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Enhancing data collection for
palaeoenvironmental approaches
in anthracology: X-ray microCT
and ecological anatomy
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X-ray microtomography has emerged as a valuable technique in archaeology

for over a decade, aiding in the recording, preservation, and analysis of artifacts.

While its application to archaeobotanical remains is well-documented, its use

to study archaeological wood charcoal remains limited to preliminary research.

This work explores microtomography suitability for anthracological studies

based on a paleoenvironmental perspective. Ten Amazonian wood charcoal

samples were studied using experimental charring, X-ray microCT and image

data processing and analysis. 2D and 3D measures of anatomical attributes

sensitive to environmental conditions, integrated as vulnerability index and

mineral bodies abundance, were performed and compared. Results indicate

that 3D imaging yields comparable insights to 2D analysis while being more

e�cient. The study highlights the benefits of volumetric data in vulnerability

index calculations and crystal quantification, providing greater accuracy than

traditional 2D methods. While further validation is needed, microtomography

shows promise in enhancing the speed and reliability of anthracological studies.
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Introduction

X-ray microtomography was brought among the methodological spectrum of
archaeology over a decade ago. Since then it has been implemented in the recording
and documentation of objects and collections, characterization of archaeological artifacts,
materials and manufacturing procedures, as well as the analysis of site-formation processes
and taphonomy.

A considerable number of scientific articles has been dedicated to explore the suitability
of microtomography for archaeobotanical studies (Ngan-Tillard et al., 2015; Murphy and
Fuller, 2017; Zong et al., 2017; Barron and Denham, 2018; Calo et al., 2019, 2020; Pritchard
et al., 2019; Barron et al., 2022). Microtomography has been used to specifically analyze
wood and bark archaeological objects focusing on taphonomy (Haneca et al., 2012),
conservation (Puhar et al., 2022), chronology (Stelzner and Million, 2015) and taxonomic
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identification (Dreossi et al., 2010; Mizuno et al., 2010; Whitau
et al., 2016; Zhao et al., 2018; Stelzner I. et al., 2023; Stelzner J. et al.,
2023).

MicroCT-based approaches to wood charcoal are sparse and
limited to experimental analysis and preliminary results. These
are centered in testing their suitability regarding the analysis
of morphologic diagnostic attributes (Hubau et al., 2013; Calo
and Marconetto, 2024) or the presence of substances that
might disturb radiocarbon dating results (Bird et al., 2008).
Applications in anthracological research on charcoal assemblages
from archaeological contexts, either focused on past environments
characterization or the management of woody resources, do not yet
have published works.

This gap is rather a consequence of some issues concerning its
application for anthracological studies than the perceived novelty
of the X-ray microtomography imaging. A previous paper by
Calo and Marconetto (2024) suggests that microtomography offers
only limited usefulness for anatomic descriptions aimed toward
the identification of numerous charcoal fragments. This is mainly
due to the compromise between time and cost involved in X-ray
imaging for huge sets of samples as well as the lower degree of
detail achieved in visualizing diagnostic features when compared
to light microscopy.

However, the authors indicate some benefits of
microtomography that partly equalize these constraints and may
contribute to alternative perspectives in studying archaeological
wood charcoal. Two of them are of special interest in this
work. First, its suitability to provide qualitative and quantitative
morphologic data in an automated, fast and efficient way. Second,
its ability to reduce observational and statistical biases, derived
from the three-dimensional character of the microCT image data.
Descriptions and measurements on the anatomic attributes of
three-dimensional objects do not rely on a cutting surface (2D) but
on sequences of numerous and multidirectional layers that can be
virtually obtained on their 3D models. This process considerably
increases the amount of information available to describe several
anatomic attributes (Calo and Marconetto, 2024).

Unlike qualitative and presence/absence information,
quantitative morphologic data usually receive limited attention

TABLE 1 X-ray microCT experimental parameters in image acquisition (SDD, Source-Detector Distance; SOD, Source-Object Distance).

Sample Energy
(KeV)

Current
(mA)

SDD
(mm)

SOD
(mm)

Sector (◦) Angle (◦) Projections
(n)

Pixel size
(µm)

Anacardium giganteum 80 200 817.22 23.23 360 0.18 2,000 5.68

Brosimum paraense 80 200 817.22 22.57 360 0.18 2,000 5.52

Calycophyllum spruceanum 70 170 817.22 20.44 360 0.18 2,000 5.00

Cedrela odorata 70 200 817.22 22.18 360 0.18 2,000 5.43

Copaifera sp 90 100 817.22 24.54 360 0.18 2,000 6.00

Diplotropis martiusii 70 170 817.22 20.44 360 0.18 2,000 5.00

Hura crepitans 70 200 817.22 21.75 360 0.18 2,000 5.32

Licania sp 80 200 817.22 23.40 360 0.18 2,000 5.72

Micropholis sp 70 170 817.22 22.50 360 0.18 2,000 5.51

Ocotea cymbarum 70 200 817.22 22.07 360 0.18 2,000 5.40

for taxonomic identification of anthracological material. This
limitation is mainly explained because charring notably and
variably alters the diagnostic dimensional attributes of wood
(e.g., Marconetto, 2008). Likewise, populations of the same
plant taxon growing under different environmental conditions
may have changes in size, number and distribution of certain
anatomic attributes (Carlquist, 1977, 1988). Carbonization and
environmental growth conditions both can contribute to blur some
of the quantitative characteristics used to distinguish different taxa
and hinder their identification.

Notwithstanding, these kinds of issues turn in analytical
pathways when observed from a diverse perspective. If
anatomical changes due to environmental differences can
be traced from quantifiable besides qualitative attributes in
wood (and charcoal) then these might provide useful data to
anthracogically describe paleoenvironments (Marconetto, 2010).
Ecological Anatomy provides a theoretical and methodological
basis for anthracological studies oriented to interpret high
resolution environmental differences in geographical and
chronological terms, based on quantitative and qualitative
information on the structure of the xylem (Carlquist, 1988).
According to it, for instance, the degree of vulnerability of
a tree population to changes in water availability can be
quantified or the characteristics of the soil where trees grow
can be assessed.

The vulnerability index, determined by Carlquist (1977), allows
to analyze the correlation between xylem anatomy and habitat
type, assessing quantitative attributes of the woody tissue. The
formula contemplates two variables: the size of the vessels, relatable
to the efficiency of conduction, and the number of vessels as
indicative of the conduction safety. Lower values of this index
along samples of the same taxon indicate drier environments
and higher values indicate more humid ones (Laskowski, 2000).
To date, the determination of the vulnerability index has been
based on two-dimensional measurements on elements of the plant
conduction system.

Vulnerability index as a proxy in environmental and
paleoenvironmental studies reports on anatomical variations
through a single species. The inter-taxa variability is also linked
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FIGURE 1

Sample preparation and assembly for X-ray microCT image acquisition: (A) a carved 4mm side cube of wood charcoal; (B) Polypropylene tubes each

containing a pair of charcoal samples; (C) Polypropylene tube assembly in the Phoenix microCT system holder; (D) Longitudinal section of a

microtomography image showing the setup of a pair of charcoals (Extracted from Calo and Marconetto, 2024).

to genetic factors as suggested by the assemblage of sample woods
used to tunning the application of the index in León Hernández
(2014) and León Hernández (2020). Variations in wood anatomical
characters has been mainly measured at synchronous scale based
on species growing in different places around the globe (Baas and
Carlquist, 1985). Diachronic scale application of the vulnerability
index is present in paleobotanical studies (Poole, 1994; Brea et al.,
2005) and archaeological charcoal analysis (Marconetto, 2009,
2010).

The potential of mineral bodies variability in wood as an
environmental proxy has been less examined and discussed than
the xylem anatomy. However, it has been suggested that the
abundance of crystals in wood relates to the characteristics of the
soil where trees grow. Plants absorb several elements such as Fe, K,
N and huge amounts of Ca from soils and stock them in tissues and

organs (Franceschi and Horner, 1980; Espinoza de Pernía, 1987).
Likewise, high Ca concentration in soil leads to the formation
of crystalline bodies, generally oxalates, in order to maintain the
plant ion balance (Rasmussen and Smith, 1961; Espinoza de Pernía,
1987).

León Hernández and Espinosa de Pernía (1997) pointed that
habitat and specially soil characteristics, in addition to the genetic
component, might impact in crystal types and amounts present
in Cordia thaisiana specimens growing in different woodland
preserved areas. In turn, Ca concentration in soils depends on the
volume of water carrying Ca. In rich-water basins Ca concentration
is lower and this reflects in the amounts of Ca crystals present in
plants wood and viceversa. Lower water temperature also interferes
in reducing Ca transportation and cold waters tend to contain less
Ca than the warmer ones.
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TABLE 2 Anatomic characterization of the transversal section of the samples.

Sample / Specie Anatomic description Microtomographic slice

Anacardium giganteum
ANACARDIACEAE

Growth ring boundaries: indistinct/Porosity: diffuse/Vessel groupings: solitary,
occasionally 2–3 elements/ Axial parenchyma: aliform/Crystals observed (Cfr.
Ugarte Oliva, 2009).

Brosimum paraense sin. B.
rubescens
MORACEA

Growth ring boundaries: indistinct or absent/Porosity: wood diffuse-porous;
Vessel groupings: solitary mostly and 2–4 elements groups/Axial parenchyma:
paratracheal aliform thin./Crystals observed in rays (Cfr. Richter and Dallwitz,
2000).

Calycophyllum spruceanum
RUBIACEAE

Growth ring boundaries: indistinct/Porosity: semi-ring-porous/Vessel
groupings: radial pattern, solitary and 2 elements/ Axial parenchyma: absent or
rare (Cfr. Baldin et al., 2016; Gálvez et al., 2020).

Cedrela odorata
MELIACEAE

Growth ring boundaries: distinct by porous and bands of marginal
parenchyma/Porosity: semi ring/Vessel groupings: solitary and 2–3 elements/
Axial parenchyma: marginal, vasicentric paratracheal and diffuse apotracheal
(Cfr. León Hernández, 2020).

(Continued)
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TABLE 2 (Continued)

Sample / Specie Anatomic description Microtomographic slice

Copaifera sp
FABACEAE

Growth ring boundaries: indistinct/Porosity: semi-ring porous/Vessel groupings:
solitary, radial series 2–4, scant clusters/ Axial parenchyma: apotracheal scant.

Diplotropis martiusii sin.
Diplotropis purpurea
FABACEAE

Growth ring boundaries: indistinct/Porosity: diffuse /Vessel groupings: solitary
and multiple radials 2–4/ Axial parenchyma: paratracheal aliform (Cfr. León
Hernández, 2020).

Hura crepitans
EUPHORBIACEAE

Growth ring boundaries: indistinct/Porosity: diffuse/Vessel groupings: solitary
and multiple radials 2–3/Axial parenchyma: apotracheal diffuse and in
aggregates; scant paratracheal (Cfr. León Hernández and Chavarri, 2006).

Licania sp
CHRYSOBALANACEAE

Growth ring boundaries: indistinct/Porosity: diffuse/Vessel groupings: solitary
/Axial parenchyma: apotracheal in narrow bands and paratracheal scant/Crystals
observed in rays.

(Continued)
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TABLE 2 (Continued)

Sample / Specie Anatomic description Microtomographic slice

Micropholis sp
SAPOTACEAE

Growth ring boundaries: indistinct/Porosity: diffuse/Vessel groupings: radial
pattern, 2–3 elements / Axial parenchyma: apotracheal in narrow bands.

Ocotea cymbarum
LAURACEAE

Growth ring boundaries: distinct by differences in fibers/Porosity: diffuse/Vessel
groupings: solitary, radial pattern 2–4, occasionally clusters/ Axial parenchyma:
paratracheal scant, thin, aliform occasionally confluent (Cfr. León Hernández,
2014).

Scale bar: 500 µm.

The approach of Ecological Anatomy would enhance
anthracological results for past environments research based on the
determination of plant taxa association from charcoal assemblages
and would circle the concomitant question about the effects of past
human selection of woods in archaeological contexts (i.e., Chabal,
1997; Asouti and Austin, 2005; Marconetto, 2008). Differently to
taxa-identification oriented studies, the ecological wood anatomy
is focused on the characterization of specific anatomical features
and relies on inter-comparable sample sets with predefined size
and taxa composition.

However, reliable results mainly depend on the extraction of
substantial sums of quantitative and qualitative data from large
amounts of specific anatomic structures on a defined number of
sampled charcoals. A considerable investment in processing time
must be taken in account to the extent that low levels of automation
are used for analysis procedures. In line with the above, this work
proposes and examines X-ray microtomography imaging as an
analytical method that can significantly streamline the process
to obtain ecological anatomy information from wood charcoal
fragments, optimizing time-saving analysis but also data accuracy.

Methodology

This work tracks X-ray microtomography and 3D analysis
performance for anatomic characterization of wood charcoal
focusing on quantitative data and ecological anatomy variables. It
compares results in the vulnerability index and presence/quantity

of mineralizations/crystals along several species of trees based on
2D and 3D information. Ten fragments of experimental charred
wood obtained from the anthracological reference collection of the
Museum of Archaeology and Ethnology of the University of São
Paulo (MAE-USP) were studied (Table 1).

The whole controlled experimental charring procedures on
the studied woods were performed at the MAE-USP laboratories.
Wood fragments were deshumidified in a FANEMmodel 515 stove
for a period of 5 h at 40–50◦C to prevent damages in anatomic
structures by abrupt steam releases which could occur during the
later charring process. Once the samples were mostly dry, they
were individually wrapped in aluminum foil, arranged in metal
trays and introduced into a muffle model FDG 3P-S of EDG
Equipamentos. The carbonization parameters were normalized
over a range of temperature increase starting at room temperature
up to a maximum of 400◦C. The rate of temperature increase was
set at 2◦C per min and once the maximum value was reached, it was
maintained over a period of 40 min.

A cubic fragment of 4mm side was obtained from each
experimental charred sample with a scalpel. These prepared cubic
charcoal sample were scanned in pairs using a Phoenix X-ray
microCT system, model v|tome|x m (General Electric Company),
at the Laboratory of Computerized Microtomography and 3D
Image Processing of the Zoology Museum of USP. Polypropylene
tubes and floral foam were used for mounting the samples on
the object-holder of the microCT device, as shown in Figure 1.
Experimental acquisition parameters were kept within a close
range of values over the whole set of studied samples (Table 1),
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TABLE 3 Results from 3D image data.

Sample Total Volume
(mm3)

Volume of
tissues (mm3)

Volume of
pores (mm3)

Number of
pores (n)

Vulnerability
Index in 3D

Number of mineral
bodies (n/mm3)

Anacardium
giganteum

8.04 6.92 1.11 24 4.63 1,918.63

Brosimum
paraense

8.05 7.01 1.04 40 2.61 285

Calycophyllum
spruceanum

8.03 6.77 1.26 50 2.52 0

Cedrela
odorata

8.06 7.67 0.39 10 3.89 22.13

Copaifera sp 8.07 6.92 1.15 15 7.68 0

Diplotropis
martiusii

8.03 7.49 0.54 203 0.26 0

Hura crepitans 8.62 7.97 0.65 18 3.61 77.5

Licania sp 8.05 7.32 0.73 15 4.89 4,630.88

Micropholis sp 8.06 6.82 1.24 127 0.98 5,938.5

Ocotea
cymbarum

8.04 7.82 0.23 17 1.33 2,120.63

TABLE 4 Results from 2D image data.

Sample Total area
(mm²)

Area of
tissues (mm²)

Area of pores
(mm²)

Number of
pores (n)

Vulnerability
index in 2D

Number of mineral
bodies (n/mm2)

Anacardium
giganteum

4.00 3.48 0.53 20 2.64 40.75

Brosimum
paraense

4.02 3.49 0.53 42 1.26 8.25

Calycophyllum
spruceanum

4.00 3.22 0.78 49 1.60 0

Cedrela
odorata

4.01 3.78 0.24 10 2.37 8

Copaifera sp 4.02 3.45 0.57 13 4.40 0

Diplotropis
martiusii

4.00 3.77 0.23 150 0.16 0

Hura crepitans 4.30 3.97 0.33 13 2.50 2.5

Licania sp. 4.02 3.66 0.36 15 2.41 76

Micropholis sp. 4.02 3.40 0.62 130 0.47 112

Ocotea
cymbarum

4.01 3.85 0.16 16 1.00 39.75

minimizing acquisition bias for subsequent analysis and results.
However, as image contrast level and resolution were prioritized,
some variations were conceded to compensate for inherent wood
density differences across the charcoal sample set. Likewise, the
parameterization also accounted for unpredictable divergences
resulting from the scalpel-sculpting and positioning of the charcoal
cubes in the sample mounting array. The Phoenix datos|x software,
provided by the microCT system manufacturer, was used to
reconstruct the microtomography images.

MicroCT image processing and analysis was performed using
the Fiji distribution of ImageJ software (Schindelin et al., 2012,
2015; Rueden et al., 2017). Because the scanned charcoal cubes
had been scalpel-trimmed without matching the position of the

three anatomical planes for wood analysis their virtual models
were re-sectioned to enhance the visualization of the transverse
(TS), radial longitudinal (RLS) and tangential longitudinal (TLS)
sections. This procedure entailed cropping the size of the image
into 2-mm-sided virtual cubes (∼300–400 pixels side, depending
on the scanned sample), where measurements and counting were
effectively performed.

The Median 3D image filter was applied (x, y, z radius:
4.0 to 6.0) to each gray-scale charcoal image in order to
minimize noise. Segmentation into wood tissues, mineral bodies
and background pixels was obtained by binarization using mainly
the auto-threshold Otsu method. Where appropriate, some 3D
morphological filters for binarized images (Opening and Closing)
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FIGURE 2

Vulnerability index estimation using 2D and 3D data: (A) the bar diagram comparatively displays absolute values of 2D and 3D vulnerability for each

sample; (B) data scatter plot for the vulnerability Spearman’s correlation coe�cients from 2D to 3D data.

were applied using the Morpholib plugin in Fiji/ImageJ (Legland
et al., 2016). Measures and counting for the assessment of the
vulnerability index and number of mineral bodies in samples were
performed on these binarized volumes (3D values) and single slices
(2D values).

An adaptation to volumetric data of the vulnerability index
formula in a previous article by Marconetto (2010) was applied
in this study: [V3D = (VP ∗ VT)/P], where V = Vulnerability
Index, VP = Pore Volume, VT = Total Volume and P =

Pore Number. The pore values were obtained using the BoneJ2
plugin for Fiji/ImageJ (Domander et al., 2021) while the Object
Counter tool was used for mineral bodies counting. On the other
hand, 2D analysis employed the Analyze Particles tool both to
measure pores and counting mineral bodies on randomly selected
single slices.

Results

The Table 2 exhibits a concise description of the anatomical
characters present in the TS for each charcoal sample based on
their X-ray microCT image. Results of the 3D and 2D analysis

of anatomic characters for vulnerability index determination
and quantification of mineral bodies are displayed in Tables 3,
4, respectively. The Figure 2A displays the vulnerability values
for each species in increasing order showing a proportional
ratio between 2D and 3D results beyond differences observed
in absolute terms. A Spearman’s rank-order correlation was
run to determine the relationship between 2D and 3D results
on vulnerability. There was a strong, positive correlation
between these scores, which was statistically significant
[rs(8) = 0.927, p = 0.038; Figure 2B]. Absolute differences
must be associated with the divergences in geometry and
measure units involved in the description of the 2D and 3D
quantitative variables.

The number of mineral bodies per mm2 and mm3 also

correlates the 3D and 2D values (Figures 3A, B). Likewise for

vulnerability values, the Spearman’s coefficient suggested a strong

positive correlation statistically significant [rs(8) = 0.975, p =

0.000001; Figure 3C]. No mineral body was observed on the cross

section in Diplotropis martiusii, Calycophyllum spruceanum and
Copaifera sp and the same was observed in the whole volume. For
the samples containing mineral bodies, total amounts between 30
and 450 units in a single slice (4mm2; see transversal slices included
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FIGURE 3

Mineral bodies quantification in 2D and 3D images: (A) number of mineral bodies per mm3 in volume image for each sample; (B) number of mineral

bodies per mm2 in one single slice from each image/sample; (C) data scatter plot for mineral bodies presence Spearman’s correlation coe�cients

from 2D to 3D data.
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FIGURE 4

Mineral bodies’ presence in 3D volume rendering from microCT images. Some aspects of their distribution in 3D can also be observed. (A)

Micropholis sp; (B) Licania sp; (C) Ocotea cymbarum; (D) Anacardium giganteum; (E) Brosimum paraense; (F) Hura crepitans; (G) Cedrela odorata.

in Table 2) and between 70 and 6,000 units in volume (8 mm3) were
counted (Figure 4).

Conclusions

From Ecological Anatomy and Paleoenvironmental
perspectives, these results present microtomography imaging
analysis of anthracological material as a promising method to
be used both for achieving accurate measurements based on
volumetric data and providing information on very high frequency
attributes in the studied objects. Quantitative characterization
of a number of anatomical attributes can be accomplished in
an automated, efficient and rather straightforward process using
a suite of tools and functions available in an open-source/GPL
image-processing software.

To better illustrate this point it might be useful to compare
it with some aspects of the diachronic study on the variations
of the vulnerability index in Geoffroea decorticans, carried out
by Marconetto (2009) and Marconetto (2010). The anatomic
analysis performed on 448 photomicrographs of the cross section
of wood samples from 56 specimens entailed several months
of non-automated work, complemented with the morphometry
software Motic Images Plus 2.0. Regarding microtomography, once
the image processing and segmentation have been standardized,
retrieving the data pertinent to the vulnerability index computation
takes place automatically through the application of specific
algorithms yielding almost immediate results for each sample.

The reliability of volumetric anatomic data for vulnerability
index assessment is suggested by the proportional correlation
between these values and those obtained on two-dimensional
data. The increase in the absolute values of the 3D vulnerability
compared to those of the 2D vulnerability shown in Figure 2 could
have its origin in the accumulation of information that each index
entails. In this study, by contrasting the data from the entire sample
with those from a single section of the sample, the information
contained in the former is equivalent to what could be obtained on
a set of 300 to 400 slices.

Another interesting contribution of microtomography as a
method of analysis of wood charcoal is to provide an automated
procedure to quantify the presence of mineral bodies and crystals
as well as some morphological and compositional characteristics
not addressed here (e.g., Calo et al., 2022). It might help to confirm
the absence of mineral particles in specimens where they are very
scarce. At the same time, it is able to quickly and accurately quantify
their presence both within the entire sample volume and in a
single cross-section.

This work proposed the usefulness of X-ray microtomography
for anthracological research on past environments and other issues
which can take advantage of its capabilities to generate precise
volumetric data and efficiently quantify anatomical attributes.
Indeed, automatized procedures allow the optimization of time
dedicated to analysis when compared with non-automatized
methods. Three-dimensional images not only enhance precision
on porosity and vulnerability quantification on the xylem but
also in detection and quantification of mineral bodies in charcoal
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samples, opening new perspectives for paleoenvironmental and
archaeological studies.
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