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Editorial on the Research Topic
Co-operative progress in distributed wind and hydrokinetic energy
systems

Fluid machines whose axis of rotation is parallel to the water or air flow dominate many
areas of technology. In approximate historical order, we have the modern emergence of ship
(e.g., Carlton, 2019) and then aircraft propellers (Anderson, 2024), wind turbines (Spera,
2009), and finally hydrokinetic turbines (Ibrahim et al., 2021), that extract the kinetic energy
of a water stream rather than available head or potential energy of a water body. The blades
of these machines have airfoil or hydrofoil cross-sections, which generate a torque about the
axis of rotation and thereby extract energy from the fluid. In other words, their operating
principles are similar notwithstanding differences such as the possibility of cavitation in
hydromachines.

Despite this commonality, wind turbine researchers, for example, are often ignorant of
modern work in hydrokinetic turbines. This means the different technologies develop to
some extent independently of each other and may well display something like convergent
evolution of species that are physically separated. Would not progress be faster if there were
greater interaction between these researchers in the different technologies? To attempt to
answer that question in the affirmative is the purpose of this Research topic.

The first paper in this topic, “Calculation of the velocities induced by the trailing vorticity
in the rotor plane of a horizontal-axis turbine or propeller” by Wood concerns the effect of
having a finite number of blades on a turbine or propeller. The fundamental techniques for
doing this were developed by Kawada (1936) for aircraft propellers and further critical work
was done in the context of ship propellers by Wrench (1957). Wind turbines researchers,
on the other hand, have continued to rely on Prandtl’s “tip loss factor” which is simple but
limited to the ideal case of straight, radial blades with no loading at the tip. The challenge
is to develop techniques for induced velocity calculation that handle more complex cases
including blade sweep (curvature in the plane of rotation), coning (curvature out of the plane
of rotation), ducted rotors, and unequal blade loads, that are not accurately represented by
Prandtl’s ingenuous method. These complex cases arise in both wind and water machines.

As mentioned above, all technologies under consideration rely on airfoil and hydrofoil
sections for the blades. Thus, any effort to improve foil performance is likely to be of
general benefit. The second paper by Zheng and Chen “Aerodynamic Performance and
Wake Development of NACA 0018 Airfoil with Serrated Gurney Flaps” uses sophisticated
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computational fluid dynamics to investigate the effects of a serrated
“Gurney flap” on airfoil performance. This flap is a small vertical
extension of the foil from the bottom of the trailing edge,
which is easily added to a complex blade shape, unlike many
proposed modifications to foil geometries. Zheng found significant
improvements in the lift:drag ratio which is a common measure of
foil efficiency.

Livs paper “Wind power short-term prediction based on
digital twin technology” addresses the important issue of resource
prediction for energy extraction. Both the wind and water
environments are turbulent and the flow direction can change. A
range of modern methodologies has been developed for resource
prediction and assessment as a way of dealing with the intermittency.
Liu’s contribution is to use the recent idea of a “digital twin” to
improve a neural network prediction of future wind speeds.

Nealy all large wind turbines have a horizontal-axis, but
many vertical-axis turbines have been proposed for smaller-scale
application for wind and water flows. The paper by Algahtani
“Optimization of VAWT Installation with Spatial and Temporal
Complexities Considerations” examines the wind resource available
around highways for small vertical-axis wind turbines (VAWTs).
Better understanding of the resource should lead to improved
machine design for energy efficiency.

The last paper is by Wood and Golmirzace “On the outer
boundary conditions for the fluid dynamics simulation of vertical-
axis turbines” The numerical modelling of vertical-axis wind
and hydroturbines often use boundary conditions that effectively
constrain the flow in the direction normal to the freestream, leading
to an over-estimation of power output, especially if the turbines are
close together. Improved boundary conditions were suggested and a
simple, approximate correction proposed. It has long been argued
that placing wind and hydrokinetic turbines in close proximity
will increase the power output but this claim needs to be carefully
assessed with reference to the boundary conditions.

Where would increased co-operation lead? In practical terms,
the development of hydrokinetic turbines could benefit from
the lessons learned in designing, building, and testing small
wind turbines for “distributed” wind energy, see for example, the
description of the research program (NREL, 2025). Will we see
floating offshore wind turbines each combined with a hydrokinetic
turbine? Increased research co-operation could lead to improved
low-Reynolds number foils for wind and marine applications,
improved sustainability of blade manufacture, more effective control
systems for rapidly varying wind and water speeds, and many others.
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