting classifier—an important property for safety-critical
applications such as fault detection.

2.4 Robust fault detection algorithm

We summarize the method in the way of giving the algorithm
in this subsection. To mitigate the adverse impact of label noise
and enhance the reliability of fault diagnosis, we propose a robust
classification framework that incorporates a data rectification step
prior to model training. The core idea is to leverage kernel density
estimation (KDE) (Botev et al., 2010) to identify and discard
samples likely to be mislabeled, based on the observation that true
labeled data tends to concentrate in high-density regions of the
feature space. The procedure of Robust Fault Detection Algorithm
is summarized in Algorithm 1.

3 Results

3.1 Validation scenario and data acquisition

3.1.1 Dataset for LIB battery
Voltage data for both healthy and faulty conditions

were collected from simulation models developed in the
MATLAB/Simulink environment. The simulation utilizes the LIB
battery pack system designed for two-wheel electric vehicles,
operating under both normal and fault-induced driving conditions.
Data were acquired from voltage sensors installed within the battery
pack, capturing system behavior under various scenarios. Faulty
conditions were simulated by introducing short-circuit, overcharge,
and over-discharge faults using the thermal resistive fault block.
These faults were triggered at 0.2 s under different resistive load
settings. The collected dataset includes multiple parameters such
as state of charge (SOC), temperature, voltage, and current. In this
study, only voltage data from both normal and faulty conditions
were used, with the objective of contributing to the prevention of
fire hazards in lithium-ion battery systems.

3.1.2 Fault detections in transformer windings
In addition to the lithium-ion battery dataset, a second dataset

was considered for evaluating fault detection in transformer
windings. This dataset was acquired via Oscillating Wave
Testing (OWT), a non-invasive diagnostic technique that
captures high-voltage oscillation signals to characterize winding
deformations (Wu et al., 2020). This dataset originates from a 10 kV
transformer winding fault simulation platform, where four types of
winding faults—axial displacement, local buckling, inter-disc short
circuit, and inter-turn short circuit were systematically considered.
Each fault scenario was labeled based on the known fault type and
its severity, as defined during the experimental setup, and repeated
under controlled conditions to ensure labeling consistency. The
resulting classification dataset includes labeled oscillation wave
measurements for these four fault types as well as healthy conditions,
enabling evaluation of the proposed robust classification framework
in more applications in energy storage systems.

3.1.3 Methods for label noise
To evaluate the robustness of the proposed method under

realistic noise conditions, we consider the following label noise
generation strategies:

• (Symm.) Symmetric noise: Label noise is generated according
to the symmetric noisemodel described in Patrini et al. (2017),
where each label is flipped uniformly at random to any other
class with a specified noise rate.
• (Pair.) Pair flipping noise: Label noise is generated according to

the pair flipping model described in Han et al. (2018b), where
labels are flipped to a single specific incorrect class (typically
the next class) with a given noise probability.
• (Rand.) Random noise: Label noise is generated by sampling

from aDirichlet distribution and combining the resulting label
confusion matrix with the identity matrix to achieve a target
noise rate. This allows for flexible and realistic noise patterns.

The above three types comprehensively represent a range of
practically relevant label noise patterns in electrochemical energy

Frontiers in Energy Research 05 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1647197
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


He et al. 10.3389/fenrg.2025.1647197

FIGURE 3
Classification accuracy of ELM. Mean value of 1,000 trials is reported. (A) Accuracy at 15% noise rate; (B) Accuracy at 45% noise rate; (C) Accuracy
improvement after data cleaning at 15% noise rate; (D) Accuracy improvement after data cleaning at 45% noise rate.

FIGURE 4
Classification accuracy of SVM. Mean value of 1,000 trials is reported. (A) Accuracy at 15% noise rate; (B) Accuracy at 45% noise rate; (C) Accuracy
improvement after data cleaning at 15% noise rate; (D) Accuracy improvement after data cleaning at 45% noise rate.

FIGURE 5
Representative oscillating wave signals under four fault conditions
(axial displacement, local buckling, inter-disc short circuit, inter-turn
short circuit).

storage systems’ fault diagnosis. In this study, we consider noise
rates of 15% and 45% to examine the performance of the proposed
method under both moderate and severe label noise scenarios.

3.2 Benchmark algorithms

To evaluate the effectiveness of the proposed robust battery
fault detection algorithm, we compare its performance with several

baseline and benchmark methods. In particular, we systematically
examine how different levels of kernel-based data cleaning affect
the performance of two representative classifiers: Support Vector
Machine (SVM) and Extreme Learning Machine (ELM).

The following benchmark algorithms are considered:

• ELM-D: Extreme Learning Machine (ELM) classifier trained
directly on the noisy dataset Dnoisy without data cleaning.
• ELM-C-10%, ELM-C-20%, ELM-C-30%, ELM-C-40%, ELM-

C-50%, ELM-C-60%: ELM classifiers trained on the rectified
datasets in which 10%, 20%, 30%, 40%, 50%, and 60% of low-
density data points are discarded using the proposed kernel-
based rectification method.
• SVM-D: Support Vector Machine (SVM) classifier trained

directly on the noisy dataset Dnoisy without data cleaning.
• SVM-C-10%, SVM-C-20%, SVM-C-30%, SVM-C-40%, SVM-

C-50%, SVM-C-60%: SVM classifiers trained on the rectified
datasets in which 10%, 20%, 30%, 40%, 50% and 60% of low-
density data points are discarded using the proposed kernel-
based rectification method.

This experimental design enables a comprehensive analysis of
the robustness and accuracy gains provided by the proposed data
rectification framework across different classification models and
varying levels of data cleaning. By comparing the Direct and Clean
variants of both ELM and SVM, we can clearly assess the practical
benefits of incorporating the rectification step into the battery fault
diagnosis pipeline.
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FIGURE 6
Classification accuracy for transformer winding fault detection. Mean value of 1,000 trials is reported.

3.3 Performance metric

This section provides an overview of the performance
metric used to evaluate the effectiveness of the proposed model.
The selected evaluation metric is the classification accuracy,
defined as:

α≔ (
c

∑
k=1

Nacc,k)/(
c

∑
k=1

Nall,k), (18)

where Nacc,k denotes the number of correctly classified test samples
in class k, and Nall,k denotes the total number of test samples in
class k.

3.4 Validation results of LIB battery fault
detection

Figures 3, 4 present the classification accuracy results of
ELM and SVM models trained either directly on the noisy
dataset or on the rectified dataset obtained using different
discarding ratios δ. As shown in Figures 3, 4, both ELM
and SVM classifiers exhibit significantly degraded accuracy
when trained directly on the noisy dataset, highlighting the
detrimental impact of label noise on model performance.
In contrast, the proposed kernel-based rectification method
substantially improves classification accuracy across both models
and under various noise scenarios, demonstrating its effectiveness
in mitigating the influence of noisy labels. An important
observation is that the choice of discarding ratio δ plays a
critical role in achieving optimal performance. In particular,
when δ is set close to the true underlying noise rate (e.g., 15%
or 45% in our experiments), the rectification process is able
to remove a majority of mislabeled samples while preserving
the informative structure of the clean data, thereby leading to
superior classification results. It is important to note that in
practical applications, the true noise rate is typically unknown.
Therefore, developing adaptive strategies to optimize δ without
requiring prior knowledge of the noise level represents an
important direction for future research on robust battery fault
detection.

3.5 Validation results of transformer
winding fault detection

In addition to the battery fault detection experiments, the
proposed kernel-based rectification method was validated on
transformer winding fault detection tasks, with four representative
fault types: axial displacement (AD), local buckling (LB), inter-disc
short circuit (IDSC), and inter-turn short circuit (ITSC). Figure 5
provides visual evidence of the discriminative oscillating wave
signatures used in our fault diagnosis framework. The high-voltage
oscillating wave test (OWT) captures these transient responses
by applying a damped AC voltage pulse to the transformer
winding and recording the resulting oscillation decay profile. These
physically interpretable patterns form the basis of the feature vectors
processed by our kernel-based rectification framework. The signal
preprocessing pipeline, including noise suppression via wavelet
thresholding and feature extraction through resonance frequency
analysis, follows the methodology established in Wu et al. (2025).
Consistent with the battery case study, setting the discarding
ratio δ slightly larger than the true label noise rate led to robust
performance improvements, which is practically feasible because
conservative estimates of labeling quality are usually available.
Here, a severe label noise scenario with a 45% noise rate was
evaluated to rigorously test the method. As shown in Figure 6,
both ELM and SVM classifiers without rectification (ELM-D, SVM-
D) suffered major accuracy drops across all fault types under
this high noise condition. In contrast, applying the kernel-based
rectification with δ = 50% (ELM-C-50%, SVM-C-50%) recovered
high classification accuracy, exceeding 80% in all cases. These
results confirm that the rectification approach effectively filters out
noisy samples while preserving the core structure of each class,
maintaining reliable classification performance consistent with the
battery case study. This demonstrates the framework’s applicability
across electrochemical energy storage systems in severe label noise
scenarios.

3.6 Computational considerations

In terms of computational cost, the proposed kernel-based
rectification framework was implemented in MATLAB on a
standard laptop (Intel Core i7 processor), where the average
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runtime of the KDE-based data cleaning step was measured
at approximately 15 ms per dataset partition containing 1,000
samples. Although we have not yet ported the algorithm to an
embedded hardware platform, this processing time is well within the
capabilities of modern embedded processors, especially considering
that fault diagnosis generally operates on time scales of seconds
to minutes. This supports our description of the method as
computationally lightweight, while acknowledging that future work
will further validate its runtime characteristics in actual embedded
environments.

4 Discussion

This study presents a robust fault detection framework for
electrochemical energy storage systems, integrating a kernel-based
data rectification process into the standard classifier training
pipeline. The motivation stems from the observation that real-
world fault diagnosis systems often face label noise due to
measurement errors, labeling inconsistencies, and the gradual
nature of certain fault phenomena. Our method systematically
addresses this challenge by discarding data points located in low-
density regions of the feature space, where mislabeled samples
are more likely to occur. Through comprehensive experiments on
simulated lithium-ion battery voltage data as well as transformer
winding fault data with synthetic label noise, we demonstrate that
both ELM and SVM classifiers trained directly on noisy data
suffer from substantial accuracy degradation. In contrast, applying
the proposed kernel-based rectification step prior to training
significantly improves classification performance across various
noise scenarios and classifier types. Our results further indicate that
tuning the discarding ratio δ to be close to the true underlying
noise rate yields the best performance, as it effectively balances
noise removal with the preservation of useful information. From
an application perspective, this finding is particularly relevant for
electrochemical energy storage systems, where ensuring reliable
and robust fault diagnosis is critical for operational safety. By
improving the generalization capability of classifiers in the presence
of label noise, the proposed framework can enhance the reliability
of real-time fault monitoring and help mitigate risks such as
catastrophic failures or safety hazards. One limitation of the current
approach is that selecting an optimal δ requires knowledge of
the noise rate, which is typically unknown in practical settings.
Developing adaptive mechanisms to automatically estimate or
tune δ during training is an important direction for future work.
Moreover, extending the framework to incorporate additional
sensor modalities (e.g., temperature, current, vibration signals)
and to support online learning scenarios will further broaden
its applicability across advanced energy storage systems. Overall,
the proposed method provides a computationally efficient, easy-
to-integrate, and practically effective solution for enhancing fault
diagnosis in noisy real-world environments.
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