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The aim of this paper is to present and discuss an approach to address the spatial

variation in the degree and type of omnivory exhibited by human populations

that inhabited the temperate zone of South America east of the Andes (30◦-

56◦ S) during the late Holocene. This approach is based on the interpolation

mapping of transformed isotopic niches, understood as the position occupied

by an individual or group of individuals in a space that results from transforming

one or more of the delta (δ) variables that specify the original isotopic niche

(e.g., δ15N [‰]) into derived variables such as trophic position (TP). Our results

indicate a strong spatial structuring of both transformed isotopic niches and

three omnivory categories (OC I, OC II, and OC III), defined by ranges of TP

values (i.e., 2.0–2.99; 3.0–3.99; ≥4.0). Among the factors that likely structured

spatial variation in the degree and type of omnivory are those characterizing

the physical environment (e.g., net primary productivity or NPP, e�ective

temperature or ET) and the biotic environment (e.g., di�erential distribution of

marine biota). Since these factors have confounding e�ects, it is di�cult to

distinguish, given our current state of knowledge, which is the most important.

For this reason, we conclude that macroecological analyses are needed that

go beyond pattern recognition to address the identification and explanation of

underlying processes.
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1 Introduction

One of the most basic ways in which organisms relate to their environment is through
trophic interactions, which consist of transfers of energy and/or nutrients from one
organism to another (Holland and DeAngelis, 2010). The sum of all trophic interactions
between a particular organism and all other species within its environment constitutes the
organism’s trophic niche (Elton, 1927). This niche specifies the function that the organism
serves in terms of organic matter utilization, as well as its position in a local food web, thus
allowing the identification of energy transfer pathways from food resources to consumers
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(Ackerly, 2003; Chase and Leibold, 2003; Erhardt andWilson, 2022;
Lunghi et al., 2018; Olalla-Tárraga et al., 2017; Pearre, 1999; Rosado
et al., 2016; Soberón, 2007). Trophic niches can be described by
means of different parameters (e.g., niche overlap, niche separation,
niche width), which can respond very quickly to changes in other
ecological factors like intra-specific and inter-specific competition
and prey abundance (Bearhop et al., 2004; Lunghi et al., 2018).

A feeding strategy enabling animals to occupy more than
one trophic niche is omnivory (Clare et al., 2014), understood
as the behavior exhibited by a generalist predator that feeds
at more than one trophic level (Gutgesell et al., 2022; Pimm
and Lawton, 1978; Polis and Strong, 1996; Polis et al., 1989).
Compared to herbivory and carnivory, omnivory gives animals
access to a greater variety of food resources with potentially
greater nutritional value, particularly when resources are scarce
(Clare et al., 2014). Humans, as a species, are true omnivores in
that they utilize plant and animal tissues as food sources (Breed
and Moore, 2016; Clay et al., 2017; Coll and Guershon, 2002;
Root-Bernstein and Ladle, 2019; Teleki, 1975). Intra-specifically,
however, human populations and individuals tend to vary across
space and time in their respective degree of omnivory (i.e., a
measure of the relative contribution to diet of plant and animal
food resources; cf. Gutgesell et al., 2022). This variation occurs
within a spectrum ranging from almost total reliance on resources
from a single energy category or stage in the energy flow/transfer
process (e.g., “primary producers”), to a reliance on resources
from quite different energy categories (e.g., “primary producers,”
“primary consumers,” “secondary consumers”) (Ulijaszek et al.,
2012; Williams and Martínez, 2004). This broad spectrum of
possibilities makes specifying the place of humans in food webs a
challenge for ecologists even today (Lennox et al., 2022).

Different degrees of omnivory will be associated with different
values of trophic position (TP) (Albrecht et al., 2024), which is
a quasi-continuous measure of the position of an organism in
relation to the transfer of energy from the bottom to the top of
the food web in which that organism participates (Levine, 1980;
Moosmann et al., 2021).1 Trophic position is expressed as an index
averaging the number of trophic steps from basal resources to a
consumer through all trophic pathways (Takimoto et al., 2008).
Omnivores have a TP> 2 (typically a non-integer figure; Arim
et al., 2007a), since a value of 2 corresponds to a strict herbivore
and values >2 reflect an increasing dietary contribution of animal
prey (Albrecht et al., 2024). Assuming that omnivores have
several different types of diets (Pineda-Munoz and Alroy, 2014;
Reuter et al., 2023), this would allow, in principle, to differentiate
categories of omnivory based on the relative contribution to the
diet of plant and animal products and, within the latter, of those
belonging to different trophic levels.

Individual members of an omnivorous species can change
their feeding behavior and alter their TP and ecological role
depending on habitat conditions (Stenroth et al., 2008). In fact,
inter-individual diet variation is a common feature of natural

1 The position of a species within a food web can be described by its

fractional trophic level (FTL) (Pauly and Christensen, 2000) or by its trophic

position (TP), the latter measured by stable isotopes of nitrogen (Post, 2002).

In this paper we will refer mostly to TP.

populations, occurring at any trophic level within a food web
(Svanbäck et al., 2015). Furthermore, there is evidence that
the trophic interactions of omnivores are not temporally stable
but change, in the medium and long term, in response to
environmental changes (Albrecht et al., 2024; Gutgesell et al.,
2022). In the case of humans, individual or group shift in feeding
behavior and trophic position is enabled and facilitated by the
environmental knowledge (Ichikawa et al., 2011) and technology
that is available or that can be developed or adopted (via cultural
loan) in response to specific environmental challenges (Ulijaszek
et al., 2012). It is precisely technology that allows humans to exploit,
even to the point of almost complete dependence, on low-trophic-
level resources (e.g., agriculture) or to incorporate animal prey of
very varied sizes and trophic levels from more than one ecosystem
or biome, both terrestrial and aquatic.

An indirect but increasingly popular way of approaching
the trophic niches of present and past populations belonging
to different species—including those with omnivorous feeding
strategies—is that based on the combined use of stable carbon and
nitrogen isotope ratios measured in one or more organic tissues
(Boecklen et al., 2011; Shipley and Matich, 2020). The method
assumes the existence of intra- and between-group variation in the
heavy-to-light isotope ratios (13C/12C and 15N/14N) of a sample
relative to the same ratios in reference materials (Vienna Pee Dee
Belemnite or VPDB and atmospheric air, respectively), expressed
as a delta (δ) value and reported in parts per thousand (‰).2

The δ13C (‰) provides information about the basal carbon source
(BCS) that fuels the food web in which the analyzed organism
participates, while the δ15N (‰) informs about the TP of such
organism in the food web, thus reflecting a combination of habitat
and resource use (Newsome et al., 2007) (for and explanation of
how the δ13C [‰] values provide information about BCS and
how the δ15N [‰] values inform about the TP, see Michener and
Lajtha, 2007). The intra- and between-group variation in δ values
results in a differential position of each individual or group in the
isotopic space (δ space) represented in a 2D scatter diagram of
isotopic ratios. The point or area occupied by an individual or a
set of individuals within a δ space defines their respective isotopic
niches (Bearhop et al., 2004; Layman et al., 2012; Newsome et al.,
2007). Within such spaces, the isotopic niche properties of sampled
populations or species can be directly assessed and compared across
communities by applying analytical tools specifically designed
to investigate issues such as niche breadth and overlap (e.g.,
Cucherousset and Villéger, 2015; Jackson et al., 2011; Newsome
et al., 2012). However, it must be kept in mind that a variety
of intrinsic and extrinsic factors drive isotopic variability and
influence the observed dimensional and geometric properties of the
isotopic niche (Shipley and Matich, 2020).

How the isotopic niche relates to the trophic niche has been
a much-debated issue in recent literature (e.g., Flaherty and Ben-
David, 2010; Hette-Tronquart, 2019; Hopkins and Kurle, 2016;
Layman et al., 2007; Marshall et al., 2019; Vander Zanden et al.,

2 The delta value (δ) is calculated as follows: δX = [(Rs / Rstd) - 1] ∗ 1000,

where δX is the delta value for the element X, Rs is the isotope ratio (e.g.,

13C/12C) in the sample, and Rstd is the isotope ratio in the standard (Michener

and Lajtha, 2007).
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2013). There is now a consensus that, while both types of niches
are not equivalent (Hette-Tronquart, 2019; Pratte et al., 2019),
the isotopic niche is a quantitative indicator of the trophic niche
(Marshall et al., 2019). It is recognized that the same isotopic
values among individuals do not necessarily imply the same diet
(Pratte et al., 2019), since in addition to diet, environmental,
behavioral, and physiological factors also affect isotopic variation
among individuals and groups (Arnoldi et al., 2024). However, it
has recently been shown that the variance in consumer isotopic
values is directly proportional to (a) the variation in diet, (b) the
number of isotopically distinct food sources in the diet, and (c)
the baseline variation within and between isotopic values of food
sources (Arnoldi et al., 2024; see also Hopkins and Kurle, 2016;
Rodríguez and Herrera, 2013).

In recent decades, there has been some discussion about
the role of humans in food webs, emphasizing the omnivorous
nature of our species (e.g., Bonhommeau et al., 2013; Crabtree
et al., 2017; Darimont et al., 2015, 2023; Lennox et al., 2022;
Nieblas et al., 2014; Roopnarine, 2014; Smil, 2002; Ulijaszek et al.,
2012; Wallach et al., 2015; Worm and Paine, 2016). However, we
still lack a comprehensive approach to the problem of human
omnivory in general, and from the perspective of stable isotope-
based trophic ecology in particular. This is reflected in the fact
that, in archaeology, the concept of omnivory is rarely used,
being much more common to speak only of spatial or temporal
differences in dietary breadth or diversity, whether this is inferred
by zoocheological and/or archaeobotanical indicators or by stable
isotope analysis (SIA). Similarly, other terms used in trophic
ecology in reference to humans such as “predator” (Darimont et al.,
2023), “mesopredator” (Wallach et al., 2015) or “apex predator”
(Roopnarine, 2014) are typically not utilized in our field to refer
to the roles humans may have played in the food webs in which
they were integrated. In archaeology, too, there have been relatively
few attempts to explore the practical applications of the isotopic
niche concept, and when this has been done, the focus has been
on discussing problems at a rather restricted spatial scale (i.e. that
of a single site or region), whether in descriptive/interpretative or
comparative studies (e.g., Gil et al., 2024; Hermes et al., 2018; Kochi
et al., 2024; Loponte and Corriale, 2020; Robinson, 2021; Tessone
et al., 2024; Weihmüller et al., 2024).

To contribute to the construction of an approach that explicitly
addressess the issue of human omnivory from the perspective
of stable isotope-based trophic ecology, the aim of this paper
is to analyze the spatial variation in the degree and type of
omnivory exhibited by populations that inhabited the temperate
zone of South America (30◦-56◦ S) during the late Holocene,
particularly in the current Argentine territory. This will be done
by mapping transformed isotopic niches, which are defined as
the position occupied by an individual or group of individuals
in a space that results from transforming, by some specific
procedure, one or more of the δ variables that specified the original
isotopic niche into derived variables (e.g., the transformation of
δ 15N [‰] into TP). By mapping transformed isotopic niches,
this study aims to detect spatial patterns in the distribution of
omnivory degrees and categories in relation to the BCS of different
ecosystems on a large spatial scale (sub-continental). In this sense,
it represents a methodological and interpretive extension of a

previous contribution, which was focused on mapping variations
in TP in the same portion of the South American continent
(Barrientos et al., 2020). This study adopts an analytical perspective
that draws on elements from the field of macroecology such as
a focal interest in large spatial and temporal scales, collecting
data across biogeographic gradients, and using statistical models
to test relationships between ecological variables and variables of
the physical environment (Albrecht et al., 2024; Baiser et al., 2019;
Banks-Leite et al., 2022; Blackburn and Gaston, 2006; Brown and
Maurer, 1989; Diniz-Filho, 2023). However, it does not constitute a
true macroecological analysis since it focuses, at least at this stage
of the research, on the recognition of spatial patterns rather than
on the identification and explanation of the underlying processes,
although some hypotheses will be put forward in this regard.

2 Elements for an ecological
evolutionary and biogeographic
approach to omnivory, with particular
reference to humans

As defined in the Introduction, “omnivorous” is a quality that
can only be predicated of a generalist predator (Gutgesell et al.,
2022), understanding a predator as one that captures, kills and
consumes individuals of another species/s (Sergio et al., 2014) and
a generalist predator as one that feeds on multiple prey or prey
types rather than specializing in one specific prey or prey type
(Closs et al., 1999). Omnivores, then, are generalist predators that
incorporate into their diets not only animal foods (e.g. meat, bone
marrow, blood, entrails, and nervous tissue) but also a varying
proportion of plant foods (e.g., vegetables, fruits, whole grains,
legumes, nuts, and seeds). That is why degree of carnivory (the
position along the continuum from complete herbivory to complete
carnivory; Pollard and Puckett, 2022) and degree of omnivory (a
measure of the relative contribution to diet of plant and animal food
resources, as defined in this paper) are cognate concepts.

Trophic behavior in general and omnivory in particular,
is determined by evolutionary history, influenced by resource
abundance and quality to optimize nutritional requirements
(Liman et al., 2017). The degree of omnivory (or carnivory), as
expressed in the TP of a generalist predator, may have effects on
fitness and, therefore, be under the control of natural selection
(Moosmann et al., 2021). According to Moosmann et al. (2021), an
optimal TP (i.e., that with the highest fitness value) would be that
resulting from a diet with intermediate levels of abundant resources
(usually plants) and high-quality resources (usually animals). Since
the specific determinants of the balance between plant and animal
foods consumed by omnivores are poorly understood (Clay et al.,
2017), it is currently difficult to specify what the optimal value may
be in each particular species.

On the one hand, omnivores can increase their plant
consumption (i.e., approaching a TP value of 2) in response to
factors as diverse as plant quality (Eubanks and Denno, 2000),
temperature (Zhang et al., 2020) and animal prey scarcity (Chubaty
et al., 2013). On the other hand, a greater incorporation of animal
resources leading to an increase in the degree of carnivory (i.e.,
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approaching or even exceeding a TP value of 3) can also occur
due to a number of factors. These factors include environmental
scarcity of sodium (Na) and nitrogen (N), since animals are
abundant sources of these two elements (Clay et al., 2017; Simpson
et al., 2006), and habitat productivity, since increased net primary
productivity or NPP—which measures available carbohydrates in
ecosystems—could provide the energy needed to support increased
prey consumption by omnivores (Clay et al., 2017; cf. Zhu et al.,
2021). Together, these hypotheses—which have varying degrees of
empirical support—provide the basis for beginning to outline a
biogeography of omnivory based on the geographic distribution of
a specific set of environmental constraints and possibilities (Clay
et al., 2017).

Humans are large mammals, typically belonging to body size
class IV (10–100 kg) (MacPhee, 2009). This implies that the TP
range in which they can be observed is positively affected by the
available energy (i.e., they are energetically limited; Arim et al.,
2007a,b; Burness et al., 2001). In our species, the empirically
observed FTL or TP ranges are very wide (FTL: 2.04–4.65;
Bonhommeau et al., 2013; Roopnarine, 2014; TP: 2.00–4.60;
Barrientos et al., 2020). This is because humans, despite their
omnivory, sometimes behave almost like herbivores (e.g., the
population of Burundi, in 2009, had an FTL of 2.04, representing a
diet that is almost completely—96.7%—plant-based; Bonhommeau
et al., 2013) and sometimes like top or apex predators, especially
when involved in marine ecosystems (Barrientos et al., 2020;
Roopnarine, 2014). This wide variation represents a difficulty when
it comes to establishing the optimal value of TP for our species.
Another difficulty stems from the lack of consensus about the
most appropriate dietary composition to prevent, or even reverse,
most modern diseases (Goldfarb and Sela, 2023). In this regard,
the advantages and disadvantages of plant-based vs. meat-based
diets are currently a hotly debated topic, with widely divergent and
opposing opinions (e.g., Ben-Dor et al., 2021; Goldfarb and Sela,
2023; Leroy et al., 2023; Arora et al., 2023; Storz, 2022; van Vliet
et al., 2020).

Although it is not possible, given the current state of our
knowledge, to accurately estimate the optimal value of TP in
humans, it seems likely that it lies close to the midpoint between
2 and 3. Values of TP too far from this point (especially in cases
where such values are not the result of long-term adaptations) may
have harmful consequences for the individual or the population.
For example, nutritional deficiencies, infections, and metabolic
disturbances associated with lower meat consumption and lower
dietary diversity have been reported in children and youth in
societies undergoing a subsistence transition from a hunter-
gatherer-fisher economy to an agricultural one (e.g., Chinique de
Armas and Pestle, 2018). Similarly, a study based on ethnographic
data and a process-based hunter-gatherer dynamics model has
established that an increase in the meat fraction of the diet,
whatever its cause, is associated with a lower population density
under the same level of NPP (Zhu et al., 2021). Considering
that population density is a key ecological parameter that affects
population resilience to habitat changes and stochastic events
(Jacquier et al., 2021), we can predict that an increase in meat
consumption beyond certain limits has not only direct negative
consequences for the individual (Battaglia Richi et al., 2015) but
also indirect harmful consequences for the population as a whole.

3 Study area

3.1 Ecogeographic characterization

The study area is situated at the southernmost extreme of South
America, between 30◦-56◦ S and 56.60◦-75.50◦ W. It covers a
surface of approximately 2,600,000 km2 that includes, in whole or
in part, different regions: (a) western Uruguay (Campos region);
(b) central Argentina (Pampas, North East Mesopotamia, Chaco-
Santiagueña Plains, Central Hills, Cuyo and Argentine Northwest
regions); (c) central Chile (Semi-Arid North and Central Chile
regions); (d) southern Argentina and Chile (continental and insular
Patagonia on both sides of the Andean Mountains). The Andean
Mountains are the dominating topographic feature. This range
runs with an approximate N–S direction up to 50◦ S, then bends
gradually toward SE to finally adopt a near W-E direction in
the southeastern part of the Great Island of Tierra del Fuego
and Isla de los Estados (ca. 55◦ S). Its western and southern
slopes are composed of a narrow coastal plain, deep fjords and
a mosaic of islands, whereas the eastern slope gives way to the
plains and major fluvial systems of central Argentina and to the
dissected plateaus of Patagonia. This vast area, which belongs to
the Neotropical biogeographic realm (sensu Pielou, 1979; Udvardy,
1975; cf. Morrone, 2015), is distributed among several terrestrial
ecoregions whose names, number and delimitation differ among
authors (see, for example, Brown and Pacheco, 2006; Burkart
et al., 1999; Gastó et al., 1993; Gedeco Ltda, 2008; Morello et al.,
2012; Olson et al., 2001; Oyarzabal et al., 2018; World Wildlife
Fund, 2019). In addition, eight coastal/marine ecoregions have been
recognized, four on the Pacific Ocean and four on the Atlantic
Ocean; of the latter, the Malvinas ecoregion is the only that has no
contact with the continent (Spalding et al., 2007) (Figure 1).

The South American landmass has the approximate shape of an
inverted isosceles triangle that narrows toward the south, especially
from the Tropic of Capricorn (Pineau et al., 2003), giving the
southern tip of South America the character of a peninsula that
penetrates deeply into the Pacific and Atlantic oceans (Morello,
1984). This particular geometry propitiates the existence of certain
N-S gradients, such as those of increasing morphostructural
and ecosystemic simplicity (e.g., lower biodiversity in terrestrial
ecosystems) and of increasing maritime influence (i.e., oceanicity;
Fairbridge andOliver, 1987), the latter resulting in less rigorous and
more homogeneous environments than would be expected based
on latitude alone (Morello, 1984; Pineau et al., 2003).

Throughout the area considered in this study, rainfall is
distributed very heterogeneously on both sides of the Andes, with
arid or semi-arid environments predominating on the eastern slope
(Morello, 1984). The most conspicuous feature there is the South
American Arid Diagonal (de Martonne, 1935), which crosses the
area in a NW-SE direction. This extensive strip, with a marked
latitudinal development and variable width, forms a series of
successive arid enclaves that interrupt the continuity of the humid
zones, according to a combination of factors that are staggered from
north to south over the different circulation zones (Bruniard, 1982).

In the northwest, the Subandine and Pampean Sierras divide
the arid strip into plateaus, basins and valleys, under a double
leeward effect caused by the orographic interruption of the already
weakened influences of both the Atlantic and the more sporadic
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FIGURE 1

Distribution of terrestrial and marine ecoregions in southern South America (Argentina and Chile, 30◦-56◦ S). Modified from Gedeco Ltda (2008),

Morello et al. (2012), and Spalding et al. (2007).

influences of the Pacific. Further south, in full domain of the
westerlies, the Patagonian aridity extends to the Atlantic coast
(Bruniard, 1982). During the Quaternary, the central position of
the Arid Diagonal remained more or less constant (Abraham et al.,
2000; Garleff and Stingl, 1998), although with minor variations
throughout the Holocene due to climatic oscillations (Mancini
et al., 2005).

The effect of the Arid Diagonal on the biota was and is
significant. The sclerophyllous forest and the scrubland located in
central Chile (with a Mediterranean subtropical climate) and the
temperate forest located immediately south of the former, integrate
one of the core biomes that became progressively isolated from
the other humid South American formations, the closest being the
Yungas forest in northwestern Argentina, the humid Pampas and
the Chaco-type forests of the Espinal. Between these more humid
areas, the desert or semi-desert floristic formations along the Arid
Diagonal developed (in our study area, the Monte and Patagonian
steppe deserts) (Cabrera and Willink, 1973).

In addition to the varied terrestrial ecosystems, there aremarine
ecosystems corresponding to the Argentine Sea, which encompass
the portion of the continental margin of the southwestern Atlantic
exposed to the ecological effects of the fronts generated by
the Brazil and Malvinas currents (Falabella et al., 2009; Zárate,
2013). These bodies of water coexist and mix, which determines
important physical-chemical gradients and the presence of high
concentrations of nutrients (Zárate, 2013). The rich primary

productivity of these waters is the basis of a complex trophic
web that culminates in superior predators of different taxonomic
groups, which play a key role as regulators of lower levels (Falabella
et al., 2009; Zárate, 2013).

The climate in southern South America during the late
Holocene (i.e., the last 4,000 years BP) was characterized by
fluctuating conditions in terms of temperature and humidity,
within a general cooling trend from the late mid-Holocene onwards
(Berman et al., 2020; Silvestri et al., 2021, 2022). Such fluctuations
in climatic conditions are linked to intervals such as the Medieval
Climate Anomaly (MCA) and the Little Ice Age (LIA) (Lüning
et al., 2019; Silvestri et al., 2021), which caused shifts in the
distribution of plant and animal lineages (Tonni, 2006). Despite
these oscillations, the overall spatial distribution of biomes in the
study area appears to have changed relatively little (i.e., temporal
changes in biomes consisted mainly of variations in the position
of their respective boundaries; see maps in Maksic et al., 2018).
Regarding the relative C3/C4 composition of ecosystems, in Central
Argentina there is evidence of a continuous replacement of C4

plants by C3 plants since the beginning of the late Holocene. During
this period, the relative abundance of C3 plants in grasslands,
shrublands, and forests increased by an average of 32% (Silva et al.,
2011). This partial and progressive replacement coincided with
climate changes toward cooler and wetter conditions compared
to those prevailing in the mid-Holocene (Silva et al., 2011),
which had consequences for the current spatial distribution of
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FIGURE 2

Plant δ13C and δ15N isoscapes. (A) Values of δ13C estimated based on the C3/C4 composition (Powell et al., 2012); (B) values of δ15N predicted as a

function of mean annual temperature and mean annual precipitation based on the regression model of Amundson et al. (2003) (after Bowen and

West, 2008). Both maps were processed from the original files provided by the cited authors.

δ13C (‰) and δ15N (‰) values of terrestrial primary production
(Figure 2).

3.2 Human subsistence in the late
Holocene

Most late Holocene human populations in this vast portion of
southern South America relied primarily on terrestrial resources
for their subsistence, within a fairly widespread hunting, gathering,
and fishing economy (Borrero, 1994–1995, 2001; Politis, 2008;
Politis and Borrero, 2024; Scheinsohn, 2003). The only exception
were the canoe-based hunters who inhabited the fjords and islands
of southern Chile, whose ethnographically known representatives
(Yámana, Kawésqar, and Chono) exhibited authentic maritime
adaptation (sensu Erlandson and Fitzpatrick, 2006), whose origins
date back 6,000 years BP, according to archaeological evidence
(McEwan et al., 1997; Reyes et al., 2019). However, even in
these populations, consumption of terrestrial resources such as
fungi, berries, and mammals (e.g., rodents, huemul, guanaco) is
documented (Gusinde, [1937] 1986; McEwan et al., 1997; Orquera

and Piana, 1999; Reyes et al., 2019). Along the Atlantic coast,
particularly in Patagonia, archaeological evidence indicates the
recurrent exploitation of marine biota (e.g., Castro et al., 2004;
Gómez Otero, 2007; Zangrando and Tivoli, 2015). In this case,
however, this occurred without the development of navigation
technology or intensive exploitation of resources beyond the tidal
zone, configuring what Beaton (1991) called coastal use.

The northwestern portion of the study area, on both sides of the
Andes, lies within the dispersal zone of maize, the introduction of
which dates back to 3,000–2,500 years BP. However, on the eastern
slope of the Andes, the economic importance of this resource
seems to have been more recent (ca. 1,500–1,000 years BP), when
an agricultural economy was established in at least some areas
of the region (Gil et al., 2014, 2018; López et al., 2020; Neme,
2007; Pastor and López, 2010; Pastor and Gil, 2014). A truly stable
agricultural economy seems to have been present also in central
Chile from approximately 2,000 years BP (Alfonso-Durruty et al.,
2023; Falabella et al., 2008). In the northeastern part of the area,
around the Paraná and Uruguay river systems (del Plata Basin), an
increase in the production and consumption of maize, as well as
other cultigens, is inferred from ca. 2,000–1,000 years BP, associated
with the dispersal of a horticultural economy (Loponte and Acosta,
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2013; Politis and Bonomo, 2012). Finally, in the last centuries of
the pre-Hispanic period, there seems to have been manipulation
and culinary processing of maize by groups of hunter-gatherers
from the Pampas and northern Patagonia regions (Lema et al., 2012;
Musaubach and Berón, 2012; Prates et al., 2019; Saghessi, 2024). In
this case, there is no evidence of local production due to climatic
limitations, so it is inferred that the presence of maize is a product
of exchange or trade with societies established in other regions
(López et al., 2020; Musaubach and Berón, 2012; Prates et al., 2019;
Saghessi, 2024).

In summary, it can be said that, beyond local or regional
variations in subsistence, Late Holocene human populations in
Argentina south of the 30◦ S parallel generally fall within the
“foragers” category, as defined by Porter and Marlowe (2007):
<10% agriculture, <10% animal husbandry, trade accounting for
<50%, and no more than any single local source. Other subsistence
economies (horticulture, agriculture) appear to have been highly
restricted both in space and time (i.e., the last 2,000 years BP).

4 Materials and methods

This section, in which we will detail all the materials
and the methods used in our study, is made up of four
subsections, namely: Rationale for the approach, Description of the
dataset, Primary processing of data (Supplementary Data Sheet 2),
and Secondary processing of data. To the extent that the
results of the primary processing of the data inform the
decisions involved in its secondary processing, those results
will be described immediately after the description of the
corresponding method (Supplementary Data Sheet 2). The results
of the secondary processing of the data, related to the very purpose
of this paper, will be described in Section 5.

4.1 Rationale for the approach

A detailed account of the rationale for our approach can be
found in Barrientos et al. (2020). Here we will only outline its
main features.

(a) Our methodology is geographically explicit in the sense that
uses geographic data to model and analyze, in a GIS environment,
how organism variables (e.g., stable isotope values and TP) and
biotic and abiotic environmental variables (e.g., latitude, effective
temperature, productivity, biodiversity) relate to each other.

(b)Maps of isotopic variables—generically called isoscapes (i.e.,
cartographic models about geographically patterned variation in
isotopic compositions of a substrate; Bowen, 2010; Bowen et al.,
2009; West et al., 2010)—and of derived variables like TP, are
resources that have a redescriptive, comparative, and heuristic
value. They are redescriptive devices in the sense of providing
a new and more complete description of the phenomenon of
isotopic variation by explicitly adding the spatial dimension, which
is missing in most studies of stable isotopes. Isotopic maps for
a given taxon allow simultaneous comparisons between multiple
ecosystems, provided that an appropriate baseline is established. At
the same time, they allow comparisons or operations to be made
with other maps, such as those representing δ13C (‰) and/or δ15N

(‰) values of terrestrial primary production (e.g., Bowen andWest,
2008; Powell and Still, 2009; Powell et al., 2012) or of primary
consumers (e.g., Barrientos et al., 2020). Finally, they are heuristic
in the sense of allowing the discovery of new facts (e.g., patterns
and/or relationships) that are difficult to perceive by other means.

(c) Our approach explicitly privilege space over time. This
does not imply ignoring the importance of time as the axis along
which systems evolve, but rather recognizing the difficulty of
its treatment when working on large spatial scales and with big
datasets with a relatively low temporal resolution. In large-scale
studies, it is practically impossible to have a convenient amount
of synchronous or near-synchronous data, so maximum spatial
coverage is achieved by including cases corresponding to specific
time blocks. Under such conditions what is generated are time-
averaged constructs akin to what Vander Zanden et al. (2014)
have called “long-term isoscapes.” Nevertheless, this should not be
seen as a disadvantage, but rather as an opportunity to identify
and study cumulative patterns revealing strong relationships
between persistent trophic interactions and places. What is lost
in terms of ecological realism is gained in terms of visualization
and understanding.

4.2 Description of the dataset

We compiled a dataset consisting of a total of 1,148
georeferenced individual cases, of which 1,146 correspond to δ13C
(‰) values and 1,018 to δ15N (‰) values. These data were
obtained by bulk stable isotope analysis (BSIA) of bone and
dental collagen extracts from human burials assignable, either by
direct radiocarbon dating or by context, to the late Holocene
(i.e., from 4.2 ka BP to historical times before the 20th century).
However, the vast majority of cases (76%) correspond to the last
1,500 years BP (considering the midpoint of the calibrated age
range) (Figure 3). These data come from human remains recovered
from archaeological sites in Chile, Argentina, Uruguay, and Brazil,
located south of 30◦ S and between 52◦ and 75◦ W. Most of the
data were taken from the South American Archaeological Isotopic
Database (SAAID) (Pezo-Lanfranco et al., 2024), with other data
not included in that database being added. In cases where mistakes
or inaccuracies were detected in the SAAID, these were amended
(Supplementary Table 1).

The isotopic data correspond to adult individuals or weaned
subadults. The attribution of the weaned character was made, in
each case, based on published information about the individual’s
age at death or the age of the sampled tissue (in the case
of dental collagen) or was inferred from the comparison with
isotopic values of adult individuals from the same region. Since
information on the quality of the collagen extracts is lacking in
a large percentage of cases (40.2%), stable isotope ratios were
taken at their face value. Otherwise, a large-scale spatial study
such as the one described here would be virtually impossible
due to the small sample size. Only cases reported as erroneous
or doubtful by the authors of the original publications or those
with an atomic C/N ratio >3.6 indicative of contamination with
humic substances (Guiry and Szpak, 2021) were excluded. For
the sites in Argentina, where most of the analyses are focused,
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FIGURE 3

Range plot with histogram depicting the distribution of calibrated age ranges (obtained from direct or contextual dating) of the cases included in this

study. Blue lines show the ranges; white circles mark the mid-points.

information on altitude (in meters above sea level or masl) and
distance to the Atlantic Ocean (in km) was obtained. In both
cases, this was done in a GIS platform (ArcGis 10.8.2; ESRI 2021)
using the measurement tools provided by the software package.
Altitudinal data were extracted from a digital elevation model
or DEM (Global 30 Arc-Second Elevation, Sheets W100S10 and
W60S10; United States Geological Survey, 2016) and distances
to the sea were measured, in most of the study area, using a
vector layer of the Atlantic coast. However, between 30◦ and
approximately 37◦ S, the distance was calculated to the Uruguay
and de la Plata rivers, two important watercourses in the distal
part of the del Plata Basin along which the international border
between Uruguay and Argentina runs, using a hydrographic
vector layer.

4.3 Secondary processing of data

4.3.1 Mapping of transformed isotopic niches
The maps we will present in this paper are intended to

constitute a first approximation to the problem of the spatial
distribution of transformed isotopic niches in southern South
America. Therefore, the procedure for their construction were

kept as simple as possible, even at the risk of making simplifying
methodological decisions, as will be discussed in each of the
following sections.

4.3.1.1 Interpolator selection

For the mapping of transformed isotopic niches and of their
precursor inputs (i.e., distribution of δ13C [‰] and δ15N [‰]
values of human samples and δ15N [‰] values of primary
producers) we decided to use the inverse distance-weighted (IDW)
interpolation method (Shepard, 1968) due to its flexibility and
ease of use (Hengl, 2007). This method assumes that each
measured point has a local influence on unsampled locations
moderated by the distance decay effect (Wang et al., 2019). It
is not exact as it does not generate an estimate that is equal
to the observed value at a sampled point (Li and Heap, 2008;
Myers, 1994); however, it can be forced to be exact (Burrough
and McDonnell, 1998). More importantly, this interpolator is
not based on any theory or assumption, being strictly heuristic.
Precisely, one of its main advantages is that it is not necessary
to fit the data to a model, as occurs with geostatistical methods
such as kriging, since it is not restricted by the covariance and
variance functions (Wang et al., 2019). It could be used on
very small data sets, allowing interpolation from data scattered
on a regular grid or irregularly spaced samples (Burrough and
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McDonnell, 1998; Shepard, 1968). As a disadvantage, it does
not provide any measure of the reliability of the interpolated
values. In this sense, it is deterministic in that it does not
incorporate associated errors and only produces the estimates
(Hengl, 2007; Li and Heap, 2008). While IDW lacks a built-in
function to deal with errors associated with the estimate, these
can nevertheless be calculated separately and then mapped. This
is the case of the difference between predicted values and input or
measured values (i.e., interpolation error) or the results of cross-
validation. The latter is a procedure for testing the quality of a
predicted data distribution by removing one data location and then
predicting the associated data using the data at the rest of the
locations. In cross-validation performed in ArcGis, the comparison
between the predicted value and the input or observed value is
expressed in statistics such as the mean error or the root mean
square error.

The traditional IDW interpolator, despite its flexibility, ease of
use, and model-free character (main reasons that justified its use
in this exploratory spatial modeling approach of isotopic niches), is
not a really goodmethod to deal with clustered data like ours. More
appropriate and powerful alternatives to deal with this problem in
the spatial structure of the data are kriging (Pyrcz and Deutsch,
2002, 2014) and the recently developed dual IDW (DIDW) (Li,
2021; Li et al., 2019). Regarding the former, a previous experience
of the authors with ordinary kriging (Catella et al., 2018) shows that
this interpolator does not necessarily perform better in relation to
our objectives and, regarding the latter, it is certainly an option to
consider in future studies, especially when it becomes incorporated
into GIS packages. Beyond all these considerations, it should not be
lost sight of that, in an exploratory study such as the one described
here, the level of tolerance to error due to the interpolator and the
setting of its parameters could be higher than when economic or
management decisions are involved.

The IDW interpolation was performed in ArcGis 10.8.2 with
a power parameter (p) equal to two, using between 12 and 40
neighbors within a circular window of 500 km radius with four
sectors. Within each sector, between three and ten points were
sampled to define an even neighborhood in all directions. All raster
coverages were generated with a cell size of 4,000 meters per side.
When there was more than one δ15N (‰) value for the same site
or location, all data were considered. To assess the strength of the
association between the δ13C (‰) and δ15N (‰) values measured
in bone and those resulting from interpolation, the Spearman rank
correlation coefficient (rs) was calculated and, to verify the absence
of significant statistical differences between paired observations,
the Wilcoxon matched pairs test was performed. In both cases, the
alpha level was set at 0.01. For each isotopic system, error calculated
by cross-validation was mapped using IDW with p = 3, in order to
highlight the areas of greatest variation between interpolated and
input data. The error tolerance boundary was set at ±1 ‰. The
mean error and the root mean square error were also calculated.

In all maps, the area represented is smaller than the total
interpolated area, since the cases from eastern Uruguay and
southeastern Brazil—and, to some extent, also those fromChile and
western Uruguay, that are shown but will not be discussed beyond
some occasional reference—were included only to avoid the edge
effect (Conolly and Lake, 2006).

4.3.1.2 δ
15N (‰) baseline selection

When the purpose is to integrate isotopic information from
diverse geographic locations into a single study, it is essential to
have a common comparison standard allowing such integration.
In the case of δ15N (‰) this is because substantial variation is
expected, even between spatially close environments, in the isotopic
ratios at the base of the food web from which all consumers
ultimately extract the nitrogen they assimilate (Post, 2002). A
δ15N (‰) baseline is not only useful for calculating TP within
a single ecosystem (e.g., Hansson et al., 1997; Keough et al.,
1996; Peterson et al., 1985), but also for monitoring variation in
δ15N (‰) among different ecosystems. In the absence of adequate
estimates of the baseline δ15N (‰) in each system, it is virtually
impossible to determine whether spatial dissimilarity in δ15N (‰)
values among individuals of a geographically and ecologically wide-
ranging species is due to regional variation in food web structure
or to regional differences in the isotopic baseline (Cabana and
Rasmussen, 1996, p. 10844; Post, 2002, p. 704). Therefore, one of
the most critical aspects of using bulk bone collagen δ15N (‰)
to estimate TP of current or past individuals, populations, or
species is to obtain the isotopic baseline that allows comparisons
across multiple systems (Anderson and Cabana, 2007; Cabana and
Rasmussen, 1996; Casey and Post, 2011; Post, 2002).3

In this and a previous paper (Barrientos et al., 2020), we argue
for the need to have, in a study of the nature of the one presented
here, a single raster layer representing the baseline for δ15N (‰).
This is more feasible to do so using data from terrestrial primary
production than from a primary consumer, contrary to what is
usually recommended for studies carried out at a smaller spatial
scale and in aquatic environments (Anderson and Cabana, 2007;
Cabana and Rasmussen, 1996; Vander Zanden and Rasmussen,
2001). For this reason we will use, for constructing our δ15N (‰)
baseline, data derived from a global-scale regression model based
on the integration of empirical observations of modern plant δ15N
(‰) values and environmental data (continuous MAT and MAP
fields for the normal climatic period 1961–1990) (Bowen andWest,
2008; based on Amundson et al., 2003). The model output, further
masked using continuous vegetation fields, eliminating areas with
>80% non-vegetated ground (Bowen and West, 2008), was kindly
provided in Erdas Imagine (.img) format by Drs. G. J. Bowen and
J. B. West. The two main disadvantages of using an actualistic
global model such as this are that: (a) it extrapolates into the past
a distribution of isotopic values that may not correspond, in all
its details, to that existing during the period in question and (b)
there is a fairly large uncertainty associated with the predictions of
the model equation, so that the differences between the predicted
and observed δ15N (‰) values can be very large in some locations
(Bowen, 2010; Pardo and Nadelhoffer, 2010). However, these
disadvantages are compensated by its ease of implementation

3 Some of the problems inherent in calculating TP with BSIA can currently

be overcome, to some extent, by using compound-specific nitrogen isotope

analysis of amino acids (CSIA-AA) (Ishikawa, 2018). However, for most

archaeological samples this type of data is not yet available, so bulk collagen

stable isotope data are still necessary in a study of the kind proposed here

(Barrientos et al., 2020).
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and the fact that it provides an objective and unique basis for
performing TP calculations over a very large surface. As we
already expressed in Section 4.1, in this exploratory study we
privilege, within certain limits, visualization and understanding
over ecological realism. To optimize, the original raster layer was
cropped to fit the size of the study area and then, to improve
resolution, an additional interpolation was performed using as
input the δ15N (‰) value corresponding to each of the cells (IDW;
p= 2).

4.3.1.3 Selection of trophic enrichment factor

The δ15N (‰) increases in a predictable way between a
consumer and its diet (Anderson and Cabana, 2007; Caut et al.,
2009; DeNiro and Epstein, 1981; Post, 2002; Vander Zanden and
Rasmussen, 2001). Differences in δ15N (‰) between a consumer
and its diet are referred to as the trophic enrichment factor or TEF
(also expressed as 115Ndiet−body). The amount of the increase in
δ15N (‰) values represented by the TEF, which is due to the isotope
discrimination process whereby the heavier isotope 15N increases
in abundance compared to the lighter isotope 14N, has been and
continues to be much debated (see reviews in Bocherens and
Drucker, 2003; Caut et al., 2009; Hedges and Reynard, 2007; Lewis
and Sealy, 2018; O’Connell et al., 2012). The TEF varies between
tissues within individual consumers due to metabolic fractionation
(DeNiro and Epstein, 1981; Hobson and Clark, 1992; for humans
see Kraft et al., 2008; Nash et al., 2009; O’Connell and Hedges, 1999;
O’Connell et al., 2001; Richards, 2006; Schoeller et al., 1986). In the
case of bone collagen, the most frequently sampled biomolecule
in paleodietary studies, O’Connell et al. (2012) have estimated a
range of +5.9 ‰–+6.3 ‰ for the 115Ndiet−collagen offset. Some
authors propose using ranges (e.g., +3 ‰–+5 ‰; Bocherens and
Drucker, 2003) or different values within those ranges (e.g., +3 ‰
or +6 ‰; Lewis and Sealy, 2018) rather than a single value, as is
the common practice. In addition to the uncertainty surrounding
the estimation of TEF between consumer tissues and those of their
sources, this trophic level effect also appears to vary considerably
across a range of environmental (e.g., temperature, altitude, aridity)
and physiological (e.g., water stress, starvation) conditions, as well
as diet composition (McCue and Pollock, 2008; McCutchan et al.,
2003; Vanderklift and Ponsard, 2003). In this paper we used a
TEF of +5 ‰ between diet and collagen of humana consumers
since this produced the best fit between the δ15N (‰) isoscape of
plants (Bowen and West, 2008) and that of a primary consumer,
the guanaco (Lama guanicoe), a camelid that was exploited as
a staple food by many human populations in the study area
throughout the late Holocene (Barrientos et al., 2020). A TEF of
+5‰ between diet and collagen of human consumers is within the
115Ndiet−human collagen offset experimentally derived by O’Connell
et al. (2012) (+4.6–6.3 ‰), considering both conservative and
less-conservative estimates.

4.3.1.4 Calculation of trophic position

To achieve this goal, we followed the general guidelines
described in Barrientos et al. (2020). These are useful to calculate, in
a GIS environment, the interpolated map of TP for a given species
from two layers of information: the δ15N (‰) isoscape of the
isotopic baseline (δ15Nbaseline [‰]; in our case study, the modern
primary producers or MPP) and b) the δ15N (‰) isoscape of the
species in question (in our case, the archaeological humans or AH).

To calculate the TParchaeological humans, it is necessary to implement
the following formula (adapted from Anderson and Cabana, 2007)
in the raster calculator tool of the GIS platform to perform the
corresponding operations between layers:

TParchaeological humans = ([AHI −MPPI]/5)+ 1,

where AHI is the δ15N (‰) isoscape of archaeological humans,
MPPI is the δ15N (‰) isoscape of the modern primary producers, 5
is the selected TEF (+5‰), and 1 is the trophic level corresponding
to the δ15Nbaseline (‰) (i.e., MPP).

From the TP raster layer, the data corresponding to the
individual cases were extracted and the non-parametric correlation
coefficient rs (alpha = 0.01) was calculated between these and the
input and interpolated δ15N (‰) values.

4.3.1.5 Mapping of transformed isotopic niches

As stated in the Introduction, an isotopic niche can be defined
as the point or area occupied by an individual or a set of individuals
within a δ space (Bearhop et al., 2004; Jackson et al., 2011; Layman
et al., 2012; Newsome et al., 2007, 2012). In this paper we define
the transformed isotopic niche as the cell value in a raster layer
resulting from combining two other layers: (a) that representing
the spatial variation in the TP calculated for a given taxon (derived
from δ15N [‰] values) and (b) that representing the spatial
variation in δ13C (‰) for such taxon. The set of all cells with the
same value will constitute the geographic expression of the niche,
which may be spatially continuous or discontinuous.

In order to build the map of transformed isotopic niches we
proceeded, first, to reclassify the layer called TParchaeological humans

into five intervals, assigning each of them a code from 1 to 5, where
1 indicates the lowest TP (<2.5) and 5 represents the highest TP
(>4). A similar procedure was performed with the δ13C (‰) layer.
In this case the reclassification included two intervals limited by the
value−16‰ (<-16‰≤). This value approximately corresponds to
the point above which the contribution to the diet of C4 plants and
marine food is estimated to be more than 50% (from data published
by Pate and Schoeninger, 1993). δ13C (‰) values <-16 ‰ were
assigned code 10, and values equal or greater than that value were
assigned code 20. Then, using the ArcGis 10.8.2 raster calculator,
both raster layers were added, resulting in the transformed isotopic
niche model, where values from 11 to 15 indicate niches with δ13C
(‰) values <-16 ‰ and increasing TP, while values from 21 to
25 indicate niches with δ13C (‰) values equal or >-16 ‰ and
increasing TP.

4.3.2 Assessment of spatial variation in human
omnivory

Degrees of human omnivory were measured in terms of
the TP, calculated on the basis described in Section 2.3.1.4.
To facilitate discussion, the different degrees of omnivory were
grouped into three broad omnivory categories (OC): I (2 ≤

TP < 3), II (3 ≤ TP < 4), III (TP ≥ 4). OC I corresponds
to a typical omnivorous diet, incorporating variable proportions
of plant foods (primary producers) and animal foods (mainly
primary consumers). OC II corresponds to an omnivorous diet
incorporating a higher proportion of foods of animal origin (mainly
but not exclusively, primary consumers). OC III corresponds
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to an omnivorous diet mainly consisting of animal foods
(primary and secondary consumers, the latter mostly marine).
OC II and III reflect an increasing importance of the predatory
component of subsistence (i.e., hunting and fishing) over the
gatherer component.

It is worth mentioning, however, that the presence of marine
protein in the diet will naturally tend to bias the results toward OC
II and III, even if the total amount of animal protein is relatively
small. This is particularly critical in the case of the transition from
OC I to II, which is particularly sensitive to subtle changes in
the proportion of marine protein vs. terrestrial protein, even if
the total amount of protein remains unchanged. In contrast, a
considerable amount ofmarine protein is required for an individual
to move to the OC III category, making the transition from OC
II to III less problematic from an interpretive perspective. In this
initial contribution we will not delve into the implications of
this caveat, but it should be noted that a fine-tuning adjustment
based on a mass balance model would be required to analyze
those critical points where small changes in the proportion and
δ15N (‰) value of marine protein can change the OC assigned to
an individual.

5 Results

5.1 δ
13C (‰) and δ

15N (‰) human isoscapes

As we have already demonstrated in
Supplementary Data Sheet 2, one of the environmental
variables that influence the spatial variation of isotopic values,
particularly δ15N (‰), is latitude (Supplementary Data Sheet 2,
Supplementary Figure 2D). Figure 4 shows the results of the
interpolation of δ13C (‰) and δ15N (‰) values of human bone
and tooth samples from southern South America. Although the
maps were generated with information covering the entire late
Holocene period, the temporal structure of the data—as mentioned
in Section 4.2—means that the overall picture is strongly influenced
by cases younger than 1,500 years BP, which constitute 76% of
the total.

Regarding the quality of the generated maps, the results of
the non-parametric correlation analysis performed between the
input and interpolated δ13C (‰) and δ15N (‰) values indicate the
existence of a high and significant correlation between these two
variables (δ13C: rs = 0.9; p < 0.01; δ15N: rs = 0.95; p < 0.01), while
the results of the Wilcoxon matched pairs test show the absence
of significant differences between these same variables (δ13C: T =

294,124; Z= 0.46; p> 0.05; δ15N: T= 242,115; Z= 0.13; p> 0.05).
Figure 5 display the spatial distribution of the results from

cross-validation analysis. In general terms, it can be said that the
errors in the estimation of the δ13C (‰) and δ15N (‰) values from
the input data are relatively low and spatially circumscribed, mostly
restricted to those sectors where the spatial autocorrelation of the
variable in question is lower (i.e., where there is greater variation in
the values of the variable between relatively close places). However,
it is observed that the magnitude of the error is greater in the δ13C
(‰) (mean error = 0.04; root mean square error = 1.81) than in
the δ15N (‰) (mean error= 0.03; root mean square error= 1.7).

5.2 Transformed isoscape

As for TP (Figure 6), north of the parallel of 35◦ S (first
latitudinal band or LB1) predominate values lower than 3, which
indicates the existence of diets based on the consumption of a
high proportion of either wild or domesticated plant resources. At
the northwestern corner of the area, on both sides of the Andean
Mountains, there are two spatial nuclei with TP values close to
those of primary consumers (i.e., ≈2). Between 35◦ and 40◦ S
(second latitudinal band or LB2), TPs between 2.5 and 3.0 and
between 3.0 and 3.5 occupy approximately equal areas, the former
mainly west of 65◦ W and the latter east of that meridian. Between
40◦ and 45◦ S (third latitudinal band or LB3) TPs between 3.0 and
3.5 predominate, with a small area in the NWwith TPs between 2.5
and 3.0, representing the southernmost expression of a continuous
area strongly influenced by the consumption of plant resources.
In this latitudinal band, TPs higher than 3.5 appear, both on the
Atlantic and Pacific coasts, indicating the existence of diets that
incorporate varying degrees of marine resources. Between 45◦ and
50◦ S (fourth latitudinal band or LB4), TPs below 3 are represented
only by a small area located near the Andes, surrounded by a wide
central area with TPs between 3.0 and 3.5. In this latitudinal band,
TP values > 3.5 are widely expressed in coastal areas of the two
oceans. Finally, between 50◦ and 55◦ S (fifth latitudinal band or
LB5), TPs > 3.5 are the majority, with a broad representation in
continental and island coastal areas of TPs > 4.

5.3 Transformed isotopic niches

Regarding transformed isotopic niches (Figure 7), the one with
the greatest geographical extension, crossing the five latitudinal
bands diagonally with a NE-SW orientation, is that characterized
by TP values between 3 and 3.5 and δ13C (‰) values lower than
−16‰. Within the δ space and the one where TP replaces δ15N
(‰), this niche occupies the position of highest kernel density
(Supplementary Figures 3B, 6B). In the northwestern sector of the
map, occ mountain range, and up to just south of 40◦ S, there is
a niche characterized by a high consumption of terrestrial plants.
North of 35◦ S, a greater predominance of C4 plants is observed,
and south of this parallel, with a greater consumption of C3 plants.
South of the 40◦ S, a high representation of niches with a strong
marine component is observed. On the Pacific coast, this niche
shows a continuous distribution, while on the Atlantic coast, it is
limited to the main peninsulas of Patagonia.

5.4 Omnivory categories

Figure 8 represents the geographic distribution of three
categories of omnivory (Figure 8A) and its median distribution
along the five longitudinal bands analyzed in the territory of
the Argentine Republic (Figure 8B). Regarding laititudinal bands,
in LB1 the largest area is found in OC I—characterized by a
high dependence on the vegetal component of the diet—which
is continuously located toward the west and alternates with
OC II—with a greater component of terrestrial herbivores and
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FIGURE 4

Archaeological human isoscapes (IDW interpolation): (A) δ13C; (B) δ15N.

a lower and variable dependence on vegetal resources and/or
aquatic resources—toward the east. LB2 shows an approximately
equal distribution of OC I and II, where OC I is found over
the western half and OC II over the eastern half. LB3 shows a
wide representation of OC II in the mediterranean area. This
is the southernmost band where OC I is represented and the
northernmost one where OC III occurs. Both are present in small
áreas, the first one over the mountain range (to the west), and the
second on both coasts (Atlantic and Pacific). In LB4, approximately
equivalent areas of OC II are found, toward the interior, and
OC III on the coast. Finally, in LB5, most of the surface is
covered by OC III, while OC II is restricted to a small sector in
the interior.

6 Discussion

In the study area, spatial variation in human omnivory during
the late Holocene was markedly structured (Figure 8). The spatial
arrangement of the OCs, which follows a general diagonal pattern,
indicates an increase in carnivory in a NW-SE direction. In OC I,
both plant and animal foods corresponded to organisms integrated
into food webs fueled by different BCSs (mainly C4/CAMS plants
in the NW corner and C3 plants in the rest of the distribution
area) (Figure 7). In OC II, the plant and animal foods consumed
also came from food webs with BCSs corresponding to C3 and

C4/CAMS plants, mainly north of the parallel of 42◦ S and C3 plants
and marine BCSs (pelagic and/or benthic) south of that parallel. In
OC III, expressed only in particular coastal zones of Patagonia, the
foods consumed—mostly of animal origin—came from terrestrial
and marine food webs, in the first case with BCSs corresponding
to C3 and CAMS plants (e.g., Kochi et al., 2024) and, in the second
case, with marine BCSs (pelagic and/or bentic) (e.g., Kochi et al.,
2018).

It is worth asking what factors likely influence the observed
spatial structure in terms of transformed isotopic niches and,
above all, in terms of omnivory categories. Below we will deal
with those that we consider to be the main ones, namely net
primary productivity (NPP), effective temperature (ET) ranges, and
differential distribution of marine biota. The explanatory value of
other factors that purportedly increase the degree of carnivory, such
as the environmental scarcity of Na and N (see Section 2), will not
be addressed here due to the current lack of relevant information
on the differential soil concentration of these elements in most of
the study area.

6.1 Net primary productivity

Net primary productivity (NPP) is the amount of fixed energy
or organic matter remaining after plants have met their own
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FIGURE 5

Maps of the cross validation error: (A) δ13C; (B) δ15N. In orange areas where the error is ±1 ‰, in green areas with an error lower than −1 ‰ and in

blue areas with an error higher than 1 ‰.

respiratory needs. It is equivalent to the amount of energy available
to consumers, including humans (Knapp et al., 2014). This variable
is strongly and inversely correlated with latitude (Stelling-Wood
et al., 2021). This pattern is associated with higher mean annual
temperatures, longer growing seasons, and increased precipitation
at lower latitudes compared to higher ones (Stelling-Wood et al.,
2021).

In our study area, there is a weak positive correlation between
NPP4 and TP (rs = 0.34; p < 0.001). The greatest dispersion of
TP values occurs in areas with medium NPP values (Figure 9A).
Figure 9B shows the overlap of the zones with different NPP
(classified into three grades: <0.4, 0.4–0.6, and >0.6 kg-C/m2/year,
which correspond to low, medium and high values, respectively)
and the zones corresponding to each omnivory category. It can be
seen that OC I tends to occur in areas of low and medium NPP
(58.3% and 24%, respectively). This suggests a close association
between diets with a high plant component (i.e., low carnivory,

4 Data extracted from an ESRI ArcView Format layer downloaded in https://

sage.nelson.wisc.edu/data-and-models/atlas-of-the-biosphere/mapping-

the-biosphere/ecosystems/net-primary-productivity/ (Foley et al., 1996;

Kucharik et al., 2000).

whether due to a foraging or agricultural subsistence economy) and
low- and medium-productivity terrestrial environments, located in
the northwest and central west of the study area. An exception
would be the zones that present a low degree of carnivory in areas
of high terrestrial productivity (17.1%). These are located in the
lower part of del Plata basin and in smaller and fragmented areas
south of it, some of which were interpreted, based on other lines
of evidence, as inhabited by horticulturists and foragers (Loponte
and Acosta, 2013; Politis and Bonomo, 2012). This distribution is
generally consistent with the findings by Cunningham et al. (2019),
who established that agricultural groups inhabit areas with lower
mean NPP than foragers and these, in turn, areas with lower mean
NPP than horticulturists. Areas with medium carnivory values (OC
II) are associated, in a roughly equivalent way, with areas with
low, medium and high NPP. In contrast, areas with high carnivory
degree (OC III) are mostly associated (94.3%) with areas with
medium NPP.

The most striking association found in this exploratory study
is that between low levels of carnivory (OC I) and areas with low
NPP values. The latter are located within the South American
Arid Diagonal, a relatively stable natural physiographic unit. While
absolute NPP values may have varied there over the last 4,000
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FIGURE 6

Maps of the human trophic position (TP) (transformed isoscapes): (A) continuous map; (B) map classified in intervals of 0.5.

years BP,5 it is virtually certain that they must have remained
low throughout the entire late Holocene period. To explain the
observed association between low levels of carnivory and low
NPP values, we can resort to an adapted version of the trophic
limitation hypothesis (cf. Kaspari, 2001), which states that an
omnivorous vertebrate species occupying broad NPP gradients
will show a predominance of lower trophic positions at low
NPP, whereas individuals with a high degree of carnivory will be
underrepresented at low NPP. This is because the more trophic
links exist between NPP and consumers (i.e., the greater their
degree of carnivory), the greater the energy required to maintain
viable populations of those consumers. The reason for this is
that the trophic biology of a species limits its ability to convert
environmental productivity into more individuals of that species
(Heal and MacLean Jr, 1975; Kaspari, 2001; Odum, 1971). This
also relates to the aforementioned habitat productivity hypothesis,
which posits that increased prey consumption by omnivores is
facilitated by increased NPP, the latter understood as a measure
of the amount of carbohydrates available in the ecosystem. It is

5 NPP is a dynamic variable that updates its values at each point in space

over short periods of time due to inherently unstable factors like CO2

concentration, precipitation, soil water content or air and soil temperatures

(Hatfield et al., 2008).

the metabolism of such carbohydrates that provides the energy
needed to sustain increased prey consumption by omnivores and
the resulting increase in their biomass (Clay et al., 2017).

6.2 E�ective temperature ranges

Effective temperature (ET) is a statistic that reflects the average
temperature during the warmest and coldest months, as well as
the length of the growing season of primary production (Bailey,
1960). In other words, ET measures both the length of the growing
season and the intensity of solar energy available during it. Since
biotic production is primarily driven by solar radiation, along with
sufficient water to sustain photosynthesis, a general relationship
between the value of ET and overall patterns of biotic activity and,
consequently, production is expected (Binford, 1980).

Johnson (2014), based on data collected and modeled by
Binford (2001), recognized six patterns of intensification6 in
foragers economies. These patterns result from the combination

6 Boserup (1965) conceptualized intensification as amostly technologically

mediated process of increasing the yields of a resource (or a set of resources)

per unit of land in a context of population growth and increased competition

for the exploitation of available resources.
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FIGURE 7

(A) Map of the human transformed isotopic niche; (B) kernel density map of human samples where the transformed δ space is subdivided

condidering thresholds values for main basal carbon sources (BCS).

of Binford’s effective temperature (ET) thresholds (i.e., storage
needed when ET < 15.25◦C; plant reliance possible when ET ≥

12.75◦C) and the availability of sufficient aquatic resources for
these to be an intensification option. Pattern 1 is characterized
by wide ET ranges where mobile hunter-gatherers do not need
food storage, could rely primarily on terrestrial plants, and aquatic
resources are an intensification option. Pattern 2 presents ET ranges
where mobile hunter-gatherers do not need storage, could rely
primarily on plants, with plants being the only intensification
option available. Pattern 3 occurs at mid-ranges of ET where
mobile hunter-gatherers do need storage, could rely primarily on
plants, and aquatic resources are an intensification option. Pattern
4 occurs at mid-ranges of ET where mobile hunter-gatherers need
storage could rely primarily on plants, with these being the only
intensification option. Pattern 5 is characterized by low ranges of
ET where mobile hunter-gatherers would need substantial storage,
could not rely primarily on plants, and aquatic resources are the
only intensification option available. Pattern 6, finally, corresponds
to low ET ranges where mobile hunter-gatherers would need
substantial storage but could not rely primarily on terrestrial
plants and aquatic resources are not an option for economic
intensification. Trophic position values between 2 and 2.5 are

expected in patterns 2 and 4, values between 2.5 and 3 are expected
in patterns 1 and 3, while values higher than 3, revealing a higher
degree of carnivory, are expected in patterns 5 and 6. In southern
South America all patterns are represented except pattern 6 (see
distribution map in Johnson, 2014).

As shown in Figure 9, the spatial structuring of OCs fits quite
well with the expected distribution of subsistence patterns defined
by Johnson (2014). In particular, the coincidence between the
shape and extension of the area corresponding to patterns 4 and 2
(primary dependence on plant resources) and themain distribution
areas of OC I is noteworthy. Something similar occurs with patterns
1 and 3 of the Binford-Johnson model (primary dependence on
plant resources and aquatic resources as an intensification option),
which coincide with the central-northern distribution of OC II,
and pattern 5 (primary dependence on terrestrial and aquatic
animals), which coincides with the southern distribution of OCII.
For their part, the coastal areas where OC III is expressed are
included within the zones corresponding to patterns 3 and 5, thus
reflecting the importance of aquatic resources of marine origin.
All this suggests that, at least, some variables of the Binfordian
model based on environmental and hunter-gatherer frames of
reference (Binford, 2001), as operationalized by Johnson (2014),
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FIGURE 8

(A) Map of human omnivory categories (OC); (B) median variation of Trophic Position (TP) in each OC across latitudinal bands (LB1 to LB5), sectors

with no lines are those where the OC is absent.

have some explanatory power in relation to the situation described
in our study.

Among foragers, cooking pottery is a key element of post-
harvest intensification (Fuller and Champion, 2024). It is a
technological device that enables not only the implementation of
cooking methods (e.g., boiling) that make foods more edible and
their nutrients more bioaccessible (Fuller and Champion, 2024),
but also the transformation of perishable fresh products, such as
fat, milk and fish, into longer-lasting products that can be stored or
exchanged (Craig, 2021). In the study area, pottery is a widespread
technology produced and used by foragers, agriculturalists and
horticulturists alike. Although not in all cases its presence is
associated with intensification processes (e.g., García, 2017), it is
interesting to mention the cases of the northeast and southwest
of Patagonia. In the first region (Valdés Peninsula), the results
of BSIA and gas chromatography performed on organic residues
found in ceramic sherds from different sites suggest that, around
1,500–1,000 years BP, pottery technology would have been linked
to a process of intensification in the use of plants and fish
(Gómez Otero et al., 2014). In the second region (west-center
of Santa Cruz province), ceramic technology begins to appear

in the archaeological record around 1,500 years BP, although a
higher frequency of cases is observed—within a general context of
scarcity of finds—around 900 years BP (Chaile et al., 2020). Based
on BSIA and gas chromatography/gas chromatography coupled
to mass spectrometry performed on organic residues found in
ceramic sherds, it was established that pottery technology would
have been used to process and preserve camelid (guanaco) fat
(Chaile et al., 2020). These findings fit well with the expectations
derived from patterns 3 and 5 of the Binford/Johnson model,
although in the case of southwestern Patagonia, corresponding
to an inland area far from the sea and with low freshwater fish
diversity, intensification—if ever occurred (see Goñi et al., 2000-
2002)—would have been based not on fish but on a more complete
exploitation of the most common animal prey, the guanaco.

6.3 Di�erential distribution of marine biota

Although further studies are needed to obtain a more accurate
estimate of the biodiversity of the Argentine Sea (Bigatti and
Signorelli, 2018; Lutz et al., 2003), it can be said that it is
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FIGURE 9

(A) Boxplot describing the distribution of trophic position (TP) values corresponding to the three net primary productivity (NPP) categories

considered in this study; (B) map showing the geographical distribution of the nine variants resulting from combining the three NPP categories and

the three omnivory categories considered in this study.
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FIGURE 10

Superimposed maps of human omnivory categories, predicted distribution of intensificaction patterns described by Johnson (2014) and feeding

areas of 16 marine top predators (redrawn from Falabella et al., 2009, correcting for di�erences in cartographic projection).

characterized by a rich variety of mollusks, seabirds and mammals
(Bigatti and Signorelli, 2018; Falabella et al., 2009; Lutz et al., 2003;
Zárate, 2013). In the case of invertebrates (particularly arthropods)
and fish, their current known biodiversity is lower than expected
or lower than that recorded in other areas, due either to real
differences in biodiversity or insufficient sampling (Bigatti and
Signorelli, 2018; Lutz et al., 2003). It has been established that
around 80 species of birds depend on marine habitats for both
their reproduction and their feeding, while more than 40 species
of marine mammals have been recorded in coastal and offshore
waters (Falabella et al., 2009; Lutz et al., 2003). In particular, the
study by Falabella et al. (2009) has shown that the annual activity
of 16 species of marine top predators such as albatrosses, petrels,
penguins, sea lions and elephant seals—although with seasonal

variations—tends to concentrate in specific locations along the
Patagonian coastline (Figure 10).

While there is evidence of prehistoric human exploitation
of marine mammals, birds, mollusks and fishes along the entire
Atlantic coast (e.g., Borrero and Barberena, 2006; Beretta and
Zubimendi, 2019; Gómez Otero et al., 1998; Orquera and Gómez
Otero, 2008; Scartascini, 2017; Zangrando and Tivoli, 2015), the
highest TP values occur at three main areas projecting deep into
the ocean, namely the Valdés Peninsula in northern Patagonia,
the southern end of the Gulf of San Jorge in central Patagonia
and the Miter Peninsula in Tierra del Fuego. As Figure 10 shows,
these three areas are among the most used throughout the year
by top predators, both birds and mammals (Falabella et al., 2009).
In these areas, humans predate on other predators (e.g., sea lions,
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albatrosses, petrels, penguins) participating in complex food webs
that derive their energy from marine BCSs, both pelagic and
benthic. This is consistent with the aforementioned suggestion by
Roopnarine (2014) that humans, in coastal marine environments,
can behave as apex predators.

6.4 The spatial variation of human
omnivory in the study area and the
perfectible nature of maps

As can be seen from the preceding discussion, there are several
factors that can contribute to varying degrees to explain the
spatial patterns detected in this exploratory study. However, it is
difficult to distinguish which of them are the most important,
as they have confounding effects. This underscores the need to
carry out macroecological analyses that allow going beyond pattern
recognition addressing, in an integrated way, the identification and
explanation of the underlying processes.

However, it is important to emphasize that the task of pattern
recognition, one of the main objectives of this paper, is an activity
that should not be stopped or abandoned. This is because maps, as
models or representations, are perfectible constructs (Nguyen and
Frigg, 2022). Among the key aspects that can be improved in map
production is the estimation of the isotopic baseline used to derive
TP. This estimate must take into account the different climatic
conditions prevailing at different times in the late Holocene. This
can be achieved, following the methodology described in Bowen
and West (2008), by feeding a mass balance equation (Amundson
et al., 2003) with paleoclimatic data, such as those available in
the R-based program Pastclim 2.1 (Leonardi et al., 2023). Another
important aspect to improve in our model, in line with the above,
is the segmentation of the isotopic database into shorter time
blocks. This will require finding an optimal solution to the problem
of reducing the temporal dispersion of data without sacrificing
spatial coverage, something that seems difficult to achieve given the
current structure of the available dataset.

7 Concluding remarks

Isotopic and derived variable (e.g., TP) maps are powerful
resources with redescriptive, comparative and heuristic value, as
we try to demonstrate in this paper. It should be noted that,
regardless of the performance of specific models like the one
explored here, they are not intended nor desired to replace
efforts to construct detailed isotopic ecologies at more restricted
spatial scales or to carry out more standard analyses such as
isotopic niche analysis or Bayesian isotopic mixingmodeling. Quite
the contrary, such studies provide relevant information for the
interpretation of the maps. In any case, what is expected and
considered beneficial for the advancement of archaeological and
paleoecological studies focused on BSIA is a continuous interaction
and feedback between this type of analysis and the spatial modeling
of isotopic data. Although this contribution has not delved into
this aspect due to its exploratory nature, we hope that it serves

as an incentive for further development of this line of inquiry by
other researchers.
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