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Introduction: With increasing uncertainties on both the generation and load 
sides in power systems, ultra-short-term load forecasting (USTLF) and risk 
assessment have become crucial for ensuring the secure and optimal operations 
of power systems, especially in distribution networks.
Methods: This paper proposed a probabilistic load forecasting method that 
integrates variational mode decomposition (VMD) with an improved deep 
autoregressive probabilistic forecasting (DeepAR) model. VMD reduces the non-
stationarity of the load sequence, and a future feature enhancement mechanism 
was introduced to improve the accuracy under multi-step predictions. Based 
on the proposed method, an integrated assessment framework covering 
voltage deviations and transformer overload risks was constructed. Exponential 
aggregation functions and nonlinear normalization methods were utilized to 
evaluate the combined risk index with multidimensional risk indicators with 
different units.
Results: Case studies demonstrated that the proposed VMD with the 
improved DeepAR model improved the accuracy of load forecasting over 
traditional models.
Discussion: Moreover, the proposed risk assessment method can provide 
quantitative and systematic early risk-warning support for distribution network 
operations and decision-making.

KEYWORDS
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 1 Introduction

As the requirements of power systems for decarbonization and security become 
increasingly critical, future power systems will face substantial operational challenges 
arising from uncertainties on both the generation and demand sides. In particular, 
electricity consumption behaviors with pronounced temporal variability—such as 
electric vehicle charging loads and seasonal industrial electricity usage—introduce 
significant uncertainty into distribution network operating patterns (Deb et al., 2018; 
Verzijlbergh et al., 2012; Li et al., 2023). Such fluctuations could cause local bus voltages to
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deviate far from the safe operating range, leading to voltage 
violations. They can also cause distribution transformers to operate 
under short-term overload conditions, accelerating equipment 
insulation aging and even triggering failures, which severely 
impacts power supply reliability and power quality. To overcome 
such challenges, accurate load forecasting technologies for short-
term and comprehensive risk assessment of distribution networks 
based on probabilistic methods, which enable the quantitative 
characterization of risk values, have become key technical 
foundations for building intelligent distribution network early 
risk-warning systems.

Ultra-short-term load forecasting (USTLF) plays a critical role 
in modern distribution networks by providing highly accurate 
predictions of electricity load over a time horizon of several 
minutes to a few hours. Its importance is particularly prominent 
in maintaining the security, stability, and economic efficiency 
of power system operations. With the increasing integration of 
distributed energy resources, distribution networks face growing 
uncertainties and fluctuations. USTLF enables system operators 
to anticipate rapid load changes, mitigate potential overloads, 
optimize generation dispatch, and enhance voltage regulation. 
USTLF methods can be broadly categorized into statistical methods 
and artificial intelligence (AI) algorithms. Statistical methods 
include regression models (Momani et al., 2024), exponential 
smoothing models, and autoregressive integrated moving average 
models (ARIMAs) (Shaukat et al., 2021). These models have 
certain advantages in handling trend data but struggle to predict 
complex, nonlinear load data with time-series. AI algorithms 
possess powerful nonlinear modeling capabilities and demonstrate 
strong performance in processing high-dimensional data and 
capturing complex spatiotemporal dependencies. The typical AI 
algorithms include long short-term memory (LSTM) networks 
(Tan et al., 2020; Chen et al., 2025), convolutional neural networks 
(CNNs) (Farsi et al., 2021), and transformer models. Tan et al. 
(2020) proposed a hybrid ensemble learning forecasting model 
based on LSTM networks, introducing a new loss function 
that integrates peak demand prediction error based on the 
bias–variance trade-off. An SCKF-LSTM-based trajectory tracking 
method for electricity–gas integrated energy systems was developed 
by Chen et al. (2025), demonstrating the effectiveness of combining 
advanced filtering techniques with deep learning to improve multi-
energy system operational accuracy. Farsi et al. (2021) proposed a 
load forecasting model combining LSTM and CNN. While effective, 
these models primarily focus on generating single-point forecasts 
and do not address the need for quantifying predictive uncertainty.

To further enhance the support capability of forecasting 
information for uncertainty management, load forecasting research 
has gradually expanded from point forecasting to probabilistic 
forecasting (Vanting et al., 2021). AI algorithms, represented by 
deep learning, have also been widely applied in this field. These 
methods aim to predict the probability distribution of future loads, 
rather than providing a single-point estimate, thereby offering richer 
information for system operation and risk assessment (Xu and Chen, 
2024; Ryu and Yu, 2024). Typical probabilistic load-forecasting 
models include the autoregressive recurrent neural network-based 
deep autoregressive probabilistic forecasting (DeepAR) model 
(Salinas et al., 2020) and spatiotemporal graph neural networks. 
Ryu and Yu (2024) proposed a quantile mixture model (Q-mixer) 

for short-term probabilistic load forecasting. These models excel 
at extracting features from high-dimensional complex inputs and 
effectively handling the complex relationships between load and 
multi-source covariates. Considering that more information with 
different sources can be captured by various kinds of sensors from 
future power grids, the capabilities of AI algorithms to integrate 
future information can be improved (Yang L. et al., 2025).

Ultra-short-term load data exhibit intense fluctuations and 
typical non-stationary characteristics. To improve the prediction 
accuracy, signal decomposition methods are widely used in the 
data preprocessing stage to decompose the complex original 
sequence into several relatively simple and stationary sub-sequences, 
providing more predictable inputs for subsequent models. The 
current signal decomposition methods include empirical mode 
decomposition (Guo et al., 2019) (EMD) and variational mode 
decomposition (Cheng et al., 2025) (VMD). Guo et al. (2019) 
proposed an ensemble empirical mode decomposition (EEMD) 
method to highlight the local characteristics of original load data 
and address the mode mixing problem in EMD decomposition. 
Huang et al. (2021) introduced complete ensemble empirical 
mode decomposition with adaptive noise (CEEMDAN) into a load 
forecasting model to better handle the non-stationary nature of load 
data and reduce mode aliasing. VMD is an adaptive, non-recursive 
decomposition method that offers a mathematically rigorous 
alternative to EMD-based techniques. It retains the advantages of 
EEMD and CEEMDAN, such as noise robustness and resolved mode 
mixing, while providing greater theoretical solidity (Cheng et al., 
2025). These properties make VMD a suitable choice for handling 
the non-stationary nature of ultra-short-term load data.

Accurate probabilistic load forecasting results will improve 
the accuracy of system operational risk assessment. The future 
operational risk of the system can be effectively evaluated and 
warned based on effective future scenario prediction. Currently, 
power system risk assessment primarily employs analytical methods 
or simulation methods (Bie et al., 2024). Analytical methods abstract 
uncertainty factors such as equipment failure, load fluctuations, 
and renewable energy output into probability distributions and use 
probabilistic power flow calculations to assess potential operational 
risks (Jia et al., 2023). Yang X. et al. (2025) proposed a Gaussian 
mixture model-based uncertainty modeling approach for power 
systems incorporating latent variable interactions to enhance the 
characterization of complex stochastic behaviors. Zhongbo et al. 
(2025) combined probabilistic power flow with branch power 
flow to assess the stochastic distribution of voltage fluctuations 
and energy demand, aiming to optimize coordinated operation 
for risk reduction. However, these methods require complex 
formula derivations and rely on simplifying assumptions, such 
as linearized power flow equations. Thus, it presents limitations 
when dealing with high-dimensional, nonlinear or strongly coupled 
scenarios (Villanueva et al., 2014). In contrast, simulation methods 
use random sampling to replicate system operating states and 
rely on a large number of repeated numerical experiments to 
statistically determine the probability distribution of risk indicators, 
thereby approximating the probabilistic characteristics of the 
practical systems (Gautam et al., 2021). Although computationally 
intensive, these methods demonstrate strong applicability and 
high accuracy in analyzing complex systems (Zhou et al., 2018), 
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making them particularly suitable for the risk assessment of large-
scale systems. Zhao and Zhang (2014) incorporated disaster-related 
factors into power system risk assessment by applying an improved 
Monte Carlo method to comprehensively evaluate the system risk 
levels under various possible operating conditions.

Although existing simulation-based risk assessment methods 
can quantify system operational risk, their results often differ 
significantly across scenarios, resulting in the absence of a 
unified benchmark for cross-scenario comparison. To address this 
limitation, this paper proposes a comprehensive assessment method 
that integrates ultra-short-term probabilistic load forecasting with 
standardized aggregation evaluation. Specifically, the DeepAR 
probabilistic forecasting model is enhanced by incorporating 
VMD and a future information fusion mechanism. Building on 
this improvement, a standardized assessment system framework 
covering voltage violation and transformer overload risks is 
developed, enabling the effective integration of diverse risk 
indicators. The main contributions of this paper are listed as follows: 

1. An improved DeepAR probabilistic forecasting model, 
incorporating VMD and future feature fusion, was proposed 
to more accurately capture the probability distribution of 
future loads.

2. Quantitative formulations of the voltage violation risk index 
(VVRI) and the transformer overload risk index (TORI) were 
developed, along with an exponential aggregation method for 
risk evaluation.

3. A standardized comprehensive risk index calculation method 
based on nonlinear transformation and a combined weighting 
strategy is designed to significantly enhance the comparability 
of risk assessment results and strengthen decision-support 
capability.

This paper is organized as follows: Section 2 proposes the 
improved VMD–DeepAR probabilistic load-forecasting model; 
Section 3 develops the integrated risk-assessment framework; 
Section 4 presents case studies validating the model’s performance 
and risk assessment results; Section 5 is the conclusion of the paper. 

2 Ultra-short-term load forecasting

This paper proposes a USTLF approach based on VMD 
and an improved DeepAR model. By integrating historical data 
and future known features, the proposed method enables multi-
step probabilistic forecasting. The structure of this method 
is shown in Figure 1.

First, the VMD algorithm decomposes the original load 
sequence into k intrinsic mode functions (IMFs) with different 
center frequencies, thereby mitigating the effects of non-stationarity 
and randomness on the forecasting accuracy. The original load 
features (such as meteorological and temporal factors) are then 
combined with each IMF component and its cyclical lagged features 
to construct an enhanced feature set. The improved DeepAR 
module subsequently performs probabilistic forecasting for each 
IMF component independently. Finally, the point forecast and 
uncertainty quantification of the load are obtained by reconstructing 
the forecasting results of all IMF components. 

2.1 Variational mode decomposition

The VMD is an adaptive, non-recursive signal-processing 
technique designed for handling non-stationary and nonlinear 
sequences. Its core principle is to decompose the original 
signal into several IMFs characterized by sparsity and distinct 
center frequencies. This process transforms a complex signal 
into multiple relatively stationary sub-signals with well-defined 
frequency components, facilitating subsequent analysis and
prediction.

VMD performs signal decomposition by formulating and 
solving a constrained variational optimization problem. The 
objective of this problem is to minimize the total estimated 
bandwidth of all modal functions, with the constraint that the sum of 
all modes equals the original signal. The specific steps are as follows:

First, the unilateral spectrum of each mode is obtained through 
the Hilbert transform, as shown in Equation 1.

(δ(t) +
j

πt
)∗ uk(t), (1)

where uk(t) represents the kth modal function.
Second, the constrained variational model is constructed, 

as shown in Equation 2.

min
{uk}{ωk}
{∑

k
‖∂t[(δ(t) +

j
πt
)∗ uk(t)]e

−jωkt‖
2

2
}. (2)

The constraint is

∑
k

uk(t) = f(t), (3)

where f(t) is the original signal and ωk is the center frequency 
of each mode.

To address this problem, a quadratic penalty term and Lagrange 
multipliers are introduced to convert the constrained problem into 
an unconstrained optimization problem. The alternating direction 
method of multipliers (ADMM) is then used to iteratively update 
each modal function and its center frequency, ultimately achieving 
adaptive signal decomposition. The transformed augmented 
Lagrangian function is shown in Equation 4.

L({uk}, {ωk},λ) = α∑
k
‖∂t[(δ(t) +

j
πt
)∗ uk(t)]e−jωkt‖

2

2

+‖ f(t) −∑
k

uk(t)‖
2

2
+⟨λ(t), f(t) −∑

k
uk(t)⟩.

(4) 

2.2 Long short-term memory network

The LSTM network is a specialized type of recurrent neural 
network (RNN) that effectively overcomes the vanishing or 
exploding gradient problems encountered by traditional RNNs 
when processing long sequences by introducing gating mechanisms. 
Its core architecture consists of three gating mechanisms, the 
forget gate, input gate, and output gate. Through the collaborative 
operations, the LSTM is able to regulate the selection, retention, 
and output of historical information. The functions of these gates 
and the corresponding state update process are described as
follows. 
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FIGURE 1
Forecasting model framework.

1. Forget gate: controls the degree to which the cell state from the 
previous time step is retained, as shown in Equation 5.

ft = σ(W f · [ht−1,xt] + b f). (5)

2. Input gate: regulates the update of the cell state by current input 
information, as shown in Equations 6, 7.

it = σ(Wi · [ht−1,xt] + bi). (6)

̃ct = tanh(Wc · [ht−1,xt] + bc). (7)

3. Cell state update: updates the cell state by combining the forget 
gate and input gate, as shown in Equation 8.

ct = ft ∗ ct−1 + it ∗ ̃ct. (8)

4. Output gate: controls the contribution of the current cell state 
to the output, as shown in Equations 9, 10.

οt = σ(Wο · [ht−1,xt] + bο). (9)

ht = οt ∗ tanh(ct). (10)

In the above formulas, W f , W i, Wc, and Wo are the weight 
matrices for the forget gate, input gate, cell state, and output gate, 
respectively; bf , bi, bc, and bo are the bias vectors for the forget gate, 
input gate, cell state, and output gate, respectively.

2.3 DeepAR probabilistic forecasting 
module and its improvement

DeepAR is a probabilistic forecasting method based on 
autoregressive RNNs proposed by Salinas et al. (2020). It is 
suitable for joint modeling and forecasting of large numbers 
of related time-series. Its core concept is to employ a global 
model that learns the shared characteristics across all time-
series and produces probability distributions of future values, 
rather than single-point forecasts, thereby explicitly quantifying
uncertainty.

DeepAR uses RNNs as the basic network structure to model 
time-series in an autoregressive fashion. The model seeks to 
learn the conditional probability distribution of future values, 
decomposing the joint distribution into a product of likelihood 
factors, as shown in Equation 11.

P(zi,t0:T|zi,1:t0−1,xi,1:T ) =
T

∏
t=t0

p(zi,t|θ(hi,t) ), (11)

where zi,t  is the value of the ith time-series at time t, t0 is the 
forecast start time, xi,t  are the known covariates, and θ(hi,t) are the 
distribution parameters mapped from the LSTM hidden state hi,t .

For continuous load data, it is typically assumed to follow a 
Gaussian distribution. The distribution parameters are calculated as 
shown in Equations 12, 13.

μ(hi,t) = w⊤μ hi,t + bμ, (12)

σ(hi,t) = log(1+ exp(w⊤σ hi,t + bσ)), (13)

where μ is the mean of the Gaussian distribution, σ is the 
standard deviation of the Gaussian distribution, wμ and wσ  are the 
weight vectors for calculating the mean and standard deviation, 
respectively, and bμ and bσ  are the bias terms for calculating the mean 
and standard deviation, respectively.

The original DeepAR model only uses historical sequences and 
covariates up to the current time for prediction and does not 
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FIGURE 2
Improved DeepAR module.

explicitly utilize future known features, such as future dates and 
holidays. This paper proposes an improved DeepAR structure that 
introduces a future feature fusion mechanism between the LSTM 
encoder and the probability distribution layer, as shown in Figure 2.

1. Future feature projection: the known features for the future 
Mtime steps are flattened and projected through a fully 
connected layer, as shown in Equation 14:

Fi = ReLU(WF · flatten(xi,t0:t0+M−1) + bF), (14)

where Fi is the feature vector obtained after projecting the future 
features, WF  is the weight matrix for the future features, and bF  is 
the bias vector for the future features. 

2. Feature fusion: the hidden state output from the last layer of the 
LSTM is concatenated with the future feature projection vector, 
and a multilayer perceptron (MLP) is used to further fuse the 
feature information, as shown in Equation 15.

hmlp =MLP([hi,t0−1;Fi]). (15)

The output of the MLP, hmlp, replaces the hidden state hi,t
used for parameter estimation in the original DeepAR, ultimately 
obtaining the load probability distribution parameters for the future 
M time steps. Unlike the original DeepAR model that generates 
forecasts autoregressively (step-by-step), our improved module 
directly outputs the parameters of the probability distributions 
for all future M time steps in a single forward pass. This is 
achieved through separate linear output layers that map hmlp
to vectors of the means and standard deviations for the entire 
forecast horizon. This non-autoregressive design is enabled by the 
fact that all future known features (e.g., calendar information) 
are already available at the time of forecasting. By processing 
the entire future context Fi simultaneously, the model can learn 
interdependencies between different future time steps and generate 
a coherent multi-step forecast without the risk of error propagation 
inherent in autoregressive models. This structure enables the model 
to simultaneously utilize the temporal dependencies of historical 
sequences and the prior knowledge of future known information, 
making full use of the available information for load forecasting, 
thereby improving the accuracy and reliability of load forecasts. 

3 Integrated risk assessment methods

To achieve a comprehensive assessment of future distribution 
network operations, this paper develops an integrated risk 
assessment framework. This framework focuses on the distribution 
network voltage violation risk and transformer overload risk as 
the primary targets. They represent two of the most prevalent and 
critical operational challenges in distribution system management. 
The specific process is shown in Figure 3.

First, the voltage violation risk for each bus is assessed 
independently, obtaining the voltage deviation risk indicator for 
each bus. Subsequently, an exponential aggregation function is 
used to synthesize the risks of all buses, forming a system-level 
voltage violation risk indicator. Simultaneously, the overload risk 
of distribution transformers is assessed. If multiple transformers 
exist, an exponential aggregation function is similarly used to 
synthesize the overload risk indicators of all transformers, obtaining 
a system-level transformer overload risk indicator. Furthermore, a 
nonlinear transformation and weighted fusion method is utilized 
to combine the above two types of system risk indicators, resulting 
in a comprehensive risk indicator for each time step. Finally, risk 
indicator output standardization is performed by setting extreme 
risk thresholds.

When assessing the operational risk of a power system at 
a specific time, it is necessary to comprehensively consider 
the probability of risk events occurring and the severity of 
their consequences, thereby constructing a quantitative risk 
indicator that integrates probability and severity (Li et al., 2015). 
This paper utilizes a risk-seeking utility function (Diedrich, 
2024) to quantify the severity of bus voltage violations 
and transformer overloads, respectively. The risk indicator 
value is defined as the product of severity and occurrence
probability. 

3.1 Voltage violation risk index

When the per-unit voltage value V i,s at bus i under system 
state s exceeds the normal operating range [Vmin, Vmax], the bus is 
considered to be in a voltage violation state. Quantifying the value 
by which the bus voltage exceeds the system’s normal operating 
upper or lower limit allows for the assessment of the severity of the 
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FIGURE 3
Risk assessment framework.

voltage violation. Furthermore, by integrating the voltage violation 
probability and severity, the VVRI for the bus (VVRI(B)) is obtained, 
as shown in Equations 16, 17:

SV,i,s =
emax(Vi,s−Vmax,Vmin−Vi,s,0) − 1

e− 1
, (16)

RVVRI(B),i =∑
s

ps · SV,i,s, (17)

where V i,s represents the per-unit voltage value at bus i under 
scenario s, SV,i,s represents the severity of the voltage violation at 
bus i under scenario s, ps represents the occurrence probability of
scenario s, and RVVRI(B),i represents the voltage violation risk 
indicator for bus i.

To capture the “high-risk dominance” characteristic within the 
system, an exponential aggregation function is used to synthesize the 

voltage violation risk indicators of all buses, obtaining the system-
level VVRI, as shown in Equation 18:

RVVRI =
1
α

ln( 1
N

N

∑
i=1

exp(α ·RVVRI(B),i)), (18)

where N is the number of aggregated indicators, RVVRI  is the 
voltage violation risk value, and α is the aggregation factor. The 
value of α is recommended to be in the range of 500–2,000. The 
influence of different α values on the aggregated indicator will be 
discussed in Section 4.2.2. 

3.2 Transformer overload risk index

The load rate of a distribution transformer during normal 
operation is typically below 80%. However, under extreme scenarios 

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1692222
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Xia et al. 10.3389/fenrg.2025.1692222

with intense load fluctuations (such as industrial impact loads), 
the transformer may operate under heavy load or even overload 
conditions. Although transformers possess a certain overload 
operation capability, continuous or frequent overload operation will 
lead to significant internal temperature rise, causing equipment 
overheating, accelerating the thermal aging of insulation materials, 
and reducing their mechanical strength and electrical performance. 
This substantially shortens equipment lifespan and poses a serious 
threat to the power supply reliability and operational safety of 
the distribution system. Based on this, this paper integrates 
the transformer overload degree and the probability of overload 
scenarios to define the TORI, as shown in Equations 19, 20:

ST,j,s =
emax(Lj,s−Lj,max,0) − 1

e− 1
, (19)

RTORI,j =∑
s

ps · ST,j,s, (20)

where L j,s is the load rate of transformer j under scenario s, Lj, max
is the maximum normal operating load rate for transformer j, taken 
as 100% in this paper, ST, j,s is the overload degree of transformer 
j under scenario s, and RTORI,j is the overload risk indicator for 
transformer j.

For cases involving multiple transformers, an exponential 
aggregation method is used to aggregate the overload risk indicators, 
as shown in Equation 21:

RTORI =
1
α

ln( 1
N

N

∑
j=1

exp(α ·RTORI,j)). (21)
 

3.3 Comprehensive risk index

To accurately quantify the system risk, this paper integrates the 
above two risk indicator values of different magnitudes (RVVRI  and 
RTORI) into a standardized comprehensive risk index (CRI) within 
the range [0, 1], as shown in Equation 22.

RCRI =max(0,min(1,β · [wV · tanh(RVVRI
1/p) +wT · tanh(RTORI

1/q)])).
(22)

First, a power function and a tanh function are applied to the 
VVRI and TORI indicator values for nonlinear transformation. The 
power operation is used to adjust the sensitivity of the indicators; by 
setting risk sensitivity coefficients (p, q) greater than 1, the influence 
of smaller risk values is amplified, making the model more sensitive 
to low-risk values. Subsequently, the tanh operation is applied to the 
power-transformed results to prevent any single extreme value from 
having an excessive impact on the final result.

Second, the nonlinearly transformed indicator values are 
weighted and summed. Weights are set to reflect the relative 
importance of each risk in the comprehensive indicator. Here, wV
is the weight for the VVRI indicator, and wT  is the weight for the 
TORI indicator.

Finally, a scaling factor β indicates the extreme risk threshold, 
and the weighted sum is standardized using max and min logic. 
When there is no system risk during the period, the CRI outputs 
0. When the system risk exceeds the extreme risk threshold, the CRI 

TABLE 1  Feature variables.

Feature category Feature Description

Time features

Hour Value 0–23

Day of the week Value 0–6 (0: Monday, 6: 
Sunday)

Weekend 1 if Saturday or Sunday, else 
0

Month Value 1–12

Cyclical lagged features

Load 1 day Ago Load at the same time 1 day 
ago

Load 1 week Ago Load at the same time 
7 days ago

Load 1 month Ago Load at the same time 
30 days ago

outputs 1. When the system risk is below the extreme risk threshold 
but not zero, the actual risk value is output.

Unlike direct linear weighting methods, the proposed 
comprehensive method effectively fuses risk indicators of different 
natures and units into a unified, standardized indicator value. 
Conventional linear methods often lack clear physical boundaries 
and cannot adapt to different risk tolerance scenarios. In contrast, 
the proposed approach produces an output with well-defined 
physical meaning and bounds, offering both interpretability and 
adjustable sensitivity. This enhances system-level risk perception 
and supports operational decision-making across diverse contexts.

The risk quantification and integration methods presented are 
not limited to the two risks discussed above. Instead, they provide 
a generalizable framework that can be extended to assess other 
operational risks in distribution networks, such as line overloads or 
power factor deterioration. 

4 Case study

4.1 Forecasting model implementation and 
performance validation

To verify the reliability of the proposed model, load data from 
a region in Southwest China for the year 2024 are selected for case 
analysis. The time span of the load data is from 1 February 2024 to 31 
December 2024, with a sampling interval of 15 min, totaling 32,160 
samples. Seven feature values are extracted (including three cyclical 
lagged features and four time features), as shown in Table 1.

4.1.1 Model settings
The VMD decomposition is performed by numerically solving 

the constrained variational problem defined in Equations 2–4, with 
the penalty parameter α in Equation 4 set to 1,000 and the ADMM 
convergence tolerance set to 1e-7. To balance prediction efficiency 
and accuracy, the number of decomposition modes is set to 4. A 
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FIGURE 4
VMD decomposition results of load data.

segment of 5,000 sampling points is selected to display the VMD 
decomposition results. The original load curve and the sequences 
decomposed using the VMD method are shown in Figure 4. 
The figure shows that the decomposed sequences exhibit clear 
periodicity and stable frequency, without mode mixing.

Historical data from the previous 8 h (32 time steps) are used 
to predict the power load for the next 4 h (16 time steps). In the 
improved DeepAR forecasting module, the LSTM module has two 
layers, with the number of neurons per layer set to 128. After fusing 
historical data and future features, a 2-layer MLP is set up with 
256 and 128 neurons, respectively. The dropout rate for each layer 
is set to 0.2. The total dataset is divided into training, validation, 
and test sets in a 7:1:2 ratio. The negative log-likelihood (NLL) 
loss function is used, with a batch size of 128 and a learning rate 
of 0.001. The number of iterations is not limited, and an early 
stopping strategy (stopping training when model performance on 
the validation dataset degrades) is adopted to ensure the model’s 
generalization ability. 

4.1.2 Point forecasting result comparison
The mean value of the model output is used as the point 

forecast of the load. The mean absolute error (MAE), root mean 
square error (RMSE), mean absolute percentage error (MAPE), 
and the coefficient of determination (R2) are selected as evaluation 
metrics. To validate the effectiveness of the proposed model, its 
forecasting results are compared with those of typical forecasting 
models (BPNN, GRU, LSTM, and VMD–LSTM) and the original 
DeepAR and VMD–DeepAR models. These typical models are 
configured with two hidden layers and 128 neurons per layer. They 
are followed by two fully connected layers with 256 and 128 neurons, 

TABLE 2  Point forecasting evaluation results of different models.

Model MAE RMSE MAPE R2

BPNN 96.94 141.12 5.78% 0.6463

GRU 78.58 117.30 4.61% 0.7470

LSTM 74.29 108.02 4.37% 0.7627

VMD–LSTM 51.80 78.26 3.00% 0.9157

DeepAR 77.69 112.87 4.53% 0.7639

VMD–DeepAR 68.94 106.94 3.90% 0.8500

Proposed Model 38.65 67.32 2.23% 0.9369

respectively, and use the Huber loss function. Other settings are 
consistent with the proposed model. The point forecast evaluation 
results are shown in Table 2.

As shown in Table 2, the improved model proposed in this paper 
outperforms the typical forecasting models across all four metrics. 
Compared to the VMD–LSTM model, the MAE, RMSE, and MAPE 
metrics of the proposed model decreased by 25.39%, 13.98%, and 
25.67%, respectively. Compared to the original VMD–DeepAR 
model, the MAE, RMSE, and MAPE metrics of the proposed 
model decreased by 43.94%, 37.05%, and 42.82%, respectively. 
This demonstrates the accuracy and superior performance of the 
improved model in load forecasting. 
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FIGURE 5
Typical daily load curves for each bus.

4.2 Risk scenario generation and 
comprehensive assessment results

The IEEE 13-bus distribution network system from Aref et al. 
(2012) is used for case analysis, with several simplifications applied. 
The transformer at bus 6 is removed, and bus 1 is retained as a pure 
power source connection without local load. These modifications 
simulate a low-voltage distribution station area scenario supplied by 
a single transformer.

Load data from a specific 12-bus low-voltage distribution 
network in Southwest China are used as the load input for buses 
2–13 in the above system. The typical daily load curves for each 
bus are shown in Figure 5. The figure shows that the selected loads 
include the impact loads and low-fluctuation loads.

4.2.1 Load scenario construction
Based on the proposed improved VMD–DeepAR probabilistic 

load forecasting model, USTLF is performed for the loads at each 
of the above buses. Specifically, historical data from the previous 8 h 
are used to predict the power load for the next 4 h. The data period is 
from 1 February 2024 to 31 December 2024, with a sampling interval 
of 15 min, totaling 32,160 samples. Seven load-influencing factors 
are selected as features, and other settings for the load forecasting 
model are the same as in Section 4.1.

VMD decomposition is applied to each load. Given the 
differences in the dynamic characteristics of each bus load, the 
number of VMD decomposition modes k is determined based on 

their historical trend characteristics. Taking bus 9 as an example, 
a segment of 5,000 sampling points is selected to display its VMD 
decomposition results. The original load curve and the sequences 
decomposed using the VMD method are shown in Figure 6. The 
figure shows that IMF1 primarily describes the overall load variation 
trend within a monthly cycle, IMF2 mainly describes the daily 
cyclical variation characteristics of the load, and the remaining 
modes describe the intra-day fluctuation characteristics of the load.

The forecasting accuracy evaluation results for each bus load 
are shown in Table 3. The table shows that 50% of the bus load 
forecasts achieve accuracy above 95%, demonstrating the prediction 
accuracy and reliability of the proposed model.

Based on the mean and standard deviation of the load 
forecast output by the probabilistic forecasting model, a Gaussian 
distribution model for the future load is constructed. For a selected 
typical day, a Monte Carlo simulation with 5,000 samples is 
performed. This simulation generates load data for 96 time-points 
under various scenarios, which is then used for risk assessment. 

4.2.2 Integrated risk assessment results
Based on the multi-scenario load sampling data generated by 

Monte Carlo simulation, the integrated risk assessment model 
constructed in Section 3 is applied. This model conducts a refined, 
time-series evaluation of the distribution network’s risk level under 
different operating states. The lower limit of the per-unit bus voltage 
under normal conditions is defined as 0.95 p.u., and the upper limit 
is defined as 1.05 p.u. A transformer bank with a total rated capacity 
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FIGURE 6
VMD decomposition results of bus 9 load data.

of 1,600 kVA (rated active power output of 1,552 kW) is connected 
at bus 1, and the maximum load rate (Lj, max) for the transformer is 
set to 100%.

According to Formulas 16, 17, the curves of the VVRI(B) for 
each bus over time are obtained, as shown in Figure 7. To evaluate 
the impact of the aggregation factor α on the aggregated voltage 
violation risk indicator in Formula 18, the VVRI is computed 
and compared for different values of α (500, 1,000, and 2,000), 
as shown in Figure 8.

The figures show that periods of voltage violation risk mainly 
occur between 18:00 and 08:00 the next day. The risk curve exhibits 
multiple steep peaks, which is highly consistent with the load 
fluctuation pattern. Based on the daily load curve (Figure 5) and 
further analysis of load characteristics, it can be inferred that the 
impact industrial loads at buses 2, 4, and 6 reach peak usage 
simultaneously during the night. This concurrent peak demand 
causes intense local voltage fluctuations. Furthermore, as this system 
is a radial network supplied by a single source, the voltage quality 
gradually decays along the supply radius. Buses 9 and 10, located at 
the end of the supply line, exhibit the longest electrical distance and 
significant impedance accumulation effects. These factors result in 
larger voltage drops, making these buses sensitive areas for voltage 
violations. Consequently, their risk values are significantly higher 
than those of buses closer to the power source.

Based on Figure 8, the VVRI curves show consistent trends 
under different aggregation factors α, but their values differ. 
Specifically, as α increases, the VVRI value approaches the 
maximum VVRI(B) value among all the buses. This means it 

better reflects the “high-risk dominance” feature in the system’s 
voltage violation risk. As a result, it more effectively captures weak 
operational points in the system. To ensure that the VVRI value 
accurately represents the inherent uneven distribution of risks in 
practical operation, the aggregation factor α is set to 1,000 for 
subsequent risk analysis.

According to Formulas 19, 20, the variation curve of the TORI 
value at each time-point is obtained, as shown in Figure 9. The TORI 
indicator shows that the overload risk mainly occurs during the 
01:30–03:00 period, with significant risk peaks also appearing at 
00:15 and 23:00. This distribution pattern results from multiple bus 
loads simultaneously reaching their peaks during the night. Such 
concurrent peak demand causes the transformer’s short-term load 
rate to rise sharply and significantly increases the probability of 
overload. The constructed TORI indicator integrates both overload 
severity and its occurrence probability. It accurately reflects the 
operational risk of the transformer under extreme load fluctuations, 
demonstrating strong early warning capability and clear physical 
interpretability.

To analyze the specific influence of the scaling factor β on CRI 
in Formula 22, the values of β are set to 5, 8, and 10, with risk 
sensitivity coefficients fixed at p = 4 and q = 3 and weights for each 
indicator set to 0.5. The resulting CRI curves under different β values 
are shown in Figure 10.

As shown in Figure 10, the CRI effectively integrates both 
the VVRI and TORI, successfully capturing the system’s low-
risk periods between 04:00–08:00 and 18:00–20:00. These intervals 
exhibit low values of both VVRI and TORI (below 0.0002), which 
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TABLE 3  Load forecasting accuracy evaluation results.

Bus MAE RMSE MAPE R2 k

2 5.3 7.0 5.03% 0.8993 5

3 4.4 5.9 5.20% 0.9254 6

4 13.1 17.9 7.43% 0.8725 8

5 5.6 7.4 5.44% 0.9402 5

6 4.3 5.9 3.99% 0.8777 6

7 2.0 2.6 1.81% 0.9540 6

8 26.6 41.9 12.53% 0.8061 8

9 3.9 5.3 6.16% 0.9064 8

10 2.9 3.7 3.57% 0.9332 5

11 3.5 4.7 4.08% 0.9009 6

12 2.9 3.8 2.72% 0.8718 5

13 2.4 3.1 2.57% 0.8730 4

FIGURE 7
VVRI(B) variation curve over time.

FIGURE 8
VVRI variation curves over time for different values of α

FIGURE 9
TORI variation curve over time.

FIGURE 10
CRI variation curves over time for different values of β

are not easily distinguishable in Figures 8, 9 but are clearly reflected 
in the dynamic variation of the CRI in Figure 10. Moreover, the 
sensitivity of the system to risk increases with higher values of β. 
Specific examples include the following scenarios: 

1. When β = 5, the CRI remains below 1 throughout the day, 
indicating that extreme risk levels are never reached.

2. When β = 8, the CRI reaches 1 during 01:30–03:00 and 
22:30–23:00, exceeding the extreme risk threshold. The low-
risk periods show higher CRI values (approximately 0.3), with 
more pronounced variations.

3. When β = 10, the period from 23:00 to 24:00 is also identified 
as extreme risk.

In summary, the value of β can be adjusted according to 
the system’s operational risk tolerance in different scenarios 
to reflect appropriate risk levels. Similarly, the weight 
allocation in Equation 22 can be further adjusted based on specific 
system operational priorities, which would proportionally influence 
the contribution of each risk indicator to the comprehensive risk 
index. Furthermore, since (22) integrates risk indices of different 
magnitudes (VVRI and TORI) into a standardized comprehensive 
risk indicator bounded within [0, 1], it provides clear physical 
interpretation and comparable risk levels across various operational 
scenarios.

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1692222
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Xia et al. 10.3389/fenrg.2025.1692222

Based on the case analysis results presented above, the proposed 
comprehensive risk assessment indicator system demonstrates the 
following significant advantages: 

1. The modeling approach that integrates probability and severity 
ensures that the risk quantification results contain both the 
likelihood of events and the severity of consequences, making 
them more meaningful for practical applications.

2. The introduced aggregation factor α and scaling factor β
allow the system to be flexibly adapted to different operational 
scenarios and risk tolerance requirements. By adjusting α, 
the dominance of high-risk components can be enhanced or 
reduced, while modifying β alters the system’s sensitivity to risk 
threshold violation.

3. The exponential aggregation function enhances the dominant 
effect of high-risk components within the distribution 
network, aligning with the short-board management of 
practical needs in power systems.

4. Through nonlinear transformation and standardization, the 
CRI indicator integrates risks of different natures and units, 
offering clearly defined physical boundaries and intuitive 
interpretability. This capability supports operators in holistic 
risk assessment and provides a reliable basis for adjusting 
operational strategies and formulating risk prevention and 
control measures.

5 Conclusion

This paper focuses on developing USTLF and integrated risk 
assessment methods for distribution networks. A probabilistic 
forecasting approach that combines VMD with an improved 
DeepAR model was proposed, along with a systematic integrated 
risk-assessment framework. Empirical analysis through case studies 
validates the effectiveness and practicality of the proposed methods.

The DeepAR model was improved by introducing a future 
feature fusion mechanism. By concatenating and fusing future 
known features with the hidden state of historical sequences, the 
accuracy of the model in multi-step probabilistic load forecasting 
was significantly improved. The results of case studies indicate that 
the improved model outperforms comparison models on metrics 
such as MAE, RMSE, and MAPE, verifying the important role of 
future feature information in enhancing forecasting performance.

A hierarchically aggregated risk-assessment framework was 
developed. Based on risk severity and occurrence probability, 
quantitative formulations for the VVRI and TORI were developed, 
along with an exponential index aggregation method. Furthermore, 
a nonlinear transformation and weighted fusion approach was 
applied to combine VVRI and TORI into a unified standardized CRI. 
Case analysis shows that this framework can effectively integrate 
risks of different natures, accurately identify the system’s weak links 
and high-risk periods, and provide a clear and quantitative basis for 
operational decision-making.

In summary, the improved VMD–DeepAR model and risk 
assessment framework proposed in this paper not only enhances 
the accuracy and robustness of load forecasting but also provides 
an effective tool for the refined and systematic evaluation of 
operational risks in distribution networks. Future work could 

integrate the risk assessment method with distribution network 
structure optimization, dynamically adjusting network operation 
modes during predicted high-risk periods to enhance system 
resilience against extreme events.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material; further inquiries can be directed 
to the corresponding author.

Author contributions

TX: Conceptualization, Writing – original draft. HL: Writing 
– original draft, Formal Analysis. TF: Writing – original draft, 
Investigation. LH: Writing – review and editing, Methodology. QW: 
Writing – review and editing, Data curation. SW: Writing – review 
and editing, Investigation. 

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This research was funded 
by the science and technology program of Guizhou Power Grid 
Corporation, grant number 060000KC23110059, and the APC was 
funded by the same funding.

Conflict of interest

Authors TX, HL, TF, and LH were employed by the China 
Southern Power Grid Guizhou Power Supply Co., Ltd.

Authors QW and SW were employed by Dongfang 
Electronics Co., Ltd.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1692222
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Xia et al. 10.3389/fenrg.2025.1692222

References

Aref, A., Davoudi, M., Razavi, F., and Davoodi, M. (2012). Optimal DG placement 
in distribution networks using intelligent systems. Energy Power Eng. 4 (2), 92–98. 
doi:10.4236/epe.2012.42013

Bie, Z., Bian, Y., Zhang, L., Huang, Y., and Li, G. (2024). Key technologies of risk 
prevention and emergency management against extreme events for new power systems. 
Proc. CSEE 44 (18), 7049–7068. doi:10.13334/j.0258-8013.pcsee.241046

Chen, L., Li, Y., Cai, J., Gu, S., and Yan, Y. (2025). SCKF-LSTM-based trajectory 
tracking for electricity-gas integrated energy system. IEEE Trans. Industrial Inf. 21 (6), 
4296–4305. doi:10.1109/tii.2024.3523544

Cheng, Q., Shi, J., and Cheng, S. W. (2025). Short-term load forecasting based on 
similar day theory and BWO-VMD. Energies 18 (9), 2358. doi:10.3390/en18092358

Deb, S., Tammi, K., Kalita, K., and Mahanta, P. (2018). Impact of electric 
vehicle charging station load on distribution network. Energies 11 (1), 178. 
doi:10.3390/en11010178

Diedrich, R. (2024). Combining Savage and Laplace: a new approach to ambiguity. 
Theory Decis. 97 (3), 423–453. doi:10.1007/s11238-024-09980-0

Farsi, B., Amayri, M., Bouguila, N., and Eicker, U. (2021). On short-term load 
forecasting using machine learning techniques and a novel parallel deep LSTM-CNN 
approach. IEEE Access 9, 31191–31212. doi:10.1109/access.2021.3060290

Gautam, P., Piya, P., and Karki, R. (2021). Resilience assessment of distribution 
systems integrated with distributed energy resources. IEEE Trans. Sustain. Energy 12 
(1), 338–348. doi:10.1109/tste.2020.2994174

Guo, W., Jiang, X., Luo, Y., and Han, Q. (2019). Short-term load forecasting in a 
certain area based on EEMD-GABP. Electr. Power Eng. Technol. 38 (6), 93–98.

Huang, J., Zhou, Z., Li, C., Liao, Z., and Liu, P. X. (2021). A decomposition-
based multi-time dimension long short-term memory model for short-term 
electric load forecasting. IET Generation, Transm. Distribution 15 (24), 3459–3473. 
doi:10.1049/gtd2.12265

Jia, M., Cao, Q., Shen, C., and Hug, G. (2023). Frequency-control-aware probabilistic 
load flow: an analytical method. IEEE Trans. Power Syst. 38 (6), 5170–5187. 
doi:10.1109/tpwrs.2022.3223884

Li, X., Zhang, X., Wu, L., Lu, P., and Zhang, S. (2015). Transmission line overload risk 
assessment for power systems with wind and load-power generation correlation. IEEE 
Trans. Smart Grid 6 (3), 1233–1242. doi:10.1109/tsg.2014.2387281

Li, Y., Zhang, S., Li, Y., Cao, J., and Jia, S. (2023). PMU measurements-based short-
term voltage stability assessment of power systems via deep transfer learning. IEEE 
Trans. Instrum. Meas. 72, 1–11. doi:10.1109/tim.2023.3311065

Momani, M. A., Tashtush, S. A., Shahrour, R. J., and Alsatari, A. M. (2024). Modeling 
of long-term load forecast in Jordan based on statistical techniques. J. Electr. Comput. 
Eng. 2024, 8255513. doi:10.1155/2024/8255513

Ryu, S., and Yu, Y. (2024). Quantile-mixer: a novel deep learning approach for 
probabilistic short-term load forecasting. IEEE Trans. Smart Grid 15 (2), 2237–2250. 
doi:10.1109/tsg.2023.3290180

Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, T. (2020). DeepAR: 
probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36 (3), 
1181–1191. doi:10.1016/j.ijforecast.2019.07.001

Shaukat, M. A., Shaukat, H. R., Qadir, Z., Munawar, H. S., and Mahmud, M. A. P. 
(2021). Cluster analysis and model comparison using smart meter data. Sensors 21 (9), 
3157. doi:10.3390/s21093157

Tan, M., Yuan, S., Li, S., Su, Y., and He, F. (2020). Ultra-short-term industrial power 
demand forecasting using LSTM based hybrid ensemble learning. IEEE Trans. Power 
Syst. 35 (4), 2937–2948. doi:10.1109/tpwrs.2019.2963109

Vanting, N. B., Ma, Z., and Jørgensen, B. N. (2021). A scoping review of deep 
neural networks for electric load forecasting. Energy Inf. 4, 49. doi:10.1186/s42162-021-
00148-6

Verzijlbergh, R. A., Grond, M. O. W., Lukszo, Z., Slootweg, J. G., and Ilic, M. D. (2012). 
Network impacts and cost savings of controlled EV charging. IEEE Trans. Smart Grid 3 
(3), 1203–1212. doi:10.1109/tsg.2012.2190307

Villanueva, D., Feijóo, A. E., and Pazos, J. L. (2014). An analytical method to solve 
the probabilistic load flow considering load demand correlation using the DC load flow. 
Electr. Power Syst. Res. 110, 1–8. doi:10.1016/j.epsr.2014.01.003

Xu, C., and Chen, G. (2024). Interpretable transformer-based model for probabilistic 
short-term forecasting of residential net load. Int. J. Electr. Power Energy Syst. 155, 
109515. doi:10.1016/j.ijepes.2023.109515

Yang, L., Duan, Q., Pan, B., and Wang, Z. (2025a). Post-pandemic holiday load 
forecasting considering social factors influences based on TL-Informer-LightGBM 
model. Electr. Power Syst. Res. 247, 111861. doi:10.1016/j.epsr.2025.111861

Yang, X., Li, Y., Zhao, Y., Li, Y., and Wang, Y. W. (2025b). Gaussian mixture 
model uncertainty modeling for power systems considering mutual assistance of latent 
variables. IEEE Trans. Sustain. Energy 16 (2), 1483–1486. doi:10.1109/tste.2024.3356259

Zhao, X. L., and Zhang, J. H. (2014). Power system risk assessment software 
design under impact of disaster conditions. Appl. Mech. Mater. 441, 204–207. 
doi:10.4028/www.scientific.net/amm.441.204

Zhongbo, C., Liang, L., and Chao, L. (2025). Optimized coordination of electric 
vehicles, distributed compensation devices, and distributed generation for risk 
mitigation in radial distribution networks. IET Renew. Power Gener. 19 (1), e70019. 
doi:10.1049/rpg2.70019

Zhou, G., Bo, R., Chien, L., Zhang, X., and Su, D. (2018). GPU-accelerated algorithm 
for online probabilistic power flow. IEEE Trans. Power Syst. 33 (1), 1132–1135. 
doi:10.1109/tpwrs.2017.2756339

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1692222
https://doi.org/10.4236/epe.2012.42013
https://doi.org/10.13334/j.0258-8013.pcsee.241046
https://doi.org/10.1109/tii.2024.3523544
https://doi.org/10.3390/en18092358
https://doi.org/10.3390/en11010178
https://doi.org/10.1007/s11238-024-09980-0
https://doi.org/10.1109/access.2021.3060290
https://doi.org/10.1109/tste.2020.2994174
https://doi.org/10.1049/gtd2.12265
https://doi.org/10.1109/tpwrs.2022.3223884
https://doi.org/10.1109/tsg.2014.2387281
https://doi.org/10.1109/tim.2023.3311065
https://doi.org/10.1155/2024/8255513
https://doi.org/10.1109/tsg.2023.3290180
https://doi.org/10.1016/j.ijforecast.2019.07.001
https://doi.org/10.3390/s21093157
https://doi.org/10.1109/tpwrs.2019.2963109
https://doi.org/10.1186/s42162-021-00148-6
https://doi.org/10.1186/s42162-021-00148-6
https://doi.org/10.1109/tsg.2012.2190307
https://doi.org/10.1016/j.epsr.2014.01.003
https://doi.org/10.1016/j.ijepes.2023.109515
https://doi.org/10.1016/j.epsr.2025.111861
https://doi.org/10.1109/tste.2024.3356259
https://doi.org/10.4028/www.scientific.net/amm.441.204
https://doi.org/10.1049/rpg2.70019
https://doi.org/10.1109/tpwrs.2017.2756339
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

	1 Introduction
	2 Ultra-short-term load forecasting
	2.1 Variational mode decomposition
	2.2 Long short-term memory network
	2.3 DeepAR probabilistic forecasting module and its improvement

	3 Integrated risk assessment methods
	3.1 Voltage violation risk index
	3.2 Transformer overload risk index
	3.3 Comprehensive risk index

	4 Case study
	4.1 Forecasting model implementation and performance validation
	4.1.1 Model settings
	4.1.2 Point forecasting result comparison

	4.2 Risk scenario generation and comprehensive assessment results
	4.2.1 Load scenario construction
	4.2.2 Integrated risk assessment results


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

