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Trace elements are a major pollutant in the river water and these pollutants are

present in all componentsof the ecological system. Since time immemorial, theRiver

Veshaw has been one of the important sources of water and has shaped the cultural

and social values in the Kashmir Valley. This study was conducted in rural parts of

South Kashmir in the Western Himalaya from February to January 2020–2022. The

river Veshawprovides various ecosystemservices to the local communities aswell as

in the upper and lower stream regions in the form of many direct and indirect

ecosystem services. The river is polluted by humanwaste from both rural and urban

communities, as well as by agricultural runoff and effluent discharges from a variety

of industrial activities due to its proximity. Effluent thatmakes it to the river contains a

variety of pollutants, some of which are trace elements that accumulate in the local

ecosystem, killing off plants and animals and reducing biodiversity. Trace element

levels in water and sediment were found to follow the trend as: Sangam >
Khudwani > Kulgam > Nihama > Aharbal > Kingwattan. The dominance pattern

of heavy metals in water was Pb > As > Cd. The overall trend showed a downward

trend of heavymetals, indicating the effect of land area drainage and anthropogenic

activities on the stream water. The dominance pattern of heavy metals in water was

Pb > As >Cd. Heavymetals were not detected in themiddle and upstream sites. The

average levels of heavymetals were highest at Downstream (Sangam), with values of

Cd, Pd ad As 0.0054, 0.038 and 0.038 mgL-1. This shows that land drainage and

human activities have an effect on the water in the stream.
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1 Introduction

The pollution of the aquatic ecological systemwith trace elements

has become a worldwide ecological problem in recent years. These

trace elements are indestructible and most of them have toxic effects

on aquatic organisms (MacFarlane and Burchett, 2000; Storto et al.,

2021). Among various environmental pollutants, heavy metals are of

particular concern due to their potential toxic effects and ability to

bioaccumulate in aquatic ecosystems (Fernandes et al., 2006; Khan N.

A. et al., 2020; Bhat et al., 2022). Trace elements in general, and heavy

metals in particular, are significant toxicants found in surface water

(Buragohain et al., 2010). Trace elements are one of the most serious

pollutants in the natural environment due to their toxicity, persistence,

and bioaccumulation problems (Pekey, 2006; Nouri et al., 2006).

Many scholars have studied the trace element contamination of

surface water in different locations in India (Ram and Singh, 2007;

Tiwari et al., 2016; Lohani et al., 2008). Trace element pollution has

been assessed by the distribution of particle size and the organic

content present in the water system (Saif and Khan, 2017; Bano et al.,

2018; Prieto et al., 2018). The bioavailability of trace elements depends

on the concentration of anions, chelating agents in the water, pH, and

the presence of absorptive sediments. Ali andKhan, 2018 suggested in

their study that the increase in trace elements in the surface water was

due to the addition of effluents released from industrial and

commercial areas.

Heavy metal (HM) contamination has piqued the world’s

attention due to its toxicity to living organisms through the

bioaccumulation process (Ekmekyapar et al., 2012). HMs are

typically classified as metals or metalloids with a higher elemental

density. These are subdivided on the basis of density, weight or atomic

number (Teixeira de Souza et al., 2021; Bhat et al., 2022; Kumar et al.,

2022). The new standard, stating that HM should be mineral mining

(Ali et al., 2019; He et al., 2021) According to some researchers the

main sources of heavy metal concentration (HMC) in China are

agriculture andmanufacturing, as a large amount ofwaste is produced

in these activities, posing significant health risks to society on a large

scale (Sun et al., 2010; Ohiagu et al., 2020; Karmakar et al., 2021; Bhat

et al., 2022). In addition to the above, cosmetics and chemical fertilisers

contribute to heavymetal pollution (Kanwar et al., 2020). Intriguingly,

heavy metals released by vehicles have been deposited on plant leaves

and the surface of soil (Harrison et al., 1981; Vardhan et al., 2019;

Malunguja et al., 2022). Studies have demonstrated the occurrence of

different hazardous HMs in the soil or farm areas (Turer and

Maynard, 2003; Bhat et al., 2022). Recent studies conducted on

untreated effluent water have been proven to be a substantial

source of HM polluted water and other areas of the world

(Tauqeer et al., 2022). Sewage water has been linked to the

presence of potentially harmful elements like Cd, Cu, Ni, Cr, Pb

and Zn in soil, plants, and foods (Natasha et al., 2022).

The unplanned and unregulated development of

urbanisation during the last two decades has resulted in

the degradation of environmental health, particularly in

developing countries like India (Rauf et al., 2009;

Madhav et al., 2020; Bano et al., 2022). A number of

anthropogenic activities may alter the dynamic properties

of lotic ecosystems by adding heavy metals to the water

bodies (Cortecci et al., 2009; Bhat et al., 2011; Hasan et al.,

2021; Khan et al., 2022). The presence of heavy metals in

water is considered devastating and disturbs the aquatic

system due to their toxicity, persistence, non-degradability,

and bio-accumulation properties. All these factors are

leading to serious anomalies in the aquatic ecosystem

(Yang et al., 2009; Khan A. H. et al., 2020; Rather RA.

et al., 2022). Trace metals may be naturally present in the

biosphere and their fast release into the environment is

augmented by human activities. The chemical cycling of

trace metals is intricate due to the variety of factors (biotic

and abiotic) involved in the manifestation of metal

behavior, such as bio-chemical processes, hydrology,

climatic factors, land use, and metal characteristics

(Husain Khan et al., 2020; Mazhar et al., 2020; Khan

et al., 2021). (Damian et al., 2019; Padder et al., 2021;

Rather et al., 2022c; Padder et al., 2022) looked at the

ecological value of trace metals in fresh water systems

and the level of pollution in the water of the Kashmir

Himalayas.

The present study is based on the analysis of seasonal

changes in monitoring the quality of drinking water in the

Veshaw River in the Indian Western Himalayas. The purpose

of conducting this study was to improve the quality of

drinking water in that area on the basis of the

recommendation of the study. The Veshaw river is located

adjacent to the agriculture and horticulture area and small

workshop and mini-industrial units. The majority of these

wastes and effluents are discharged into the environment as a

result of these activities. These various forms of affluent

discharged into the river are major concerns for changing

the ecological system of the river. The Veshaw river is a major

source of water for domestic, agricultural, and industrial uses

in the south of Kashmir. Water from the Veshaw river is

being used for various purposes that may expose the users to

some health hazards, hence the need to determine the level of

heavy metals it contains for the safety of the users. The main

objective of this study is to investigate the presence and to

examine the average concentration of heavy metals in the

water of the Veshaw River; this involves investigating the

possible natural sources and impacts of anthropogenic

activities on the water quality.
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FIGURE 1
A map showing study area and sampling location of the Veshaw river.
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2 Materials and methods

2.1 Sampling procedure and analysis of
heavy metals

Three different locations were used to collect water samples for

testing the quality of the rice water, viz., Site-I and II (Kongwaton

33o62′80.3″N, 74o74′08″E and Aharbal 33°38′45.4560″N
74°47′50.4696″E, an upstream site); Site-III and IV (Nihama

33°38′8″N 74°53′34″E and Kulgam 33°38′24″ N 75°01′12″ E, a

midstream site); and Site V and VI (Khudwani 33.7074° N, 75.1054°

E and Sangam 33.828,217°N 75.070842°E, a completely downstream

site) mentioned in Figures 1, 2. The locations were chosen

depending on the impacts of anthropogenic activities or on the

basis of the observation of the visual analysis of pollution sources

like agriculture activities, horticulture activities, human habitation,

commercial and other anthropogenic and livestock pressures along

the banks of the Veshaw river. From these survey sites, the collected

samples were analysed to identify seasonal fluctuations (Rather

et al., 2022b; Rather et al., 2022e). The samples were collected at an

interval of 2 months in the years 2020–2022. Five water samples

were collected from each sampling site, and a total of 30 water

samples were analysed in the laboratory. The seasonal sampling was

carried out, and the samples were stored in sterilised bottles. In

order to analyse the chemical features of the water, it was

immediately refrigerated at -4°C and transferred to the lab. In

addition to sorting data by season, the results were analysed to

identify seasonal fluctuations.

2.2 Trace element estimation in water

A total of 500 ml of water was collected up to a depth of 30 cm

and immediately transported to the laboratory where the samples

were filtered and acidified with a few drops of concentrated

HNO3 before being preserved in polythene bottles for

subsequent trace element analysis using an Inductively Coupled

Plasma Optical Emission Spectrophotometer (Varian Vista MPX,

720). Among the estimated trace elements are the trace elements

(APHA. 2005; Rather et al., 2022a).

Principle: Equipment for ICP optical emission

spectrometry consists of a light source unit, a

spectrophotometer, a detector, and a data processing unit.

An aqueous sample is converted to aerosols via a nebulizer.

The aerosols are transported to the inductively coupled

plasma, which is a high temperature zone (8,000–10,000°C).

The analytes are excited to different (atomic and/or ionic)

states and produce characteristic optical emissions. These

emissions are separated based on their respective

wavelengths and their intensities are measured. The

intensities are proportional to the concentrations of

analytes in the aqueous sample. Total elemental

concentration is analysed by ICP-OES. The Merck-Certipur

reference trace element standards were used to calibrate the

ICP-OES and the detection limit for each trace element was

also calculated before analysing the samples.

The achieved detection limits are: arsenic (As) 0.80; lead (Pb)

0.29; cadmium (Cd) 0.11 mg kg−1. The developed method is

FIGURE 2
Sampling locations during collection of water samples from Veshaw river [(A):Kongwattan; (B)Aharbal; (C):Nihama; (D):Kulgam; (E):Khudwani;
(F):Sangam].
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applied for the determination of hazardous metals in the water of

the river Veshaw.

2.3 Statistical procedures

The mean values of parameters were presented and analysed

using descriptive analysis. Using the four distinct seasons of the

year, we were able to categories the information into 4 seasons:

spring, summer, autumn, and winter. Correlationmatrix through

XL-stat after two-way ANOVA SPSS statistic version 23 was used

to collect the data. ANOVA was used to examine the differences

between all of the data points (ANOVA).

3 Result and discussion

Many harmful substances, including heavy metals and other

trace elements, can be found in surface water. Many regions of

India have had their surface water reported to be contaminated

with trace elements (Lohani et al., 2008). Particle size distribution

and the organic content in the water system are considered to be

contributors to trace element pollution (Simokawa et al., 1984).

All trace elements in the present investigation revealed

substantial seasonal and spatial variability.

3.1 Cadmium

In river water, cadmium (Cd) is mostly present as CdCO3

species. In recent decades, there has been an increase in the

production and use of Cd and its compounds. Cd enters river

water from industrial discharges, mining wastes, and

atmospheric deposition due to the combustion of fossil

fuels (Syres et al., 1986; Patel et al., 2018). Another source

is washout from agricultural land because some fertilisers

contain Cd levels of even up to 40 mg/kg (Kumar et al.,

2022). One of the major sources of diffuse Cd pollution is

the production of inorganic fertilisers from phosphate ores

(Paul et al., 1994; Rashmi et al., 2020). The major

environmental Cd sources are Zn and Pb ores as it occurs

naturally in their sulphide ores. Commercially, it is produced

as a by-product of the Pb and Zn smelting processes (Stewart

et al., 2022) Raw Zn, Zn alloys, and Zn compounds may have

high concentrations of Cd, so that it may enter the river water

from solid wastes as well (Emoyan et al., 2005). At sewage

treatment plants, the presence of Cd in waste is a matter of

great concern because sewage sludge contaminated with Cd

becomes unfit for use in fertilising soils (Lokhande and Sathe,

2001; Penido et al., 2019). The sites of greatest Cd

accumulation in the body are vital organs like the liver and

kidney. After gastrointestinal absorption, Cd is concentrated

in the kidney. Cd poisoning causes nephrotoxicity (kidney

damage). Other toxic effects of Cd exposure include a decrease

in haemoglobin concentration, erythrocyte destruction, an

increase in blood pressure, liver damage, and male sterility

(Aggarwal et al., 2000; Priyadarshanee et al., 2022).

The concentration of cadmium in the river Veshaw is

shown in Figure 3. The cadmium concentration was found

below the detection limit in the upstream and in the middle

stream during the entire study period of 2020–2022. The

lowest amount of Cd was found in the middle stream

(Kulgam) at 0.0013 mgL-1. In the summer, the maximum

amount of Cd was found in the downstream (Sangam) area at

0.0091 mgL−1. In the Veshaw river, the cadmium

concentration was found below the detection limit

upstream at an undisturbed site (Kongwattan and Aharbal)

and in the middle stream at Nihama during all the seasons

(Figure 3). Cadmium was detected in the middle and

downstream during all seasons. The overall trend showed a

significant downstream increase (p 0.05) in the cadmium level

of water. The increase in the cadmium concentration

downstream may be attributed to increased anthropogenic

sources of cadmium from the riparian zone in the form of

increased domestic sewage, dumpsites, runoff from

workshops, agricultural fields, and sanitary pipelines The

results of the present study are in agreement with the

results of Aggarwal et al. (2000), Lokhande and Sathe

(2001), and Amuah et al. (2022). Seasonal variation of the

collected samples revealed the highest concentration of this

metal in the summer and autumn seasons, coinciding well

with the low discharge during these seasons. A similar

seasonal trend was observed by Mondol et al. (2011)

around Tejgoan, Bangladesh. The study conducted by Yao

et al. (2014) also reported the seasonal difference in the

cadmium concentration in the rivers of China, with a high

concentration during the dry (summer) season and related it

to the background and long-term accumulation in the

environment. Other related seasonal trends for Cd have

been reported by Emoyan et al. (2005) in the river Ijana,

Nigeria; Kar et al. (2008) in the river Ganga, West Bengal,

India; and Buragohain et al. (2009) in the Dhemaji stream,

Assam, India. In addition, Paul et al. (1994) also reported

higher levels of Cd in the summer, while Kaushik et al. (2009)

observed the lowest and highest Cd concentrations during the

summer and rainy seasons in the river Periyar, Kerala and the

river Yamuna, Haryana, Gwalior, respectively. The

concentration of Cd at this point was found to be below

the detection limit (BDL) in all the seasons. Sangam

downstream showed high levels of Cd during the entire

study period as this site receives heavy loads of sewage and

effluents from a variety of small-scale industrial units, which

dump their wastes directly into the river without any

treatment. Cooper et al. (1978) and Aggarwal et al. (2000)

have reported an increase in Cd concentration in water with

an increase in the quantity of sewage, while high Cd content in
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water receiving commercial, domestic, and industrial effluents

has been reported by Lokhande and Sathe (2001). Cd also

finds its way into water from agricultural runoff as fertilisers

are known to contain Cd impurities (Syres et al., 1986).

3.2 Lead (Pb)

Inorganic Pb occurs in water as carbonates and hydroxides.

Major anthropogenic inputs of Pb in water include industries,

mining, smelting plants, and vehicular inputs. It also enters into

water bodies from sewage sludge. Pb is used in the production of

lead acid batteries, solder, alloys, cable sheathing, pigments, rust

inhibitors, ammunition, glazes, and plastic stabilizers. Tetraethyl

and tetramethyl Pb are important because of their extensive use

as antiknock compounds in petrol in many developing countries.

Mild Pb poisoning can cause anaemia, headaches, sore muscles,

fatigue, and irritability. Acute Pb poisoning causes severe kidney,

liver, reproductive, and central nervous system dysfunction

(Strehlow and Barltrop, 1987; Balali-Mood et al., 2021). It

damages RBCs and delta-aminolevulinic acid dehydratase

activity, interferes with heme synthesis, inhibits

haematopoiesis and produces adverse effects on blood vessels

(Shafiq-ur-Rehman, 2010; Rahimpoor et al., 2020). Pb can also

cause osteoporosis by replacing calcium in bones (Ferner, 2001).

The role of Pb in causing mental retardation, particularly in

children, is also well documented by many researchers (Ferner,

2001). Pb is present in surface water as a result of its dissolution

from natural sources, but primarily from household plumbing

systems in which the pipes, solder, fittings, or service connections

to homes contain Pb. Polyvinyl chloride (PVC) pipes also contain

Pb compounds that can be leached from them and result in high

Pb concentrations in surface water. The amount of lead dissolved

from the plumbing system depends on several factors, including

the presence of chloride and dissolved oxygen, pH, temperature,

water softness, and standing time of the water Tam and

Elefsiniotis, 2009). The concentration of the lead content in

the Veshaw stream is shown in Figure 4. One striking

difference found in the lead concentration was that the

cadmium concentration was found below the detection limit

at upstream (Kongwattan and Aharbal) during the entire study

period in all the seasons. In the winter, the middle stream

(Nihama) had the lowest average value (0.004 mgL−1), and in

the summer, the downstream (Sangam) had the highest average

value (0.046 mgL−1). In the present study, lead was found below

the detection limit upstream at Kongwattan and Aharbal during

all the seasons (Figure 4). Afterward, its concentration revealed

a downward trend, with the maximum mean value observed in

FIGURE 3
Figure depicting the comparative time-series seasonal variation analysis of Cadmium (Cd) in the water of the River Veshaw at six different sites
collected during all the seasons from spring to winter (I:spring; II:summer; III:autumn; IV:winter; V) Each symbol represents the mean of triplicate
values.
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the lower reaches of a stream (Sangam). The highest

concentration was observed in the summer season, followed

by the autumn season, and the lowest was observed during the

winter season. The highest concentration of lead in summer and

autumn could be due to less dilution owing to the low discharge

of the stream. A similar trend within the river was observed by

Quan et al., 2022). Increased lead content downstream may be

due to the inflow of waste from garbage dumps, domestic

sewage, transportation, vehicle workshops, and industrial

discharge from industrial units within the catchment zone of

the stream. Our findings are in agreement with the previous

studies carried out by Kaur. (2012); Baralkiewicz et al. (2014);

and Appiah-Adjei et al., 2019). Koul et al. (1988) also observed

the lowest Pb content in spring and the highest in summer and

autumn in the Himalayan lakes of Kashmir. According to Kaur

(2012), Pb was added to the river Veshaw from wastes,

agricultural activities, transportation activities, and motor

workshop effluents.

3.3 Arsenic

Arsenic (As) is the 20th most common element in the earth’s

crust and is associated with igneous and sedimentary rocks.

Although elemental arsenic is not soluble in water, its salts

exhibit a wide range of solubilities depending on pH and the

ionic environment. As can exist in both inorganic and organic

forms. Arsenic (As+3) and arsenate (As+5) are inorganic forms of

arsenic, whereas monomethylarsenic acid, dimethylarsenic acid,

arsenobetaine, arsenocholine, arsenolipids, and arsenosugars are

organic (Elci et al., 2008; Kalia & Khambholja 2015). Arsenicals are

used commercially as alloying agents in the manufacture of

transistors, lasers, and semiconductors, as well as in the

processing of glass, pigments, textiles, paper, metal adhesives,

wood preservatives, and ammunition. As concentrations in

natural waters range between 1 and 2 g/L (Hindmarsh and

McCurdy, 1986; Rohanifar et al., 2018). As concentrations rise

in areas with volcanic rock and sulphide mineral deposits, as well

as in areas with human activity (Hood and Bishop, 1972; Gibson

and Gage, 1982; Hindmarsh and McCurdy, 1986; Wang et al.,

2019).

Arsenic was found below the detection limit in the upper

reaches of the upstream (Kongwattan and Aharbal) in all

seasons. Figure 5. During the summer season, the middle

stream (Nihama) had the lowest As concentration

(0.005 mgL−1) and the highest (0.042 mgL−1) downstream

(Sangam), followed by Khudwani (0.038 mgL−1). In the

downstream, the middle stream (Nihama) had the lowest As

level (0.009 mgL−1) and the downstream (Sangam) had the

highest As level (0.038 mgL−1). The overall increasing

downward trend was statistically significant during all the

seasons. summer recorded the highest arsenic value, followed

FIGURE 4
Figure depicting the comparative time-series seasonal variation analysis of Lead (Pb) in the water of the River Veshaw at six different sites
collected during all the seasons from spring to winter (I:spring; II:summer; III:autumn; IV:winter; V) Each symbol represents the mean of triplicate
values.
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by autumn and spring, respectively. As levels in natural waters

are typically between 1 and 2 mgL−1 (Hindmarsh and McCurdy,

1986), Human habitation and the presence of sulphide mineral

deposits (found in volcanic rock) lead to increased

concentrations of As (Hood and Bishop, 1972; Gibson and

Gage, 1982; Hindmarsh and McCurdy, 1986). As has been

detected at all locations except those further upstream. The

amount of As found upstream (in Kongwattan and Aharbal)

was higher than in other areas, while being much below the

detectable limit. Data suggests that the Veshaw’s middle stream

and downstream get a disproportionate share of the river’s toxic

waste when compared to the river’s other catchment areas. As

such, concentration has also been shown to be higher in the

summer and fall than in the winter and spring. It suggests that

middle and down stream area of the Jhelum river are receiving

more toxic wastes as compared to the catchment area of the

Veshaw river. Moreover, As concentration has been recorded

more in summer and autumn compared to winter and spring

seasons.

3.4 Correlation between the heavy metal
parameters

To observe the relationship between heavy metal parameters

during the different seasons, a correlation matrix based on the

Pearson correlation coefficient (2-tailed) was employed between

important parameters of water samples Figures 5A,B.

3.4.1 Pearson correlation between the heavy
metal parameters

Figure 6 depicts the results of an investigation into the

relationship between heavy metal water quality and cadmium,

lead, and arsenic, which have all been found to have a significant

positive correlation with one another. This is the degree of

association among the following water quality factors.

Figure 6A also shows that arsenic has the highest correlation

(0.989**) with cadmium, while lead has the lowest correlation

(0.872*) with cadmium. The correlation among pH, EC,WT,

Turbidity, N, P, K, TH, Ca, Mg, Na, Fe, Cu, Zn, Pb, Cd and As

FIGURE 5
Figure depicting the comparative time-series seasonal variation analysis of Arsenic (As) in the water of the River Veshaw at six different sites
collected during all the seasons from spring to winter (I:spring; II:summer; III:autumn; IV:winter; V) Each symbol represents the mean of triplicate
values.
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contents in water Coliform were found statistically highly

significant at (p ≤ 0.05) confidence.

The regression statistics of the physicochemical data set of the

Veshaw stream are summarized in Figure 7. The connection with

heavy metal water quality variables was significantly equal to each

other. Cadmium exhibited a similar proportionate association with

Pb and As. The relative influence of the components was evaluated

as follows: Cd > Pb > As. The regression findings using all station

data indicated the significant water quality characteristics at each

location. At each site, the water quality parameters are affected by

the level of heavy metals in the Veshaw river water. Related works

were performed by authors (Hong et al., 2015; Jung et al., 2016; Seo

et al., 2019) who similarly spatially categorised the Nakdong River as

the up-and-midstream andmid-and downstream portions at a non-

weir station between Dasa (Gangjeong-Goryeong weir) and

Nongong (Dalseong weir) locations using cluster analysis.

FIGURE 6
Pearson Correlation Coefficient (r) matrix of heavy metal parameters studied from Veshaw River of Kashmir Himalaya.

FIGURE 7
Scatter plots: linear regression model indicating the relationship among the various physicochemical parameters of the Veshaw stream.
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4 Conclusion

The Veshaw River shows an increasing trend of pollution

from its upper to lower reaches. The upstream water quality

analysis reveals an oligsaprobic (low pollution load) nature,

whereas the -mesosaprobicc nature (critical pollution load) of

water in the middle and downstream reaches The results of the

present study have indicated that trace elements have made

their entry into the aquatic biological ecosystem and are a

matter of great concern. Trace element levels in water were

found to follow the trend: Sangam > Khudwani > Kulgam >
Nihama > Aharbal > Kingwattan. Comparing the water

quality parameters to the Indian drinking water quality

standards shows that the concentrations in Khudwani and

Sangam, which are near the end of the river Veshaw, are too

high.

• Concerned authorities at national, state and district levels

should take immediate measures (such as a complete ban

on the discharge of untreated industrial effluents and

municipal sewage into the river) for the restoration of

the river Veshaw.

• In the area where the Veshaw river starts, there should be

rules about how effluents from human activities can be

made and where they can be dumped.

• Stream management activities should be prioritised in

urban, rural, industrial, and agricultural areas.
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