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Reconstructing past environments can be challenging when archaeological

materials are missing. The study of organic molecules, which remain as traces in

the environment over millennia, represents one way to overcome this drawback.

Fecal lipid markers (steroids and bile acids) and ancient sedimentary DNA o�er

a complementary and cross-validating analytical tool to broaden the range of

methods used in environmental archaeology. However, little is known about the

benefits of combining these two approaches. We present a brief overview of

the current state of knowledge on fecal lipid markers and ancient sedimentary

DNA. We identify scientific and methodological gaps and suggest their potential

relevance for a better understanding of dynamic, human-animal relationships of

the past. With this review, we aim to facilitate new research avenues, both in

established disciplines and in conjunction with analytical approaches that have

rarely been combined to date.
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1 Introduction

Advances in analytical approaches for studying past environments have strengthened
interdisciplinary collaboration between archaeology and geosciences. However, this can
be challenging when archaeological materials are degraded or absent. Analyzing specific
organic molecules that are recalcitrant against (e.g., aromatics) and protected from
(encapsulated in aggregates) microbial turnover and therefore remain in the environment
as traces over millennia, offers one approach to overcome this limitation (Curtin et al.,
2021; Kjær et al., 2022).

The analysis of fecal lipid markers (FLM) such as steroids and bile acids has attracted
considerable interest as complement to traditional approaches (e.g., coprophilous fungal
spores, coprolites) to investigate the implications of past fecal inputs (Davies et al., 2022;
Sistiaga et al., 2014). FLM in sediments have been used to reconstruct the onset of human
occupation (Argiriadis et al., 2018; Ossendorf et al., 2019) and population fluctuations
(Birkett et al., 2023; Keenan et al., 2021). They can provide in-depth insights into past land
use, particularly livestock farming andmanuring (Bull et al., 2001; Lavrieux et al., 2012), but
also inform on functional areas of past settlements (Hjulström and Isaksson, 2009; Scherer
et al., 2021).
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GRAPHICAL ABSTRACT

Beneficial combination of fecal lipid marker and ancient sedimentary DNA to study past livestock farming.

Ancient sedimentary DNA (sedDNA) analysis is
revolutionizing archaeology (Özdogan et al., 2024). It enables
deciphering ancient ecosystems, biodiversity, and even human
activity through the study of genetic traces preserved in soils and
sediments. By analyzing sedDNA, precise information on the
presence, taxonomy and diet of animals can be collected, allowing
for unraveling past livestock farming strategies (Giguet-Covex
et al., 2014; Zampirolo et al., 2024). Also, sedDNA can provide new
insights into the composition and functions of human and animal
gut microbiota (Borry et al., 2020).

In this mini review, we address the analysis of FLM and
sedDNA from soils and sediments used to study past livestock
farming. A brief summary of the current state of knowledge is
followed by the identification of future research avenues for a joint
application of FLM and sedDNA analysis.

2 Fecal lipid marker (FLM)

The study of FLM has a long tradition, beginning in the 1980s
(Knights et al., 1983; Pepe et al., 1989) with pioneering analytical
work by Evershed’s group (Evershed, 1993; Evershed et al., 1997;
Evershed and Bethell, 1996). Many excellent reviews followed,
summarizing the transformation processes of fecal lipids in the
vertebrate gut and the environment, documenting their relevance
in addressing research gaps in archaeology (Cramp et al., 2023;
Evershed, 2008; Harrault et al., 2019).

Each type of diet has an individual steroidal profile with
different proportions of steroidal precursors entering the digestive
tract (Tyagi et al., 2009a). While cholesterol is omnipresent in
eukaryotic cells (Gerber et al., 2015), β-sitosterol is predominant
in plant biomass (Christie and Han, 2010). In the vertebrate
gastrointestinal tract, 15-sterols are biosynthesised to 5β-stanols
(coprostanol, 5β-stigmastanol) (Cuevas-Tena et al., 2018). 5β-
stanols are useful not only for detecting fecal input in general,
but also for distinguishing between omnivorous and herbivorous
lifestyles (Leeming et al., 1996; Zocatelli et al., 2017). In a prominent
example, Vachula et al. (2019) analyzed coprostanol from lake
sediments in northern Alaska and provided evidence that eastern

Beringia was inhabited before the formation of the land bridge
across the Bering Strait during the last glaciation.

Through microbial reduction in soils, sterols are often
converted to 5α-stanols (5α-cholestanol, 5α-stigmastanol) and epi-
5β-stanols (epi-coprostanol; epi-5β-stigmastanol), mainly when
fecal deposition has occurred long ago (Bull et al., 1999; Isaksson,
1998). Stanones are intermediates formed microbially during the
conversion of 15-sterols to 5β/5α-stanols, and their epimers in
the intestines of higher animals and the environment (Grimalt
et al., 1990). They are thought to have potential as biomarkers
comparable to 5β-stanols but have rarely been used to study past
lifeworlds (Knights et al., 1983). Since not all steroidal compounds
are exclusively attributed to feces, numerous ratios of distinct fecal
lipids are calculated to interpret soil-specific degradation effects
and to differentiate between omnivorous, herbivorous and plant-
derived steroidal inputs (Bull et al., 2002; Lerch et al., 2022; Vázquez
et al., 2021).

Bile acids (BAs) are the end products of cholesterol catabolism
and are found exclusively in vertebrate feces. Individual patterns of
BAs are the result of evolutionary variation and, to a lesser degree,
diet (Hagey et al., 1993). Their analysis permits the differentiation
between pig and human feces, which is not applicable with 5β-
stanols (Prost et al., 2017; Zocatelli et al., 2017). The dominant
secondary BA in pig feces is hyodeoxycholic acid (HDCA), which
is not present in human or ruminant feces (Elhmmali et al., 1997;
Tyagi et al., 2009b). Lithocholic acid (LCA) and deoxycholic acid
(DCA), among others, are typical of human biochemistry (Perwaiz
et al., 2002). A reliable source identification of fecal inputs combines
both the analysis of (epi-)5β-stanols and bile acids (Prost et al.,
2017).

3 Ancient sedimentary DNA (sedDNA)

The ability to decode species presence and biodiversity
dynamics has been revolutionized by sedDNA analysis. Organic-
rich sediments, such as those found in permafrost soils and
caves, have proven to be excellent sources for recovering animal
DNA (Boessenkool et al., 2014; Ficetola et al., 2008). Early
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studies demonstrated that sedDNA could identify extinct species
in soils and sediments, offering new insights into past ecosystems
(Pedersen et al., 2016; Rawlence et al., 2016; Willerslev et al., 2014).
The long-term preservation of sedDNA in stratified archaeological
layers allows scientists to track changes in animal populations
in response to climate shifts, farming activities, and human
migration (Pedersen et al., 2016; Willerslev et al., 2003). sedDNA
has been used to trace animal domestication, revealing early
evidence of domesticated species such as cattle, pigs, and sheep
at prehistoric sites (Giguet-Covex et al., 2014). Haile et al. (2007)
found that sedDNA could identify species, like moa and sheep,
even without macrofossils, but they also revealed challenges in
non-frozen environments where DNA leaching between layers
can compromise chronological accuracy. This issue was illustrated
by the presence of sheep DNA in older layers, likely due to
downward migration. While sedDNA remains a valuable tool
for reconstructing past ecosystems, non-frozen conditions pose
significant risks for contamination.

Zampirolo et al. (2024) demonstrated the utility of sedDNA
in tracing the introduction of pastoralism in Central Europe. By
analyzing sediment samples from the Velký Mamuták rock shelter,
modern-day Czech Republic, they reconstructed animal and plant
DNA profiles across stratigraphic layers, revealing a gradual shift
in herding practices. Their findings suggest herding began in the
Late Neolithic with sheep, while pigs began to appear in the Late
Bronze Age. This gradual transition, challenging to capture from
fossil records alone, highlights sedDNA’s potential to reveal human
impacts on ecosystems.

4 Fecal lipid markers in tandem with
sedDNA

By combining the analysis of FLM and sedDNA, researchers
continue to broaden their understanding of human-animal
relationships in archaeological contexts, helping to answer
long-standing questions about past biodiversity and animal
domestication (Slon et al., 2017; Zeder, 2015). To our knowledge,
there are only a few studies that combine the analysis of FLM and
sedDNA, but they are pioneering.

There is still much debate about the route taken by the
Carthaginian commander Hannibal in the 2nd Punic War. To
address this debate, Mahaney et al. (2017) examined a significant
accumulation of mammalian dung in the upper Guil Valley
near Mt. Viso dating to 2,168 cal 14C year. They were able to
extract DCA, 5β-stigmastanol and genes of Clostridia, which were
interpreted as evidence of the passage of the Hannibalian army.

Another remarkable study addresses the hitherto mystery as to
whether the Vikings first colonized the Faroe Islands in the mid-
ninth century. Apart from a few charred grains of barley dating
to 351–543 BCE, there is no archaeological evidence of human
activity before the Viking Age. Curtin et al. (2021) investigated
lake sediments by combining FLM and sedDNA analyses and
demonstrated that the Faroe Islands were colonized by humans and
their livestock 300 years earlier than the Vikings’ arrival.

In another study, geochemical and palynological indicators
were used in combination with 5β-stanols, BAs and sedDNA from
lake sediments to reconstruct human activity at medieval Celtic

crannog settlements in Ireland (Brown et al., 2021) and Scotland
(Brown et al., 2022). The results show a direct link between human
presence, the processing of specific crops, livestock farming and
local slaughters.

Chen et al. (2024) showed that the presence of coprostanol in
Antarctic lacustrine sediments does not necessarily indicate human
waste. In conjunction with high-throughput sequencing of the
16S rRNA gene, the conversion of seal feces-based cholesterol to
coprostanol by anaerobic bacteria (Eubacterium coprostanoligenes)
was illustrated. This example reveals that analyzing FLM and
sedDNA in tandem enables for a better understanding of natural
processes and helps avoiding misinterpretation.

Individually, FLM and sedDNA analyses already provide
valuable insights in different cultural-historical contexts, but both
methods have interpretive limitations. FLMs provide information
on past fecal input and its quantification, whereas FLM cannot
differentiate between non-/domesticated animal species. While
sedDNA cannot quantify animal stocking, it gives precise data
on animal phenotypes, physical traits and adaptations of past
populations. The combination of both groups of molecular
biomarkers as a complementary and a cross-validating analytical
tool opens new windows into the past for reconstructing human-
animal interactions.

Furthermore, FLMs are less frequently faced with cross-layer
leakage, a common problemwith sedDNA. Therefore, FLM analysis
may serve as an effective pre-screening tool, allowing sedDNA
analysis to focus on samples with a higher chance of DNA
recovery. This reduces the risk of false positive signals and improves
the detection of modern contaminants. Consequently, FLM and
sedDNA analysis in tandem offer quantitatively interpretable, more
precise and reliable datasets. This synergy permits the detection of
subtle environmental changes and anthropogenic influences that
may be less discernible when each approach is applied separately.

5 Research challenges and
perspectives

Understanding the interaction between soils and organic
marker molecules is crucial for assessing the explanatory power
of the latter. Ideally, unambiguous compounds that entered the
soil simultaneously and are sufficiently preserved over millennia
are used (Salisbury et al., 2022; van Mourik and Jansen, 2013).
The following substance-specific and analytical challenges highlight
potential pitfalls and research avenues for a combined application
of FLM and sedDNA in soils and sediments.

5.1 The fate of fecal lipid markers and
sedDNA in soils

Both FLM and sedDNA behave differently under varying soil
conditions (e.g., particle size distribution, mineral composition,
organic matter, redox and pH state, hydrology), indicating a high
mutual dependency (Barnes and Turner, 2016; Islam et al., 2023;
Jia et al., 2022; Thomsen and Willerslev, 2015). Organic molecules
in soils are stabilized by highly reactive surfaces (organic matter,
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oxides, clay minerals) (Freeman et al., 2023; Gande et al., 2024;
Islam et al., 2023; Lejzerowicz et al., 2013; Lloyd et al., 2012).
Although our understanding of organic molecule behavior in
soils still needs to be improved, some characteristics make such
molecules promising candidates for advanced marker analysis.

FLMs are highly resistant against microbial turnover (Bull et al.,
2002; Dubois and Jacob, 2016) primarily due to their aromatic
ring structures and strong bonding to organic and mineral matter
(Islam et al., 2023). Their hydrophobic nature inhibits large-scale
translocation across stratigraphic layers, whereas a coarse soil
texture, lower abundance of soil organic matter and co-transport by
particulates are reported to have influence of FLM migration (von
der Lühe et al., 2018; Lloyd et al., 2012).

sedDNA degradation occurs over time due to microbial
enzymatic activity, mechanical damage, and spontaneous chemical
reactions like hydrolysis and oxidation. Preservation is strongly
influenced by environmental factors: Extreme pH (acidic or basic)
and optimal conditions for microbial turnover (temperature,
oxygen exposure and moisture) accelerate degradation. Cold and
anoxic environments significantly enhance preservation, enabling
sedDNA to persist for millennia (Kjær et al., 2022; Murchie
et al., 2023; Parducci et al., 2017). In aquatic environments
and through percolating water, sedDNA can be leached over
considerable distances and across stratigraphic layers (Deiner
et al., 2017; Haile et al., 2007). This transport is critical for
interpreting genetic traces in chronological contexts. Giguet-Covex
et al. (2019) emphasized the role of erosion in the preservation
and transport of sedDNA within lacustrine environments. Their
findings demonstrated how different soil horizons, vegetation cover
and hydrographic connectivity influence sedDNA deposition and
quality. Additionally, they highlighted the role of soil organic
substance and soil milieu on sedDNA degradation, offering crucial
insights into improving the reliability of datasets.

Future research is needed to refine our understanding of how
environmental conditions affect the preservation, stabilization and
transport of FLM and sedDNA in soils and sediments (Taberlet
et al., 2018). In this context, column experiments with both FLM
and sedDNA could help to identify differences in their transport
sensibility to estimate their complementary and cross-validating
character (Poté et al., 2007).

5.2 Optimizing methodology

FLMs are leached from soil samples using a mixture of organic
solvents (commonly used: dichloromethane:methanol, 2:1, v/v) by
various extraction methods (Birk et al., 2012; Manley et al., 2020).
Scherer et al. (2024) demonstrated that Soxhlet (SOX) extraction
achieves significantly higher yields and better reproducibility of
FLM than microwave-assisted and accelerated-solvent extraction.
However, traditional SOX extraction methods are time-consuming
(>24 h extraction time) and consume high volumes of solvent.
Therefore, optimisation and automatisation of SOX extraction
is crucial to achieve higher sample throughput, which enables
larger data volumes with a higher reliability (by using replicates).
Furthermore, methodological approaches from related disciplines
could be promising to integrate into studies on past environments.

Can the fecal BAs assay developed for analyzing medical plasma
also be used for soil samples? Is it possible to develop non-
destructive and extraction-free methods to pre-screen samples
for certain substances (e.g., coprostanol)? One approach could
be the use of high-resolution mass spectrometry (e.g., Orbitrap)
combined with direct ionization technology (ambient ionization
mass spectrometry) from flowing atmospheric pressure afterglow
ion sources, allowing organic molecules to be desorbed and
analyzed directly from surfaces.

The extraction of sedDNA from soil samples is particularly
challenging due to soil heterogeneity, affecting the effectiveness
of DNA extraction and amplification. Current DNA extraction
methods for soil rely on a combination of chemical lysis
buffers and mechanical disruption techniques, such as bead-
beating, to release DNA from soil particles. These methods are
implemented using both commercial kits and customs and self-
made protocols. However, the effectiveness of these approaches
can vary significantly depending on factors such as soil type,
sample volume, and environmental conditions, warranting further
investigation (Deiner et al., 2017). In this context, soil fractionation
can help improve DNA recovery, particularly for specific plant or
microbial DNA targets. This involves separating soil samples into
size and density fractions to isolate finer particles where sedDNA
may be better preserved (Lejzerowicz et al., 2013). Furthermore, the
use of chloroform-isoamyl alcohol extraction and alternative lysis
buffers that target specific organisms or DNA types, such as pollen
or microbial DNA, are conceivable approaches to optimize DNA
extraction from soil samples (Birks and Birks, 2016).

5.3 Expansion of reference library

Analyzing FLM is biased toward material from humans and
domestic animals, while associated (e.g., mice, rats) and co-
associated animals (e.g., hyena, wolf, fox) are less frequently
examined at archaeological sites. To improve fecal sourcing, the
expansion of reference libraries that characterize steroid and bile
acid profiles of domesticated and non-domesticated animals should
be pursued. Further differentiation of organism-specific feces could
be achieved by broaden the analytical spectrum of substances
analyzed. According to Porru et al. (2022), mono/di/trioxo-BAs are
able to distinguish between feces of wild boar and domestic pigs,
while Vallejo et al. (2024) showed that the analysis of hormones
such as progesterone provide insights into livestock husbandry
favoring female pigs.

sedDNA studies often exhibit a bias toward bacterial
communities and prominent taxa like domestic animals and
megafauna, especially when using targeted sequencing methods.
This focus can lead to an overrepresentation of specific groups
while overlooking broader biodiversity. Shotgun metagenomic
sequencing offers a more comprehensive, unbiased approach by
capturing all DNA present, revealing greater ecological complexity
and diversity (Armbrecht, 2020). However, it is resource-intensive
and generates large datasets, which can complicate interpretation.
Combining targeted and shotgun methods may balance the
need for specificity and breadth, providing a fuller view of past
environments and communities.
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5.4 Interpretation and contamination
prevention

A promising approach to interpretating FLMs in modern
and ancient contexts has been successfully demonstrated by
Harrault et al. (2019) in which the distributions of eleven 5β-
stanols of 90 fecal samples from 10 different species were
used to conduct principal component analysis and hierarchical
clustering. Extending this approach to include whole lipidomes
and even sedDNA would allow the application of this approach
to an increasingly large and diverse mixture of potential fecal
sources. In order to detect fecal contamination, Grimalt et al.
(1990) introduced the ratio coprostanol/(coprostanol/cholestanol).
Human fecal input to the environment is argued to be reliably
detected at a ratio≥0.7, with no fecal contamination at a ratio<0.3.
However, strict application of these thresholds is debated (Isobe
et al., 2002; Nakagawa et al., 2021), especially their suitability in
archaeological contexts (Birk et al., 2011, 2022; Mackay et al., 2020).
A combined analysis of FLM and sedDNA may prove an effective
means of determining whether lower threshold values can also be
indicative of fecal presence. The ongoing debate surrounding the
imposition of these thresholds for samples from archaeological sites
may soon reach a conclusion.

For both FLM and sedDNA analysis, sterile sampling and
laboratory conditions (sterile tools, wearing gloves, strict protocols)
are required to prevent modern contamination. Specifically,
for sedDNA analysis, highest quality assurance is additionally
obligatory (e.g., cleanroom conditions, negative controls) (Cooper
and Poinar, 2000).

Authentication of sedDNA involves independent replications,
analysis of molecular damage patterns, and assessment of
DNA fragment sizes to distinguish ancient DNA from modern
contaminants (Kjær et al., 2022). Computational tools further
enhance reliability by filtering contaminants based on reference
databases and damage signatures (Kjær et al., 2022; Capo et al.,
2021). Integrating sedDNA data with chemical proxies, such
as lipid biomarkers or isotopic signatures, offers a promising
interdisciplinary approach to improve the differentiation between
authentic ancient DNA and modern contamination, advancing the
field of environmental archaeology.

6 Conclusion

In our mini review we have demonstrated that a combined
application of FLM and sedDNA gives a significant contribution to
the growing field of environmental archaeology. Both approaches
in tandem represent a powerful tool in the ongoing effort
to understand the complexities of past human ecosystem
transformation across temporal and spatial scales, offering an

innovative perspective on how ancient communities shaped, and
were shaped by, the landscapes they inhabited. We hope that our
review will stimulate new avenues of research in well-established
disciplines, as well as inspire the combination of analytical
approaches that have rarely been used in tandem to date.
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