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Introduction: The growing global demand for fuel has created challenges in the
supply of raw materials, positioning biomass derived from cocoa pod husk waste
as an economically viable and environmentally sustainable energy alternative.
Methods: This study evaluated the effect of different binder types on the calorific
value of briquettes produced from fermented cocoa pod husk waste in the
Peruvian Amazon. For the calorific value assay, 1.05 kg of fermented cocoa pod
husk waste was combined with 100 g of starch-based binders derived from corn,
cassava, or potato, all sourced from the San Martin region. Statistical analyses
were performed in R Studio using the dplyr package, and mean comparisons
were conducted with Tukey's HSD test (p < 0.05).

Results: The lowest ash content was obtained with the potato-starch binder
(7.03%), whereas the highest value was recorded in the control treatment
without binder (8.71%). Fixed carbon content ranged from 3.70% to 5.97%
across treatments. The lowest calorific value was observed with the corn-starch
binder (3,486.0 kcal/kg), while the highest was achieved with cassava starch
(3,586.66 kcal/kg).

Discussion: These findings demonstrate the technical feasibility of producing
high-quality charcoal briquettes from cocoa pod husk waste using starch-based
binders, providing a sustainable alternative to conventional fuels.

KEYWORDS

calorific value, circular economy, elemental composition, combustion, gravimetry

1 Introduction

Plant biomass represents a viable alternative to replace fossil and conventional
fuels for cooking in developing countries such as Peru, offering multiple benefits
including the reduction of greenhouse gas emissions. Consequently, the use of plant
biomass is increasingly recognized as a sustainable strategy to meet global energy
demand while improving quality of life (Bot et al., 2022; Akam et al., 2024). Biomass
resources are promoted for their availability, low cost, purity, and environmental
compatibility (Alruqi and Sharma, 2023).
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In the Peruvian Amazon, cocoa (Theobroma cacao L.) is one of
the most economically important crops, with the San Martin region
being the leading producer, accounting for approximately 37.5% of
national output (Ministry of Agriculture and Irrigation (MINAGRI,
2019), supported by soils and microbiota favorable for crop growth
(Vallejos-Torres et al., 2021; Vallejos-Torres et al., 2022). Nationwide,
cocoa is cultivated mainly in the departments of San Martin, Junin,
Cusco, Ucayali, Huanuco, Ayacucho, and Amazonas, which together
represent about 96% of national production, yielding 153,000 tons
from 146,800 ha (Cayetano et al., 2021). The commercial product is
the seed, which constitutes only about 10% of the total fruit biomass;
the remaining 90% is discarded as waste (Loor, 2020). Among this
residual biomass, the cocoa pod husk is a significant resource that
remains largely underutilized.

The growing global demand for renewable energy, coupled
with the urgent need to manage agro-industrial waste such as
cocoa pod husk, has driven the search for sustainable alternatives
for solid biofuel production (Sharma et al., 2022). In cocoa-
producing regions such as the Peruvian Amazon, cocoa pod husk—a
plentiful but underutilized by-product—offers significant potential
as a feedstock for bioenergy (Santos et al., 2024). However, to
ensure its technical and economic viability as a fuel, it is essential
to optimize transformation processes, particularly the selection
and dosage of binders, which directly influence critical properties
such as calorific value, durability, and combustion efficiency of
briquettes (Mamudu et al., 2023).

Although previous studies have explored residual biomass for
biofuel production, few have focused specifically on cocoa pod
husk, and even fewer have systematically assessed the effect of
locally sourced binders on its energy properties (Mustafa and
Ibrahim, 2023; Akam et al,, 2024). In the Amazonian context,
scientific information is scarce regarding the influence of starch-
based binders—such as cassava, potato, and corn starch—on key
parameters including ash content, fixed carbon, and calorific value
of briquettes (Harussani et al., 2025). This study addresses this
knowledge gap through a systematic experimental approach to
determine the optimal combination of fermented cocoa pod husk
and local binders for high-quality biofuel production.

Cocoa pod husks, due to their high lignin, cellulose, and
hemicellulose content (Djali et al., 2021), are difficult to degrade
and are often discarded in fields, promoting the growth of
pathogenic microorganisms. This waste stream highlights the need
for sustainable management strategies that valorize agricultural
by-products, reducing environmental pollution while generating
value-added products (Herrera-Rengifo et al.,, 2020). Briquettes,
composed of uniform biomass particles compacted under
pressure, are widely used as bioenergy sources in rural and
agricultural areas because they enable controlled combustion
(Oladosu et al., 2023) and foster circular economy practices
that reduce environmental impact (Ashokkumar et al, 2022).
The addition of suitable binders is critical to improve cohesion,
compression strength, and combustion performance.

Globally, it is estimated that by 2030, about one billion people in
developing economies will still rely on raw biomass for cooking
without access to clean cooking facilities (Roder et al, 2022).
Briquettes from agricultural residues—such as coconut shells
with cassava (Manihot esculenta Crantz) binder (Hoyos et al,
2019), rice (Oryza sativa L) husks (Lubwama et al, 2018),

Frontiers in Energy Research

02

10.3389/fenrg.2025.1661636

banana (Musa paradisiaca L) peels (Bot et al, 2023), or
corn (Zea mays L.) straw with cassava binder (Tarka et al,
2023)—offer an economical and renewable energy alternative
(Nwankwo et al., 2023; Adeleke et al., 2022).

Despite advances in biomass briquetting, studies on cocoa
pod husk briquettes in Peru are lacking. At the National Institute
of Agrarian Innovation (INIA), cocoa pod husks are currently
valorized through solid fermentation to produce liquid biofertilizers,
leaving behind nutrient-depleted fermented cocoa pod husks with
sufficient biomass for energy applications.

Therefore, the objective of this research was to evaluate the
effect of three starch-based binders—cassava, corn, and potato
(Solanum tuberosum L.)—on the calorific value and combustion-
related properties of fermented cocoa pod husk briquettes. The
findings will inform the selection of optimal binder types for
maximizing briquette quality, providing a replicable framework for
addressing energy poverty with low-cost, locally available inputs.

2 Materials and methods
2.1 Location of the experimental area

The study was carried out in the Soil, Water and Foliar
Laboratory (LABSAF) and greenhouse of the Agricultural
Experiment Station EL Porvenir (South Latitude: 06° 35’ 50“West
Longitude: 76° 19'30”), of the National Institute of Agrarian
Innovation (INIA), located in the district of Juan Guerra, province
and department of San Martin, Peru. The average temperature was
17°C-35°C and rainfall was 1,000-1,500 mm per year.

2.2 Description and origin of cocoa pod
husk

Cocoa pod husks from the Coleccién Castro Naranjal 51 (CCN-
51) variety, obtained from productive plants, were sourced from
farms in Tocache, San Martin Region, Peru (Figure la). CCN-51
originates from the cross ICS-95 x IMC-67, subsequently crossed
with a native clone from eastern Ecuador known as “Canelos” The
fruit is characterized by a reddish-violet color, oblong shape, and
pronounced surface rugosity (Garcia, 2010). The characteristics of
cocoa beans are strongly influenced by factors such as climate,
origin, processing methods, and plant genotype (Betancourt-
Sambony et al., 2025).

A total of 1.05 kg of fresh cocoa pod husk residues (Figure 1c),
previously subjected to decomposition after liquid biofertilizer
extraction at the El Porvenir Experimental Agricultural Station
(INTA, San Martin), were mixed with 100 g of binder—either
corn, cassava, or potato starch—at a ratio of 9.5:1 (biomass:
binder). This proportion was determined in preliminary cohesion
tests. The mixtures were homogenized manually for 15 min until
a uniform consistency was achieved. The husks were initially
chopped to 1.5-2.0 cm pieces, yielding 12.6 kg of fresh biomass
(Figure 1d), and placed on mats under a protective cover for
natural decomposition. Turning was performed every 7 days for
60 days under ambient conditions to ensure uniform breakdown
(Figure le). The decomposed cocoa pod husk was then used to

frontiersin.org


https://doi.org/10.3389/fenrg.2025.1661636
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

Soldérzano et al.

10.3389/fenrg.2025.1661636

FIGURE 1
Briquette production from cocoa pod husks collected in established field plantations: (a) cocoa plant in production, (b) fresh cocoa beans, (c) cocoa
pod husk crushing, (d) cocoa pod husk decomposition, (e) briquette manufacturing, and (f) briquettes produced with cassava, corn, and potato binders.

produce briquettes with a mechanical press (Figure 1f). Compaction
was carried out in a manual briquetting device with a 15 cm diameter
piston, applying approximately 50 kgf/cm?® of pressure (calculated
from a 64 kg force applied via a 50 cm lever arm). Each briquette
had standardized dimensions of 15 cm in diameter x 12 cm in height
and an approximate weight of 1.15 kg. Drying was performed under
sunlight for 72 h until the residual moisture was below 10%.

Combustion and elemental composition parameters were
determined according to the following standards: ASTM D3172
(proximate analysis: moisture, volatiles, ash, and fixed carbon),
ASTM D5865 (higher heating value using a bomb calorimeter),
ASTM D4239 (sulfur content via Eschka method), ASTM D5373
(carbon, hydrogen, and nitrogen content by elemental combustion),
and ISO 18847 (bulk density by gravimetric method).

2.3 Binder types and experimental
treatments

Three starch-based binders—corn, cassava, and potato—were
selected due to their frequent use in briquetting, proven
effectiveness, and local availability (Lubwama et al, 2024). In
addition, a control treatment without binder was included. This
resulted in a total of four treatments, each with three replicates,
for a total of twelve experimental units (EUs). Each EU consisted
of a single briquette produced according to the procedure
described in Section 2.4 (Manufacture of briquettes).

2.4 Manufacture of briquettes

For briquette production, 1.05 kg of fermented cocoa pod husk
residue from the biofertilizer processing stage was mixed with 100 g
of binder—corn, cassava, or potato) starch—until a homogeneous
mixture was obtained. The mixture was then compacted using a
manual briquetting press and sun-dried until the moisture was
below 10%. This process was repeated for each experimental unit
according to the treatment design.
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The briquettes were analyzed for proximate composition,
ultimate composition, density, and calorific value. Parameters
included moisture, volatile matter, ash content, fixed carbon, bulk
density, elemental carbon, hydrogen, oxygen, nitrogen, sulfur, and
higher heating value. Analyses were performed following standard
test methods, including ASTM D3172 (proximate analysis), ASTM
D3175 (volatile matter), ASTM D5865 (higher heating value),
ASTM D4239 (sulfur by Eschka method), ASTM D5373 (ultimate
analysis: C, H, N), and ISO 18847 (bulk density by gravimetry)
(Kebede et al., 2022; ASTM, 2018).

2.5 Data analysis method

Statistical analyses and data visualization were performed
using R software (R Core Team, 2023). The packages dplyr were
used for efficient data manipulation (Wickham et al, 2023)
and ggplot2 for generating clear and reproducible statistical
visualizations (Wickham, 2016). Prior to inferential testing, the
assumptions of residual normality and homogeneity of variances
across treatments were verified to determine the appropriateness
of parametric statistical methods or, if necessary, the application
of data transformations or non-parametric alternatives. Normality
was assessed using the Shapiro-Wilk test (p < 0.05), selected
for its high power and sensitivity in detecting deviations from
normality, particularly in small to moderate samples (Razali and
Wah, 2011), outperforming tests such as Kolmogorov-Smirnov or
Anderson-Darling. Homogeneity of variances was evaluated using
Leveness test (p < 0.05), which is robust to non-normal data, unlike
Bartlett’s test, which is highly sensitive to such deviations (Brown
and Forsythe, 1974).

Differences among treatment means were analyzed using
Tukey’s Honest Significant Difference (HSD) test (p < 0.05)
implemented in the agricolae package (De Mendiburu, 2010).
The dataset was organized into five main categories: elemental
composition, combustion parameters, gravimetric properties,
volatile matter, and calorific value. For visualization, multiple plot
types were generated, including boxplots with mean indicators,
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TABLE 1 Bidirectional F-values and probability (p-values) examining the effects of binder proportions on the gravimetric assessment, volatile matter
content, and calorific value of briquettes made from cacao pod husk.

HV (kcal/kg)
F 1,523,289 275.73 112,927 8,386.81 44,866.5 63,735,813
p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
R? 1 0.99 1 1 1 1
C.V. 0.01 0.71 0.05 0.19 0.22 4.30E-04

Means joined by the same letter mean statistically similar averages at 95% confidence intervals according to Duncan’ test. Abbreviations: H°, moisture; DA, bulk density; V; volatile; Ce, ash; FC,

fixed carbon; and HV, calorific value.

bar charts with standard error bars, and “bubble jitter” scatter
plots, which allowed clear representation of data variability
among treatments with different binder types. These graphical
representations facilitated both exploratory and comparative
interpretation of the evaluated indicators, supporting the ANOVA-
based statistical analysis and mean comparisons.

3 Results and discussion
3.1 Physic properties of the binder

The analysis of variance revealed a statistically significant
effect of treatment (p < 0.0001), indicating that moisture, bulk
density, volatile matter, ash, and fixed carbon varied according to
binder type. The model exhibited an R* > 99%, indicating high
explanatory power (Table 1).

Bulk density differed significantly among binder types
(Figure 2a; Table 2). The lowest values were recorded in the
treatments without binder and with potato binder (0.76 g/cm?),
whereas the highest was observed in the corn binder treatment
(0.85 g/cm3). For comparison, Nonsawang et al. (2024) reported a
bulk density of 0.51 g/cm® for cassava tuber powders. Bulk density
is a critical parameter for assessing combustion properties and the
flammability of biomass briquettes (Rajkumar and Venkatachalam,
2013). According to Aransiola et al. (2019), briquettes produced
from cassava and corn starch possess densities suitable for
producing stable, easy-to-store fuels, with shelf life remaining
acceptable after several months of storage. Similarly, Sen et al.
(2016) reported densities ranging from 0.40 to 0.90 g/cm’ for
briquettes produced from cassava rhizomes. Bulk density can
be significantly affected by process variables, particularly binder
moisture (Dinesha et al., 2019; Bency et al., 2023), which represents
the total water present in the briquette.

The moisture of the briquettes ranged from 44.49% to 55.37%,
showing significant differences among treatments (Figure 2b;
Table 2). The lowest value was recorded in the treatment without
binder, whereas the highest was observed in the potato binder
treatment. According to Aransiola et al. (2019), moisture in
briquettes produced from corn starch ranged from 4.68% to
7.09%, while those from cassava starch ranged from 4.43% to
6.06%. In the present study, the moisture values were substantially
higher than those reported by these authors. This difference could
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be attributed to the hygroscopic nature of the carbonized corn,
cassava, and potato materials used, as well as to the greater water
availability in binders with higher concentrations. Potato binder
briquettes exhibited a slight increase in moisture and, consequently,
a marginally lower calorific value (Soucek and Jasinskas, 2020).
In addition, Lubwama et al. (2024) reported a particle density of
0.45 g/cm® for rice husk briquettes with potato binder—lower than
the values observed in this study—and a moisture of approximately
30% for the same binder type.

In this study, binders were dried under ambient conditions,
and the high external humidity typical of the Amazon rainforest
likely contributed to the elevated moisture levels compared
with other reports. This could be explained by the hygroscopic
properties of the carbonized maize, cassava, and potato materials,
combined with the water retained in binders of increasing
concentration (Aransiola et al., 2019). Furthermore, drying under
humid ambient conditions, without the use of mechanical dryers,
may have further increased the final moisture of the binders.

3.2 Chemical properties of the binder

The ash content of the binders varied significantly among
the different types (Figure 3a; Table 2). The lowest value was
recorded for the potato binder treatment, averaging 7.03%, whereas
the highest was obtained in the binderless treatment, with an
average of 8.71%. Nonsawang et al. (2024) reported ash contents
ranging from 0.08% to 7.62%, similar to the averages obtained
in this study. Likewise, the ash content of charcoal and binders
has been reported to vary from 2.52% to 10.93%, while in
the present study it ranged between 7.03% and 8.71%. These
values comply with EN 1860-2:2023 for charcoal briquettes, which
specifies an ash content not exceeding 18%. Variations in ash
content can affect both calorific value and thermal efficiency;
high ash levels in charred fuel reduce thermal conductivity
and oxygen diffusivity, thereby lowering combustion efficiency
(Ruiz-Aquino et al., 2019).

The fixed carbon content of the binders ranged from 3.70%
to 5.97%, with significant differences, the highest being recorded
for the binderless treatment (Figure 3b; Table 2). In comparison,
Nonsawang et al. (2024) obtained 13.30% fixed carbon with cassava
tuber binder. The fixed carbon content in the charcoal powder
of this study did not exceed the EN 1860-2:2023 requirement
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FIGURE 2
Characteristics of cocoa pod husk briquettes produced with cassava, corn, and potato binders: (a) briquette density and (b) briquette moisture.
Abbreviations: AG-MA, corn binder; AG-PA, potato binder; AG-YU, cassava binder; and SI-AG, no binder.

TABLE 2 Gravimetric assessment, volatile matter content, and calorific value of a briquette made from cacao husk.

Traitements H° (%) DA g/cm3 ‘ V (%) Ce (%) FC (%) HV (kcal/kg)
Avg 44.49 0.76 40.84 8.71 597 3,586.66
Without binder SD 0.01 0.01 0.00 0.01 0.01 0.01
Group a b d d d c
Avg 51.15 0.85 37.44 7.71 3.70 3,486.00
Corn starch SD 0.01 0.00 0.03 0.01 0.01 0.02
Group < a b b a a
Avg 50.72 0.76 37.48 7.95 3.85 3,617.62
Cassava starch SD 0.01 0.01 0.01 0.02 0.01 0.02
Group b b c c b d
Avg 55.37 0.76 32.89 7.03 4.72 3,517.97
Potato starch SD 0.01 0.00 0.02 0.02 0.02 0.01
Group d b a a c b

Averages joined by the same letter mean statistically similar averages at 95% confidence intervals according to Duncan’s test. Abbreviations: H®, moisture; DA, bulk density; V, volatile; Ce, ash; FC,
fixed carbon; and HV,, calorific value.

(>60% dry basis). Fixed carbon was not a decisive parameter The volatile matter of the binder powder ranged from
for thermal properties in this study, as lower fixed carbon  32.89% for the potato binder to 40.84% for the binderless
generally corresponds to a lower calorific value. According to  treatment, with significant differences among treatments
Ossei-Bremang et al. (2023), fuels with higher fixed carbon  (Figure 3¢; Table 2). Nonsawang et al. (2024) reported values
content tend to have higher calorific values. Furthermore, ranging from 8.82% to 95.60%, with coconut husk showing
significant fixed carbon levels in feedstocks indicate potential for ~ 23.62%. Owino et al. (2024) found volatile matter between
thermochemical conversion into biochar for briquette production  21.1% and 36.2%, whereas in the present study it ranged
(Foong et al., 2020). from 32.89% to 40.84%. The relatively low volatile matter
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TABLE 3 Bidirectional F-values and probability (p-values) examining the
effects of binder proportions on the composition and combustion
analysis of briquettes made from cacao pod husk.

Treatment C (%) | H(%) N(%) O(%) S(%)
F 202,962 916.5 273.55 27,823.4 11
p-value <0.0001 | <0.0001 | <0.0001 <0.0001 0.0023
R? 1 1 0.99 1 0.8
C.V. 0.01 0.18 0.49 0.04 7.96

Means followed by the same letter are not significantly different at the 95% confidence level
according to Duncan’s test. Abbreviations: C, carbon; H, hydrogen; N, nitrogen; O,
oxygen; S, sulfur.

was influenced by the carbonization process (Shiferaw et al,
2017). Excessive binder content could have adverse health
implications due to increased smoke emissions during the initial
combustion stage.

3.3 Elemental composition analysis and
calorific value of briquettes

The analysis of variance showed that the treatments exerted
a statistically significant effect on the carbon, hydrogen, nitrogen,
and oxygen contents (p < 0.0001). The model yielded an R? value
299%, indicating a high explanatory power (Table 3). Sulfur content
(p = 0.0023) also varied significantly, depending on the type of
binder applied.

The carbon content ranged from 35.95% to 38.76%, with the
highest value recorded in the corn binder treatment and the
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lowest in potato binder treatment, both differing significantly
(Figure 4a; Table 4). These values were inferior to those reported by
Mekonen et al. (2024), who obtained an average carbon content of
47.49% in briquettes made from sugarcane bagasse, and lower than
the range of 41.42%-83.71% reported by Nonsawang et al. (2024) for
charcoil briquettes produced from agro-industrial feedstocks with
cassava-based binders.

Hydrogen content varied between 5.19% and 5.53%, with
significant differences among treatments; the highest value was
observed in the corn binder treatment (Figure 4b; Table 4). These
results fall within the range reported by Nonsawang et al. (2024)
(3.06%-7.80%). Similar hydrogen contents have been documented
in charcoal briquettes from agricultural waste (0.65%-5.71%;
Biswas, 2018) and in charcoal from other biomass sources
(1.26%-4.11%; Bosire et al., 2023).

Nitrogen content ranged from 1.09% to 1.20%, showing
significance differences and the highest value in the potato
binder treatment and the lowest in the binder-free control
(Figure 4¢; Table 4). These results are higher than those reported
by Nonsawang et al. (2024) (0.19%-0.79%) and comparable to the
1.56% reported by Mekonen et al. (2024).

Oxygen content varied between 38.73% and 41.87%, with
significant differences among treatments (Figure 4d; Table 4). The
potato binder treatment had the highest value. These results are
within the range of 15.48%-61.94% reported by Nonsawang et al.
(2024) and close to the average value of 45.45% reported by
Mekonen et al. (2024). Higher oxygen content is advantageous
for ignition (Hwangdee et al., 2023).

Sulfur to  0.04%, with
the corn, cassava, and potato binder treatments showing

content ranged from 0.03%

significantly higher values than the control without binder

(Figure 5; Table 4). These results fall within the 0.02%-0.08%
range reported by Nonsawang et al. (2024) and Patel and
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TABLE 4 Elementary composition and combustion analysis of a
briquette made from cacao husk.

Tratamientos  C (%) H (%) ‘ N (%) ’ O (%) ‘ S (%)

Avg 37.98 5.39 1.09 39.83 0.03
Without
. SD 0.01 0.01 0.01 0.01 0.00
binder
Group c b a b a
Avg 38.76 553 1.14 38.75 0.04
Corn
SD 0.02 0.01 0.00 0.02 0.00
starch
Group d d a a a
Avg 36.79 5.43 1.11 40.48 0.04
Cassava
SD 0.01 0.01 0.00 0.01 0.01
starch
Group b c a [ a
Avg 35.95 5.19 1.20 41.87 0.04
Potato
SD 0.01 0.02 0.01 0.02 0.00
starch
Group a a b d a

Averages joined by the same letter mean statistically similar averages at 95% confidence
intervals according to Duncan’s test. Abbreviations: C, carbon; H, hydrogen; N, nitrogen; O,
oxygen; S, sulfur.

Gami (2012), and are below the 0.2% threshold considered
environmentally safe (Mencarelli et al., 2025). Although sulfur
content was negligible, even small amounts should be considered
due to their potential impact on emissions.
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The highest calorific value (HV) of the binders varied
significantly among the different types. The lowest value was
recorded for the corn binder treatment, with an average of
3,486.0 kcal kg_l, while the highest was obtained with the cassava
binder, averaging 3,617.62 kcal kg ! (Figure 6; Table 2). The results
of the present study (3,486.00 and 3,617.62 kcalkg™') are very
similar to those reported by Nonsawang et al. (2024), who obtained
values ranging from 3,164.36 to 3,565.88 kcal kg™! in the production
of charcoal briquettes from agro-industrial waste using cassava-
based industrial binders, indicating that binder selection can
influence the final calorific value of briquettes. Palanisamy et al.
(2023) reported values between 2,786.74 and 3,737.96 kcal kg™
for briquettes produced with cassava starch as a binder. However,
other authors, such as Bonsu et al. (2020), found higher values
(4,218.90-4,474.19 kcal kg’l). In many cases, the calorific value of
briquettes is influenced not only by the type of binder but also by
its concentration, as well as by the feedstock characteristics. For
instance, Madhusanka et al. (2025) reported that increasing the
proportion of cinnamon sawdust reduced the calorific value.

The mechanical and thermal properties of carbonized composite
briquettes are also affected by the amount of biochar, water,
and jackfruit-residue binder used (Owino et al., 2024). Most
studies on low-pressure briquette development have focused
on cassava starch as a binder, highlighting its widespread use
and potential (Arewa et al, 2016; Ajimotokan et al, 2019;
Aransiola et al,, 2019). In this context, Shiferaw et al. (2017)
reported an experimental calorific value of 3,824 kcalkg™' for
cassava rhizomes, compared with 3,011.40 kcal kg™! for peanut
stalks. The carbon content of the studied binders was close to
40%, suggesting that briquettes produced from these feedstocks
may have higher calorific values due to their lower capacity
for further oxygenation (Anshariah et al, 2020). The lowest

frontiersin.org


https://doi.org/10.3389/fenrg.2025.1661636
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

Soldérzano et al.

10.3389/fenrg.2025.1661636

o
® [ ]
0.040
. ‘e
S O
s
S
= 0.035
=
(7]
[
0.030
[ J
AG-MA AG-PA AG-YU SI-AG
Type of binder
FIGURE 5
Characteristics of sulfur from cocoa pod husk briquettes produced from cassava, corn and potato binders. Abbreviations: AG-MA, corn binder; AG-PA,
potato binder; AG-YU, cassava binder; and SI-AG without binder.

oodo

. 3600
o
x L
©
3]
=
E]
S 3560
>
j=2)
€
-]
©
@
<
5

3520 .
e
) [ 2K J
x

O €
3480
AG-MA AG-PA AG-YU SI-AG

Type of binder

FIGURE 6

Calorific value characteristics of cocoa pod husk briquettes produced
from cassava, corn, and potato binders. Abbreviations: AG-MA, corn
binder; AG-PA, potato binder; AG-YU, cassava binder; and SI-AG
without binder.

HV in this study was found in the corn binder treatment
(3,486.0 kcal kg"l), whereas the highest value was observed in
cassava binder briquettes (3,617.62 kcal kg™!), in agreement with
Ofori and Akoto (2020), who reported 3,998.80 kcal kg’1 for
carbonized cocoa pod husks. The quality of cassava starch and other
extracted plant starches is commonly evaluated through proximate
analysis, which includes starch, fiber, fat, ash, and protein contents.
However, understanding other physicochemical properties, such as
molecular structure and thermal behavior, is crucial to improving
their performance (Chamorro et al., 2025). This represents both
a limitation of the present study and a recommendation for
future research.

Zinla et al. (2021) reported higher HVs in rice husk, rice straw,
coffee husk, and cocoa pod husk, with values ranging from 2,925.43
to 3,589.87 kcal kg™!. Notably, cocoa pod husk exhibited the highest
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HV (3,589.87 kcal kg™!), surpassing that of both rice husk and
rice straw. The HV obtained in the present study exceeds that
of briquettes produced from both similar and different feedstocks
(Zinla et al., 2021; Adjin-Tetteh et al., 2018). Variations in these
values may be attributed to differences in the initial moisture
content of the raw materials. Adjin-Tetteh et al. (2018) observed
that higher feedstock moisture leads to greater energy losses during
thermochemical conversion. Consequently, biomass charcoal with
lower moisture content tends to exhibit higher calorific values and
improved energy conversion efficiency (Akam et al., 2024).

3.4 Final analysis

In Peru, cassava, maize, and potato are staple crops with high
nutritional and economic potential. Cassava is a tuber with deep
roots, widely accepted in gastronomy, with yields of up to 30 t
ha™' and an average market price of approximately USD 0.50 per
kilogram. Maize is cultivated throughout the country, reaching
-1

yields of up to 10 tha™", and is consumed both by the population and
as livestock feed, with an average price of USD 0.60 per kilogram.
Potato, native to the Peruvian Andes, is a staple food in the national
diet, with yields of around 16 t ha™

and multiple culinary uses, and an average price of USD 0.70 per

, remarkable varietal diversity,

kilogram. Given the low cost and high production of these crops
in Peru, their use as binders in briquette production is considered
technically and economically viable.

Briquettes produced from cocoa pod husks in this study
presented an average organic carbon content of 37.37%, closely
matching the values reported by Owino et al. (2024) for rice husk
(37.02%) and cocoa pod husk (37.36%). Higher carbon content is
associated with improved thermal performance and combustion
efficiency (Yunusa et al., 2024). The oxygen content recorded was
40.23%, comparable to values reported by Zinla et al. (2021)
for cassava rhizomes (40.7%) and peanut stems (39.1%). In the
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TABLE 5 Main studies on the elemental composition in briquette production.

Residues C(%) | Ce(%) | V(%) FC(%) OI(%) H°(%) HV (kcal/kg) References
Carbonized sesame stalk 46.80 38.24 - 5.50 4,954.41
Cow dung - 15.70 58.40 17.57 - 8.32 4,390.58 Gebrezgabher et al. (2025)
Paper waste - 10.00 70.30 14.60 - 5.08 3,370.86
Maize husk - - - - - - 4,670.92 Sekhar and Abdo (2025)
coconut shells 76.79 2.52 23.6 73.86 23.08 - 6,575.05
Leucaena leucocephala wood 83.71 2.84 8.82 81.30 15.48 - 6,814.05
Assorted wood charcoal residues 75.71 10.90 16.00 73.03 19.18 - 6,238.05
Nonsawang et al. (2024)
Cassava starch 44.44 0.08 95.60 4.32 61.94 - 3,369.98
Cassava peel 45.00 7.62 78.40 14.00 52.37 - 3,565.97
Cassava tubers 41.42 7.28 79.40 13.3 58.73 - 3,164.44
Cocoa residue 6.5 34.7 58.8 10.5 4,288.00 Akam et al. (2024)
Cassava rhizomes 40 4.6 75.4 16.4 40.7 12.5 3,824.09
Owino et al. (2024)
Groundnuts stalks 42 8.4 75.1 13.1 39.1 12.4 3,011.47
100% of tobacco stems - 45.9 - - - 8.34 2,343.00
80% of tobacco stem +20% of coconut shell - 31.7 - - - 7.76 3,782.00 Widjaya et al. (2022)
80% of tobacco stem +20% rice husk - 36.8 - - - 8.62 2,997.00
Rice husk 37.02 14.96 64.02 13.20 56.26 7.82 3,274.38
Rice straw 33.51 23.70 64.86 1.92 61.00 9.52 2,925.43
Zinla et al. (2021)
Coffee husk 39.68 8.00 72.94 7.76 51.58 11.30 3,589.87
Cocoa pod husk 37.36 10.77 66.32 10.61 55.23 12.33 3,441.68

Abbreviations: C, carbon; Ce, ash; V; volatile; FC, fixed carbon; O, oxygen; H°, moisture and HV; calorific value.

present study, oxygen content in charcoal and binders ranged
from 15.48% to 61.94%, with higher concentrations facilitating
ignition (Hwangdee et al, 2023). The volatile matter content
was 37.16%, similar to the 34.7% reported by Akam et al
(2024) for cocoa residues. Ash content averaged 7.85%, which
is consistent with the 6.5% and 4.6% reported by Akam et al
(2024) and Owino et al. (2024) for cocoa residues and cassava
roots, respectively. The fixed carbon content was 4.56%, closely
aligning with the 4.32% and 7.76% reported by Nonsawang et al.
(2024) and Zinla et al.
husk, respectively.

(2021) for cassava starch and coffee

The average calorific value obtained from cacao pud husk,
with four binder traitements was 3,552.06 kcal/kg similar to
reported by Nonsawang et al. (2024), Owino et al. (2024),
Widjaya et al. (2022), and Zinla et al. (2021) for briquettes made
from cassava peels and roots, tobacco, coconut husk, coffee husk,
and cocoa pod husk, with corresponding averages of 3,565.97,
3,824.09, 3,782.00, 3,589.87, and 3,441.68 kcal/kg (Table 5). The
final analysis of the charcoal confirmed satisfactory performance,
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demonstrating its suitability and potential for sustainable
briquette production.

4 Conclusion

This study demonstrates the technical and environmental
feasibility of producing charcoal briquettes from cocoa pod husk
using locally sourced starch-based binders, with cassava starch
identified as the most efficient option due to its higher calorific
value (3,617.62 kcal/kg). The findings indicate that this biofuel
not only exceeds the energy performance of briquettes produced
with corn or potato binders but also offers notable environmental
advantages: low sulfur content (<0.1%), which reduces pollutant
emissions, and reduced ash content (7.03%), which enhances
combustion efficiency. Corn starch, with the highest fixed carbon
content (5.97%), emerged as a promising alternative for applications
requiring greater thermal stability. From a practical standpoint, this
research provides three main contributions: (i) it validates the use
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of local agricultural residues (cocoa pod husk and native starches)
as feedstock for renewable energy; (ii) it establishes reproducible
technical parameters for cocoa-producing communities in the
Peruvian Amazon; and (iii) it proposes a scalable circular economy
model that delivers environmental benefits by valorizing waste,
economic benefits by producing affordable fuels, and social benefits
by providing sustainable energy alternatives. To further strengthen
these findings, future studies should focus on: (1) optimizing
pyrolysis and compaction parameters to enhance energy density;
(2) assessing the mechanical durability of briquettes during
storage; and (3) evaluating the economic feasibility of medium-
scale production. Additionally, to fully elucidate the influence
of binders on the calorific value of cocoa pod husk briquettes,
comprehensive analyses of physicochemical properties—such as
molecular structure, granular morphology, thermal behavior, and
starch modifications, particularly in cassava—are essential for
improving performance.
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