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When a severe fault occurs within a transformer, the fault current escalates
rapidly, making it challenging for differential protection systems to promptly
isolate the faulty transformer. This delay can lead to catastrophic accidents,
such as explosive combustion. To address this issue, this study proposes a novel
differential protection device based on leakage magnetic field characteristics.
The device accurately detects transformer winding deformation, arc-type
faults, and inter-turn faults during the early stages of transformer faults,
thereby preventing severe accidents. By analyzing several early transformer
fault cases, this study proposes leveraging the symmetry characteristics of the
leakage magnetic field to identify early faults. A fiber-optic sensor, utilizing the
Faraday magneto-optical effect, is developed to measure leakage magnetic field
characteristics. Based on this, a differential protection scheme incorporating
steady-state and transient leakage magnetic field quantities is proposed to
identify winding deformation and inter-turn faults. A prototype of the protection
device has been developed, successfully passing static and dynamic simulation
tests, and is slated for deployment in field operations.

transformer protection, transformer early faults, leakage magnetic field, field test,
magnetic sensing

1 Introduction

Power transformers, vital components of power system equipment whose faults can
disrupt electrical supply and incur significant economic losses, should maintain operational
reliability to ensure the safety and stability of the power system (Yan et al, 2024).
Internal faults in these transformers may activate protective mechanisms, potentially
interrupting the power supply. If circuit breakers fail to trip promptly, arc discharges can
cause oil decomposition, generating elevated temperatures and pressures that may lead to
catastrophic accidents, such as explosive combustion. Such incidents can lead to substantial
economic losses for both the state and power utilities (Brodeur and Dastous, 2020).
Consequently, investigating the mechanisms of incipient transformer faults and developing
early fault detection devices are essential. These devices facilitate prompt identification
of internal faults, evaluation of their progression, and execution of appropriate protective
measures, thereby minimizing maintenance costs and enhancing power supply reliability.
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Prior to commissioning, power transformers may experience
mechanical shocks during transportation and installation. During
operation, they may be subjected to elevated short-circuit currents
caused by external faults. Combined with insulation aging,
these factors can cause irreversible winding deformation, inter-
turn arc faults, or inter-turn short circuits (Wang et al., 2016;
Xian et al., 2024), potentially leading to catastrophic accidents
such as transformer explosions (Abi-Samra et al., 2009). Current
engineering practices primarily rely on differential protection and
gas relay protection (Mirowski and LeCun, 2012; Gomathi et al.,
2023). However, minor insulation damage within the windings often
produces current changes too small to reliably trigger differential
protection. Protection typically activates only after the fault escalates
beyond the threshold, by which point severe winding damage may
have already occurred. Notably, even minor insulation faults alter the
leakage magnetic field distribution around the windings. Leveraging
this magnetic variation as a diagnostic feature can significantly
enhance fault detection sensitivity.

Recent studies have advanced fault diagnosis by leveraging
variations in leakage magnetic fields. For instance, Reference
(Ji et al, 2024) conducted finite element simulations of various
winding deformations, proposing a defect encoding method based
on magnetic field changes with practical applications. Zhou and
Wang (2017) explored the correlation between winding deformation
and leakage magnetic field distribution, developing a classification
method based on this characteristic. Deng et al. (2023a) formulated
an analytical multi-state model aligned with actual transformer
behavior, utilizing differences in leakage magnetic fields to detect
and locate early winding faults. Zheng et al. (2022) derived the
spatial magnetic flux density distribution of windings, validating
leakage field patterns under inter-turn faults through simulation.
Zhang et al. (2021) developed a coupled electromagnetic-circuit
model, conducting multi-physics analysis to characterize inter-
turn faults and provide a theoretical foundation for improving
transformer short-circuit withstand capabilities. Deng et al. (2023b)
utilized leakage magnetic fields as features in a deep belief
network to diagnose winding deformation. Liu et al. (2024a) and
Liu et al. (2024b) employed finite element model data to select
fault features and trained machine learning models for classification.
However, these approaches often rely on simulated data and complex
parameter tuning rather than analyzing the physical mechanisms of
early winding faults, potentially compromising protection sensitivity
and reliability. In contrast, Haghjoo et al. (2018) proposed a method
for fault phase identification by examining symmetry changes in
leakage field distributions before and after winding faults.

To utilize leakage magnetic field characteristics as protective
triggers, highly sensitive magnetic field sensors suitable for high-
voltage, high-current environments are essential. Current magnetic
field sensors include magnetoresistive sensors, induction coils, and
magneto-optical sensors. The former two, being metallic, present
installation challenges and risks of short circuits (Yamagashira et al,
20145 Zhang et al., 2019; Li et al., 2021). In contrast, fiber-optic
magneto-optical sensors, leveraging the Faraday effect, provide high
resolution, robust insulation reliability, and cost-effectiveness. These
sensors detect magnetic field variations through optical polarization,
making them well-suited for measuring transformer leakage
magnetic fields (Jiang et al., 2021; Huang et al., 2024). Consequently,
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early transformer faults can be identified by monitoring changes in
leakage magnetic field characteristics (Deng et al., 2024).

The reviewed literature confirms the feasibility of leveraging
leakage magnetic field distributions for early transformer fault
detection. However, most existing approaches remain at the
theoretical stage, facing challenges in measuring magnetic fields
in high-voltage, high-EMI environments and conducting dynamic
model tests for incipient faults. As a result, commercialized products
or practical engineering applications have yet to be realized.

To address these limitations, this study analyzes real-world cases
of incipient transformer faults, develops analytical and simulation
models based on physical structural parameters, and examines
leakage magnetic field characteristics across various fault types in
high-, medium-, and low-voltage windings. A novel protection
scheme, utilizing steady-state and transient leakage magnetic field
differentials, is proposed. Its effectiveness has been validated
through comprehensive static and dynamic tests, leading to the
development of an early fault protection system for transformers,
suitable for engineering applications.

2 Case study of early transformer
failure on site

From 2015 to 2020, a 100 MVA step-up transformer in a wind
farm in Shandong Province experienced four internal faults, as
summarized in Table 1. Post-fault inspections revealed that the
winding insulation structures were damaged, with deformations
at the winding ends. Additionally, severe overheating led to
charring, copper particle detachment, and inter-turn discharge
faults. Although the transformer was equipped with online
monitoring systems such as dissolved gas analysis and partial
discharge detection, these systems failed to detect the faults. Due
to the minor nature of the internal faults in their initial stages, the
sensitivity of the differential protection was insufficient to trigger
a response. Consequently, the faults escalated until the protection
system acted, by which time the windings had been severely burnt.

On June 4 at 21:01, an internal fault occurred in a +800 kV
converter transformer. All three differential protection systems
activated simultaneously, and 22 m later, the “Y-connection minor
differential power-frequency component” protection was triggered.
As a result, the transformer windings were severely burnt and
rendered irreparable. Similarly, in a hydropower station, an inter-
turn short circuit occurred within the low-voltage winding of an
excitation transformer. Although the differential protection systems
operated, the insulation caught fire and burned, severely damaging
the transformer and disrupting normal operations.

These cases highlight several shortcomings in existing
protection strategies, despite the presence of traditional online
monitoring and protection systems. Online monitoring is typically
effective only during the insulation degradation stage. Since partial
discharges occur within the insulation, the current waveform of the
windings often remains unchanged, making fault detection difficult.
Therefore, the reliability of traditional online systems is relatively
low. While conventional differential protection reliably activates in
the event of severe faults, such events evolve rapidly and may cause
irreversible damage before action is taken.
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TABLE 1 Maintenance record of the 100MVA confluence main transformer in a wind farm in shandong province.

Record No. Operation time Reason for repair Fault description
1 2015-2016 Differential protection action The two cakes at the end of the high-voltage C-phase coil are
burned out
2 2016-2018 Excessive acetylene, differential protection action, light gas Large area discharge of C-phase coil, short circuit in the
alarm middle turn, deformation of 20 turns, carbonization and
detachment of insulation on the surface of the wire
3 2018-2019 Oil and gas exceeding the standard During peak power generation periods, replace the main
transformer
4 2019-2020 No load closing heavy gas protection action, acetylene B-phase deformation, minor malfunction, high-voltage
exceeds the standard C-phase tail coil burnt out
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FIGURE 1
Calculation model for leakage magnetic field of transformer winding.

Between the stages of insulation degradation and severe fault
lies a critical early-stage fault period. Although current waveforms
exhibit only subtle variations during this stage, the leakage magnetic
field distribution around the faulted windings changes significantly.
By exploiting these changes in the leakage magnetic field, early-
stage winding faults can be reliably detected in time to de-energize
the transformer, reducing maintenance costs and improving overall
grid security.

3 Analytical calculation and simulation
of transformer leakage magnetic field

3.1 Analytical calculation of transformer
leakage magnetic field

To investigate the leakage magnetic field distribution under

normal operating conditions and inter-turn short-circuit faults, an
analytical model of the transformer winding is first established.
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For medium and small capacity transformers, due to insulation
design considerations, the heights of the high- and low-voltage
windings are typically not identical, and a gap is generally present
in the middle section. To ensure consistency between theoretical
analysis and dynamic simulation experiments, the model is based
on an actual laboratory dry-type transformer. As shown in Figure 1,
the calculated region ignores the shielding effects of the yoke
and assumes equal ampere-turns for the high- and low-voltage
windings, assuming the magnetic permeability of the iron
core g, = 00.

To handle the irregular winding geometry, the model is
decomposed into a symmetrical regular part and an irregular
superimposed section representing the high-voltage winding.
This decomposition is illustrated in Figure I. The leakage
magnetic field distribution of each section is calculated
separately and then superimposed to obtain the overall field
distribution.

The leakage magnetic field in each region is solved using
the method of separation of variables under specified boundary
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TABLE 2 Main nameplates and dimensional parameters of transformers.

10.3389/fenrg.2025.1650577

Parameter Numerical value ’ Parameter Numerical value
Rated capacity/kVA 50 Rated voltage/kV 1/0.4
Rated current/A 28.87/72.17 Rated frequency/Hz 50
No load current (%) 3.44 No load loss/W 257.4
Low voltage winding height/mm 350 Height of each section of high-voltage 19
non tightly wound winding/mm
Low voltage winding thickness/mm 15 High voltage winding thickness/mm 22.5
Height of lower section of inner 174 Height of upper section of outer 102
high-voltage winding/mm high-voltage winding/mm
Height of upper section of inner 116 Distance between upper and lower 34
high-voltage winding/mm sections of outer high-voltage
winding/mm
Low voltage winding turns 139 High voltage winding turns 201

iron core

Low voltage
winding

High voltage

winding test
short-circuit

FIGURE 2
Simulation model of three-phase segmented irregular winding

transformer.

conditions by applying the Laplace and Poisson equations. By using
the mirror method to x(0 ~ T) extend the current density in this
region, it can be transformed into a periodic function and expanded
into a continuous Fourier series. The calculation region is divided
into Regions I, IT, and III. At the interfaces between regions, the axial
components of the magnetic vector potential and the magnetic field
intensity are continuous. At the interface with the magnetic core, the
axial component is zero. The governing equations for each region are

as shown in Equation 1.
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Distribution of transformer magnetic vectors under normal operating
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Solving these equations and summing the components
yields the magnetic vector potentials A, for Regions I, II,
and III. By taking derivatives, the magnetic flux densities in
various directions are obtained. In particular, the transverse
magnetic flux density in each region, derived by differentiating
with respect to the vertical coordinate, is expressed in

Equation 2.

(o]
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T
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FIGURE 5
Comparison between analytical calculation and simulation of
transformer leakage magnetic field.

3.2 Simulation analysis of transformer
leakage magnetic field

Due to the limitations of short-circuit current capacity in
physical dynamic simulation experiments, scenarios involving
large short-circuit currents cannot be tested directly. Additionally,
specific requirements of algorithm verification necessitate the
development of a finite element simulation model corresponding
to the physical transformer, such as modeling short circuits at any
turn. Based on the nameplate data and structural parameters of the
early fault test transformer listed in Table 2, a three-dimensional
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finite element model was constructed using ANSYS Maxwell, as
illustrated in Figure 2. The laminated structure of the transformer
core was simplified, and the low-voltage winding was modeled as
a single concentric cylinder. The high-voltage winding assembly
was divided into upper and lower sections according to its actual
configuration, with a gap in the middle. The upper section was
simplified as a complete concentric cylinder, while the lower section
contained seven taps used to connect external circuits. These taps
allowed for the simulation of minor inter-turn short-circuit faults
by connecting fixed resistors. The faulted winding section was
simplified into seven identical concentric cylindrical segments. The
external circuit was co-simulated using the Simplorer simulator to
analyze the behavior of the system under slight inter-turn short-
circuit conditions.

Taking an inter-turn short-circuit fault occurring at the lower
section of phase As high-voltage winding at t = 40 ms as an
example, the coupled simulation between Maxwell's magnetic
solver and Simplorer’s circuit solver was conducted. The leakage
magnetic field distribution before and after the fault, the radial
magnetic flux density at different measurement points, the current
in the short-circuit loop, and the terminal current were analyzed.
These results were compared with those from the analytical
model to identify fault characteristics and develop protection
criteria.

Under normal conditions, the 3D distribution of magnetic flux
density vectors shows that the magnetic vectors at the winding ends
bend and diverge, dominated by radial components. Along the axial
direction outside the winding, the magnetic flux density is at its
maximum and exhibits symmetry between the upper and lower
parts, as shown in Figure 3.

Following the occurrence of a minor inter-turn short-circuit
fault, Figure 2 shows that significant changes occur in the magnetic
vector distribution around the fault region. This is because,
after the short circuit occurs at t = 40 ms, the current in
the fault loop rises to 3793 A, as shown in Figure 4, which
is several tens of times higher than under normal operating
conditions. Such high localized current drastically alters the
surrounding leakage magnetic field, forming a pronounced vortex-
shaped closed magnetic loop around the faulted turns. These
magnetic vectors exhibit a concentric circular pattern, and the
reverse magnetic field generated by the short-circuit current
destroys the symmetry of the original leakage magnetic field
distribution.

To validate the consistency between the simulation model and
the analytical calculations, the radial magnetic flux density curves at
the upper winding measurement points under the same load current
conditions were plotted. As shown in Figure 5, the results of both
methods are in close agreement.

From the above simulations, it is evident that inter-turn
faults disrupt the symmetry of the leakage magnetic field
distribution. The consistency between the analytical and simulation
results confirms the accuracy of the analytical model. However,
the 3D FEM more closely represents the actual transformer
structure and offers higher precision in capturing field distortions,
including the influence of the core. Therefore, for future
simulations of inter-turn faults, the FEM model will be used,
while the analytical model will support protection threshold
calculations.
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4 Principle of leakage magnetic field
measurement and differential
protection

4.1 Principle of magnetic field
measurement using fiber optic sensors

The basic principle of magnetic field measurement using fiber
optic sensors is based on the Faraday magneto-optical effect. As
illustrated in Figure 6, light emitted from a laser source passes
through a polarizer and becomes linearly polarized. When the
polarized light travels through a magneto-optic crystal, the presence
of a vector magnetic field along the direction of light propagation
causes a rotation in the plane of polarization. This rotation angle
0 is dependent on the magnetic flux density (Hou et al., 2024), as
expressed in Equation 3:

0=VIB (3)

After passing through the magneto-optic material and
undergoing a rotation of 0, the incident linearly polarized light
becomes the output polarized light. It then passes through
an analyzer and enters the tail fiber, ultimately reaching the
photoelectric conversion module. According to Malus’ Law, the
input voltage U, of the sampling circuit can be expressed as:

—al

(1-sin(2VIB,, sin (wt +¢)))
(4)

KL.e
Uy = KL;e ™ cos?(B + VIB) = 2

As shown in Equation 4, the output voltage of the optical
measurement module is significantly affected by light intensity and
temperature. Variations in input light intensity L; can cause large
fluctuations in the amplitude of the measured signal but do not
affect its phase. The laser emitter and photodetector in the protection
system are configured with single-port emission and reception, and
the optical power of each channel remains constant. Under stable
conditions without external physical disturbances, U, maintains a
fixed proportional relationship with L;. The Verdet constant V is
notably temperature-sensitive, with a temperature coeflicient that
can reach 0.3/°C. within the IEC standard ambient temperature
range of —25 °C to 40 °C, the maximum and minimum values of the
Verdet constant may differ by a factor of 1.95, affecting the amplitude
of the fundamental component of U, However, in dry-type
transformer applications, ambient temperature variations are slow.
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By applying protection logic delay differential and a temperature
correction factor in software, the influence of temperature-related
factors is eliminated. This enables accurate acquisition of the one-
dimensional scalar leakage magnetic flux density along the axis of
the magneto-optic crystal by reading and processing the voltage Uj,.

4.2 Principle of leakage magnetic field
differential protection

During the normal operation of a power transformer, the
distribution of electromagnetic forces within the winding must be
balanced, and audible noise must remain within acceptable limits.
As a result, the leakage magnetic field near the windings exhibits
a symmetric distribution, as shown in Figure 7A. Although factors
such as tap windings and sectionalized winding structures may
slightly affect the symmetry, air acts as a linear medium, and the
symmetry of the leakage field distribution can be compensated by
selecting appropriate sensor positions. When a minor inter-turn
fault occurs, the current in the shorted turns becomes extremely
large, causing significant changes in the local leakage magnetic
field. This disturbs the symmetry of the field distribution, as
illustrated in Figure 7B.

In the case of a minor internal inter-turn fault, the current
distribution in the winding and the corresponding leakage magnetic
flux lines are illustrated in Figure 7C. The leakage field generated
by the fault current primarily affects the space surrounding the
fault point, with minimal influence on distant regions. Therefore,
the winding region can be divided into three zones, as shown in
Figure 7D. Magnetic field sensors are deployed at the boundaries of
these regions to facilitate the detection of leakage field variations and
the localization of the fault point (Deng et al., 2022).

When an inter-turn fault occurs in a transformer, conventional
differential protection schemes based on current transformers
located at the transformer terminals cannot sense the fault
current circulating within the shorted turns. However, the radial
leakage flux generated by the fault current can be effectively
detected by magnetic field sensors. differential
protection based on magnetic field measurement provides

Therefore,

significantly higher sensitivity than traditional current differential
protection.

An inter-turn short circuit alters the spatial distribution of
the leakage magnetic field, resulting in a sudden increase in
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the differential leakage flux at the winding ends. The differential
protection criterion for end regions is defined in Equation 5:

AD = [@, + K- Dyopn| > Doy (5)

The middle measurement point in the winding is used to assess
the symmetry of the leakage magnetic field under normal operating
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conditions. For a symmetric winding, the middle leakage field value
approaches zero. In cases where the winding structure is irregular, an
inherent imbalance may exist, but the magnitude is much smaller
than that under fault conditions. The imbalance at the middle
measuring point is mainly determined by the physical structure
and can thus be treated as a quasi-constant when compared to the
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differential flux at the ends. The discrimination criterion for the

Since mechanical deformation of the winding also alters
the symmetry of the leakage magnetic field distribution, the
same differential principle applies to detecting such deformation.

middle point is given by Equation 6:

Dpnid > Keetr * Pup (6) Winding deformation is typically a cumulative abnormality.

08 frontiersin.org
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Therefore, a fault initiation blocking condition is applied to ensure

that this type of detection is performed only under steady-state

operating conditions. By differentiating the activation threshold

for inter-turn short-circuit faults and winding deformation, the

detection sensitivity can be improved while reducing false alarms.
The complete protection logic is illustrated in Figure 8.

4.3 Setting of leakage magnetic field
differential protection thresholds

The differential protection threshold for leakage magnetic field
is determined based on the maximum magnetic flux imbalance
that can occur at the transformer end under an external three-
phase short-circuit fault. In this scenario, the maximum short-
circuit current is assumed to be 20 times the rated current.
Additionally, a horizontal positioning error of 0.05c is considered
for the measuring points. By substituting the differential flux
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calculation formula into the analytical expression for the leakage
magnetic field, the maximum leakage flux imbalance can be derived,
as shown in Equation 7:

AD =20|D(x,y, +0.05¢) + k- D(x,y,)| + £(x, 3, 7)

D +0.05¢ n
Ll(x) l(yl ) [e—m;hw _ 1]+
s +kD, (v,)
=20 Z (7)
=1 D +0.05¢ n

m L,x) 2()’1 ) [eo.7sm;c+ 1]

+kD;(,)
+e(x,),7)

According to the two-dimensional structure of the transformer
in this leakage magnetic field analytical model, the leakage magnetic
flux value passing through the middle measurement area can
be obtained by substituting the coordinates (x,h,,/2+ h,) of the
measuring point in the middle measurement area into the flux
calculation formula of the analytical model. By comparing the
leakage flux at the upper, middle, and lower measuring points,
structural ratio coefficients kg, and k., can be obtained to
quantify the asymmetry of the winding geometry. Considering a
reliability coefficient of 1.3, the final setting value for the differential
protection threshold is given in Equation 8. The setting principles
for coefficients k and k_,;, follow the same methodology as used for

ksetl'
D(x,h,/2+ hy)
kg1 = 1,3‘ S wl 2 T 7o)
’ (xy,)
-t 75m %
; Ll(x)D](}% +h0)[e T 1] +L2(x])D2(}% +h0)[e°75 T4 1] (8)
Ll(x)DM)[e—m%hw _ 1] +L2(X)D2(yl)[eo.7smgc N 1]
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TABLE 3 Accuracy test results of fiber optic sensors.

Measurement data (mT)

Channel number

0.1A 0.5A 09A
1 0.96 4.72 8.41
2 0.99 4.82 8.63
3 1.02 5.07 9.05
4 0.99 4.98 9.09
5 1.00 5.01 8.91
6 0.99 491 8.74
7 1.00 4.98 8.88
8 0.96 4.80 8.55
9 0.98 4.92 8.76
Calibration Value 0.99 4.92 8.83
Maximum error% 3.609 3.713 4.674

5 Dynamic simulation verification of
leakage magnetic field differential
protection device development

5.1 Development of the protection device

5.1.1 Fiber-optic sensor based on
magneto-optical crystal

To measure the spatial distribution of the leakage magnetic field
along the winding surface, multiple fiber optic sensors are required.
However, magnetic field sensors based on interference principles are
prohibitively expensive and difficult to apply in practice. In contrast,
sensors based on the Faraday magneto-optical effect offer lower cost,
sufficient accuracy, and are well-suited for large-scale deployment.

The core component of the fiber optic sensor is the magneto-
optical crystal. In this study, Yttrium Iron Garnet (YIG)
was selected (Wang et al., 2023). Operating in the near-infrared
wavelength of 1,550 nm, YIG exhibits a Faraday rotation coefficient
of 200°-300°/cm, significantly higher than that of traditional
magneto-optic materials. This allows for effective modulation of
the polarization state of light, making it highly sensitive to weak
magnetic fields. Additionally, YIG has low optical absorption
in the communication band, making it compatible with fiber-
optic systems. The YIG crystal, optical components, and loops are
encapsulated in a glass tube and connected via fiber tails to form the
complete fiber optic sensor.

5.1.2 Hardware circuit of the magnetic quantity
protection device

The hardware structure of the transformer early fault protection
device, based on fiber optic leakage magnetic field sensors,
is shown in Figure 9. The system includes a fiber optic sensor
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module, signal conditioning and conversion module, signal
processing module, and power supply module. The signal processing
module is built with a dual-core DSP operating at 200 MHz,
equipped with an FPU and TMU, which are suitable for high-
performance computation of leakage magnetic field signals and
for executing protection algorithms.

The fiber optic sensors are installed at the upper, middle, and
lower measuring points on the transformer winding. The parameters
of the dynamic test system can be adjusted to match experimental
requirements. A broadband ASE light source generates optical
signals transmitted via fiber. When these signals pass through the
magneto-optical crystal, the polarization direction is rotated due to
the influence of the leakage magnetic field near the winding. After
passing through the analyzer, the polarized light returns through the
tail fiber to the protection device. The received signal is converted,
filtered, and amplified before being processed by a DSP to perform
Fast Fourier Transform (FFT). The protection device then identifies
and localizes early-stage transformer faults based on the preset
differential protection logic.

This device supports nine optical signal channels in total. Three
optical channels are assigned to each of the upper, middle, and
lower measuring points of the winding. This configuration supports
either single-direction magnetic field measurement or full three-
dimensional magnetic field analysis.

For minor inter-turn short-circuit faults, the device supports
steady-state and transient magnetic differential protection, phase-
difference-based protection, and fault localization. For winding
deformation, the system offers steady-state magnetic field analysis
and angular deviation-based deformation detection.

5.2 Dynamic simulation experimental study

While simulation models allow for quantitative verification
of fault criteria, controlled initial conditions of excitation, and
exploration of extreme cases such as minor or severe faults,
physical dynamic simulations are limited to predefined fault types.
Therefore, this study integrates both simulation and physical
dynamic modeling for hybrid testing, as illustrated in Figure 10.

A simulation model was established based on the physical
parameters of the transformer. Its results were verified for
consistency with both analytical calculations and empirical
measurements. The thresholds for protection were determined
using the simulation outputs, and corresponding settings were fine-
tuned. This hybrid approach allows for the verification of early fault
detection schemes, especially under operating conditions that are
difficult to reproduce in physical testing.

Since the fault signature used in this study is the leakage
magnetic field, traditional digital dynamic simulation systems such
as RTDS (Real-Time Digital Simulator), commonly used in relay
protection development, are not suitable. A physical dynamic
simulation system was therefore developed, capable of replicating
early-stage transformer faults and mimicking grid operating
conditions. This system is shown in Figure 11. The research
team designed a modular transformer with configurable core and
winding structures, including windings capable of simulating minor
inter-turn short-circuits and deformation by adjusting physical
dimensions. The short-circuit winding includes seven tapping points
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FIGURE 15
Waveform diagram of measurement points 1 and 2 when 10% winding
compression deformation occurs at the upper end of the winding.

for external connection, where fixed resistors simulate minor inter-
turn faults. Additionally, the windings can be connected to an arc
discharge circuit to mimic arc-type faults. Fault locations can be
set at upper, middle, or lower measuring points, and the system is
capable of simulating various transformer operating conditions.

The developed physical dynamic simulation system and the
associated protection device testing are shown in Figure 12. The
leakage magnetic field-based early fault protection device was
thoroughly tested, including evaluation of the fiber optic sensor
alignment accuracy and the effectiveness of differential protection
under early fault conditions. The final field-deployable system is
illustrated in Figure 13 and is intended for use in a dry-type auxiliary
transformer at a hydroelectric power plant.
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5.3 Dynamic simulation verification

5.3.1 Static matching accuracy test for fiber optic
channels

This test focuses on evaluating the consistency of all optical
fiber measurement channels in the leakage magnetic field early
fault protection device. The calibration procedure is illustrated in
Figure 13. A relay protection tester is used to supply different AC
currents to a solenoid, creating varying magnetic field strengths,
against which the output of the optical fiber leakage magnetic
field sensors is calibrated. The accuracy of leakage magnetic field
measurement depends on the characteristics of the optical fibers.
Different channel coefficients are configured to assess the matching
degree across various fibers. If the matching degree is high,
measurement accuracy becomes independent of the specific fiber
used. The experiment tested 54 optical fiber measurement channels
from 6 devices, with the overall average error not exceeding 5%.The
test results of Device No. 1 are shown in Table 3.

5.3.2 Dynamic simulation test of transformer
leakage magnetic field differential protection

To ensure safety during inter-turn short-circuit tests, a current-
limiting resistor is inserted into the short-circuit loop, restricting
the short-circuit current to approximately one-tenth of the metallic
short-circuit level. When a 2-turn (1%) inter-turn fault occurs in the
middle region of the winding, the waveforms of the three measuring
points are shown in Figure 14.

The fault current generated by the inter-turn short circuit in
the middle region creates a magnetic field that overlaps with the
normal operating magnetic field. This superposition remains largely
symmetric at the upper and lower measuring points, resulting in
small values of the symmetric differential component. As seen in
Figure 14A, the radial magnetic flux density at the upper and lower
measuring points changes only slightly before and after the fault,
maintaining the field symmetry. Despite limiting the maximum
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TABLE 4 Summary table of tests.

Fault type

Sudden change

in measurement

Measurement data (mT)

Sudden variables
at intermediate

Sudden changes
in measurement

10.3389/fenrg.2025.1650577

Positioning

point measurement points
points
Central region 2 short 0.34 1.01 0.21 central region 30 m
circuit between turns
Short circuit between the 0.11 0.52 1.34 lower region 30 m
two turns in the lower
area 2
No-load closing / / / Inaction /
Airdrop in the middle 0.41 1.12 0.27 central region 30 m
inter turn short circuit
Upper 10% winding / / / upper area 30 m
deformation

TABLE 5 Summary of action under out of area fault conditions verified by finite element simulation.

Fault type

Measurement
point 1: Sudden
variable

Measurement data (mT)

Measurement
point 3: Sudden
variable

Measurement
point 2: Sudden
variable

Positioning

Fault outside the area

Inaction /

Out of zone fault, lower
area 1 has a short circuit
between turns

3.24

5.38

27.86

lower region 30 m

TABLE 6 Comparison of leakage magnetic field differential protection and induced-voltage-based protection.

Protection Fault condition Fault characteristic quantity Action status
scheme
AB,,/mT AB,iq/mT ABgyopn/mT
Phase A 0.5% 1.63 14.2 2.61 (@] t
Leakage flux differential ase A upper 8.7 perate
tecti
protection Phase A middle 0.5% 10.75 1.83 1.01 Operate
Crt_SUM / mV
Phase A 1.13% 245.1 (@] t
Leakage flux induced ase A upper ’ perate
1t; tecti
voltage protection Phase A middle 1.13% 39.3 No operation

short-circuit current for winding protection purposes, Figure 14B
shows that the magnetic flux density at the middle measuring
point increases significantly after the fault, satisfying the inter-turn
fault discrimination criteria and accurately indicating that the fault
occurred in the central part of the winding.

Winding deformation tests require that deformation be applied
prior to energization, as such faults typically exhibit long-term and
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stable behavior. A 10% compression deformation is applied to the
upper end of the winding. The steady-state waveforms at the upper
and lower measuring points are shown in Figure 15.

Under normal operating conditions, the radial magnetic flux
density at the upper and lower measuring points is symmetric.
After compensating for asymmetry using a balance coefficient, the
differential flux value remains near zero. Clearly, after the winding
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deformation fault occurs, the measured value at the upper point
decreases significantly, meeting the fault detection criteria and
indicating that the deformation is located at the upper part of
the winding.

A summary of the dynamic simulation test results for various
fault conditions is presented in Table 4.

5.3.3 Finite element model validation

Due to experimental limitations, finite element simulation
is used to validate the systems response under external fault
conditions. The results are summarized in Table 5.

5.4 Analysis of experimental results

Based on the results of both dynamic simulation and finite
element analysis, it is evident that the steady-state leakage magnetic
field differential protection scheme is capable of responding to a
one-turn short circuit within 30 milliseconds. It is immune to the
effects of magnetizing inrush current and can accurately locate the
fault point. The transient differential protection scheme based on
magnetic field variation also effectively detects minor inter-turn
faults involving a single turn. It responds within 25 milliseconds
and remains unaffected by inrush current. For winding deformation
detection, the steady-state magnetic field-based method effectively
identifies a 10% compression deformation at both the upper
and lower ends of the winding and accurately locates the
deformation. Moreover, each measurement point is equipped with
three redundant sensors, ensuring that the protection functionality
remains unaffected even if any two of the three channels are
disconnected or malfunction.

5.5 Verification of the superiority of
leakage magnetic field differential
protection

To highlight the superiority of the proposed scheme, we compare
our differential protection method with Haghjoo et al. (2018). The
method in this also identifies transformer faults based on magnetic-
field symmetry, but it derives the leakage magnetic field indirectly
from the induced voltage of search coils, whereas the present
work measures the leakage magnetic field directly using fiber-optic
sensors. A detailed comparison is provided in Table 6. Although
the fiber-optic approach does not show a pronounced advantage
in raw measurement accuracy or response time for transformer
fault identification, it provides strong immunity to electromagnetic
interference, eliminates high-voltage insulation risks, and allows
flexible sensor deployment at different winding locations to
satisfy symmetry-based measurement requirements—thereby
offering a clear advantage in fault localization. In the referenced
method, a fixed threshold of 150 mV leads to unreliable operation
when an inter-turn short circuit occurs in the middle of the
winding, necessitating further analysis of the remaining waveforms
composing Ctr_SUM, or even using voltage waveforms from five
sensors per phase, to reach a correct decision. By contrast, our
method avoids interference and high-voltage insulation issues
inherent to magnetic-field measurement, providing essential
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practical support for achieving high-precision fault localization
and for subsequent extensions to multidimensional measurement
applications.

6 Conclusion

This study begins by analyzing the practical limitations
of conventional transformer online monitoring and traditional
differential protection systems. A novel protection principle is
proposed, which leverages the variations in leakage magnetic field
distribution caused by winding faults to sensitively detect early-
stage transformer failures. A prototype device was developed,
and a physical dynamic simulation system was constructed to
experimentally validate this principle under both static and dynamic
conditions. The main conclusions are as follows:

A finite element simulation model was established based on
the actual structure of a physical transformer, enabling the analysis
of winding leakage magnetic field characteristics under various
operating conditions.

The spatial symmetry of the leakage magnetic field exhibits clear
and predictable patterns. These features were employed to formulate
fault identification and localization criteria, and the corresponding
protection settings were established accordingly.

A prototype protection device was developed. For each
phase winding, three magneto-optical sensors were installed
at the upper, middle, and lower positions to acquire leakage
magnetic field intensity data. Optical signals are transmitted
via optical fibers to the magnetic differential protection device,
where photoelectric conversion and analog-to-digital conversion are
performed before the data are processed by an embedded system.
Upon fault occurrence, the system completes fault identification and
localization within 30 milliseconds, issues alarms and trip signals,
and generates a detailed fault report.
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Nomenclature

Ay Ay and Ay
B> By and By

D, and D,

Jiaand ]

Jia-in and Ji5 gu

set

k

setl

L

LiandL,

Wy, W, and wy

wy, wy and w,

AD

AD'

D P and Dy,

up>

Vector magnetic potential in region I, IT and III
Radial magnetic induction intensity in region I, Il and III

The coefficients of the regular component and the superpositi-
on component of the magnetic field analytical formula that are

related to the axial position y respectively

Distance between the low-voltage winding and the

upper/lower yoke

Height of the irregular windings in the high-voltage winding

required for insulation and testing purposes
Current density

Current density in A phase high-voltage winding and low-

voltage winding respectively

The current density of the A-phase high-voltage inner and outer

winding of the Regular Component respectively
Photoelectric conversion coefficient
Adjustment factor for magnetic flux difference

The structural ratio coefficient of the middle measuring point

relative to the upper measuring point

The structural ratio coefficient of the middle measuring point

relative to the lower measuring point

The coefficients of the regular component and the superpositi-
on component of the magnetic field analytical formula that are

related to the radial position y respectively
Input light intensity
Verdet constant of the magneto-optic material

The distance between the iron core and the low-voltage winding,
the low-voltage winding and the high-voltage winding, the high-

voltage winding and the neutral line respectively

Thickness of the low-voltage winding, the inner layer of
the high-voltage winding and the outer layer of the high-

voltage winding
Light absorption coefficient of the magneto-optical medium

Angle between the transmission axis of the polarizer and the
polarization plane of the incident polarized light, generally set

to 45°

Errors related to environmental factors
Faraday rotation angle

Magnetic permeability of vacuum

Magnetic permeability of the iron core
Distance from the iron core to the neutral line

The imbalance of the radial leakage magnetic flux at the winding

ends under turn-to-turn short circuit fault

The imbalance of the radial leakage magnetic flux at the winding

ends under winding deformation

The measured magnetic flux values of the leakage magnetic field
at the upper, middle, and lower measuring points under turn-to-

turn short circuit fault respectively
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The measured magnetic flux values of the leakage magnetic field
at the upper, middle, and lower measuring points under winding

deformation respectively.

frontiersin.org


https://doi.org/10.3389/fenrg.2025.1650577
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

	1 Introduction
	2 Case study of early transformer failure on site
	3 Analytical calculation and simulation of transformer leakage magnetic field
	3.1 Analytical calculation of transformer leakage magnetic field
	3.2 Simulation analysis of transformer leakage magnetic field

	4 Principle of leakage magnetic field measurement and differential protection
	4.1 Principle of magnetic field measurement using fiber optic sensors
	4.2 Principle of leakage magnetic field differential protection
	4.3 Setting of leakage magnetic field differential protection thresholds

	5 Dynamic simulation verification of leakage magnetic field differential protection device development
	5.1 Development of the protection device
	5.1.1 Fiber-optic sensor based on magneto-optical crystal
	5.1.2 Hardware circuit of the magnetic quantity protection device

	5.2 Dynamic simulation experimental study
	5.3 Dynamic simulation verification
	5.3.1 Static matching accuracy test for fiber optic channels
	5.3.2 Dynamic simulation test of transformer leakage magnetic field differential protection
	5.3.3 Finite element model validation

	5.4 Analysis of experimental results
	5.5 Verification of the superiority of leakage magnetic field differential protection

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References
	Nomenclature

