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Microplastics (MPs) have become ubiquitous in the marine environment, and are likely
ingested by a broad cross-section of marine life. The extent to which marine organisms
ingest MPs is uncertain due to limitations in analytical methods. Effective identification and
analysis of ingested MPs is a precursor to understand their impact on marine organisms
and their human consumers. This is particularly challenging for crustaceans, due to the
chitin present in their exoskeleton and digestive systems, which is resistant to chemical
degradation. This study presents a novel application that can efficiently break down the
stable organic tissue of banana prawns (Penaeus merguiensis), and subsequently isolate
putative MP polymers from the digestive tract without damaging their integrity. Five
treatments were examined for their capacity to break down chitin from the prawn
digestive system; namely acid, alkaline, oxidant, enzyme and microwave assisted
oxidant digestion. Gravimetric and image analysis revealed that the organic tissue of
the prawn gastrointestinal tract can be effectively removed by acid, oxidant, and
microwave assisted oxidant digestion methods. However, testing on seven reference
polymers (polyamide (PA), polyethylene (PE), polyester (PES), polypropylene (PP),
polystyrene (PS), polyvinyl chloride (PVC), and rayon) revealed significant degradation
when exposed to acid digestion. Overall, microwave assisted oxidant digestion achieved
the best recovery rate of spiked MPs (> 90%) with minimal size, shape, and Fourier
transform infrared (FTIR) spectral changes for all polymers except for rayon. These results
highlight a new direction for tissue removal and MP extraction in crustacean ingestion
studies.
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1 INTRODUCTION

Microplastics (MPs) are a heterogenous mixture of plastic polymers with a size less than 5 mm
(Dawson et al., 2021), which have become ubiquitous in the marine environment due to extensive
plastic pollution (Thompson et al., 2004). Presence of these particles in marine organisms raises
increasing concerns over animal welfare and food safety, given that seafood compromises over 17%
of animal protein consumption by humans globally (Murray and Cowie, 2011; FAO, 2018).
Therefore, it is of extreme importance that the risk seafood presents to consumers, in terms of
exposure and health effects, is accurately quantified. To do this comprehensively, not only shouldMP
contamination be quantified across the breadth of globally consumed organisms, but the MP
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concentration in both the edible and discarded tissues should be
quantified separately, so that the risk of human exposure to MP
contaminated seafood can be accurately assessed (Dawson et al.,
2021). At this stage, little is known about MPs in large decapod
crustaceans, such as prawns and crabs (de Sá et al., 2018), in part,
due to a lack of efficient protocols to extract ingested MPs from
the structurally sophisticated digestive tract of decapods (Enders
et al., 2017).

The digestive tract of decapods is composed of the oesophagus,
foregut (also termed proventriculus), digestive gland (also termed
hepatopancreas or midgut gland), the midgut, and the hindgut
(rectum, anus) (Figure 1A) (Felgenhauer, 1992; Hill et al., 2004),
where all regions except the midgut and digestive gland are coated
by complexes of chitin and protein (Ceccaldi, 1989; Felgenhauer,
1992). Since chitin is resistant to degradation by many chemicals
including water, organic solvents, mild acidic or basic solutions
(Roy et al., 2017), its presence within the digestive tract of
decapods has previously been suggested to inhibit the
extraction of MP from organic tissue (Cole et al., 2014). For
example, potassium hydroxide (KOH) is a commonly used
solution which effectively dissolves the organic tissue of most
taxa for the extraction of MP (Dawson et al., 2020). However,
when applied to decapod intestinal tracts, KOH has been shown
to be ineffective, with intact gut linings visible amongst the filter
retentate (Figure 1B) (Hara et al., 2020). Thus, there is scope to
explore suitable methodologies to extract MP from the digestive
tracts of large crustaceans.

Conventional MP extractionmethodologies that could remove
chitin should be considered in this particular scenario.
Conventional treatments usually involve dissection alone or in
combination with chemical (acids, oxidative, and alkaline
reagents) or biological (enzyme) digestion (Thompson et al.,
2004; Choy and Drazen, 2013; Lusher et al., 2017; Miller et al.,
2017). Direct dissection (Welden and Cowie, 2016; Wójcik-
Fudalewska et al., 2016) or acid digestion (Desforges et al.,
2015; Devriese et al., 2015) have been effectively shown to
remove chitin, allowing MP extraction. However, dissection
without a tissue digestion step may miss MP, and acids are
known to degrade some polymers. Further, specific chitinase
enzymes are also available for chitin digestion (Roy et al.,
2017). Microwave assisted digestion is used extensively in

removal of organic matter to facilitate trace metal analysis
(Kuss, 1992; Lamble and Hill, 1998; Ritter et al., 2004) and
capable of degrading chitin to chitosan and glucosamine (Shao
et al., 2003; Wojtasz-Pajaķ and Szumilewicz, 2007), but as of yet
have not been used in MP research. However, the high
temperature used in microwave ovens may be capable of
degrading certain polymers, particularly when used in
conjunction with harsh chemicals. (Castle et al., 1990; Sakurai
et al., 2006; Karami et al., 2017). Few studies have validated MP
extraction methods against reference polymers to ensure their
integrity (Desforges et al., 2015; Abbasi et al., 2018; Cau et al.,
2019; Hara et al., 2020). Even fewer have systematically tested the
impact of digestion methods on MPs in large crustaceans.

Therefore, the goal of this study was to develop a suitable MP
extraction method for decapod digestive tracts. Five treatment
methods were adapted from the literature focusing on general
organic tissue removal or chitin degradation (acid, base, oxidant,
enzyme, and microwave assisted oxidant digestion) (Cole et al.,
2014; Miller et al., 2017; Piarulli et al., 2019; Wojtasz-Pajaķ and
Szumilewicz, 2007). The treatments were tested on the digestive
tract of banana prawns (Penaeus merguiensis) since they are
arguably the most commercially valuable species of penaeid
prawns distributed accrosee tropical and sub-tropical regions.
(Fischer and Bianchi, 1984; Göltenboth and Schoppe, 2006;
Safaie, 2015; Vance and Rothlisberg, 2020). Specifically, this
work will contribute to an efficient and effective digestion
protocol for banana prawn digestive tracts by 1) comparing
several common tissue digestion methods and assessing their
ability to break down the chitinous tissue present within prawn
digestive tract; and 2) evaluating the impacts of satisfactory
treatments on the physical and chemical traits of known
reference synthetic polymers.

2 MATERIALS AND EQUIPMENT

Banana prawns (P. merguiensis) were obtained from commercial
sources. The oesophagus, foregut and mid gut (Figure 1A) of
prawns were carefully dissected from surrounding tissue,
weighed, and stored at −20°C in glass containers if not used
immediately. The digestive gland was excluded from analysis as it
does not contain any chitinous lining. Furthermore, the particles
able to pass through the filter-press from the foregut are usually
less than 1 µm (Wade et al., 2018) which is currently below the
size detection limits for most MP analysis methods.

Nitric acid (70% HNO3) (UN No. 2031), 30% hydrogen
peroxide (H2O2) (CAS No. 7722-84-1), absolute ethanol
(EtOH) AR grade (CAS No. 64-17-5) were all sourced from
Thermo Fisher Scientific. 30%H2O2 and absolute EtOHwere also
diluted to 10% H2O2 and 70% EtOH with Milli-Q (Millipore)
water (Milli-Q H2O). Potassium Hydroxide (KOH) pellets
(Thermo Fisher Scientific UNILAB CAS No. 1310-58-3) were
dissolved with Milli-Q (Millipore Merck) water to form a 10%
w/v aqueous solution. Protease K (Bioline/Meridian Bioscience
Cat. No. BIO-37039, 40.8 U mg−1, 20 mg ml−1) and Chitinase
(entochitinase, EC 3.2.1.14, ASA Spezialenzyme GmbH,
Germany, 100 U ml−1) was stored at −20°C as lyosphilized

FIGURE 1 | Prawn anatomy. (A) the digestive tract diagram of a penaeid
prawn, adapted from Dall (1968), the orange shaded area is the digestive tract
being preserved in all samples (A—anus, D—digestive gland or
hepatopancreas, M—mouth, MG—midgut, O—oesophagus,
P—proventriculus or foregut, R—rectum). (B) the remaining gut lining of the N.
norvegicus after the application of the digestion protocol using potassium
hydroxide (KOH) at 40°C (Hara et al., 2020).
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powder and stable solution with 50% glycerin respectively.
Homogenization solution for protease K was prepared with
400 mM Tris-HCl buffer, 60 mM EDTA, 105 mM NaCl and
1% Sodium Dodecyl Sulfate (SDS) to achieve pH 8.0. Citric
acid buffer was prepared using 0.1 M Sodium citrate and
0.1 M citric acid buffer to achieve pH 5.6 for chitinase. A total
of seven different synthetic polymers were selected based on the
previously reported particles or fibers in crustaceans (Murray and
Cowie, 2011; Cole et al., 2014; Brennecke et al., 2015; Wójcik-
Fudalewska et al., 2016; Abbasi et al., 2018; Cau et al., 2019).
These were: polyamide (PA, 1–2 mm), polyethylene (PE,
< 500 µm), polyester (PES, 1–3 mm), polypropylene (PP,
235–500 µm), polystyrene (PS, 1–2 mm), polyvinylchloride
(PVC, 1–2 mm), and rayon (2 cm). Detailed information on
the reference polymers is presented in Supplementary Table
S1 and Supplementary Figure S1. A commercial domestic
microwave oven (LG Microwave Oven MS4042GR, 1100W)
was used at relevant steps.

3 METHODS

3.1 Preventing Contamination
Strict procedures were followed in order to minimize MP
contamination with the laboratory throughout analysis. A full-
cotton (100%) lab coat dyed green was worn during all
experimental procedures. All containers were made of glass
and stainless steel and rinsed with tap water, followed by three
rinses in reverse osmosis (RO) water. All equipment and samples
were covered when not in use. The cover or caps of the containers
were either aluminium foil or plastic with polytetrafluoroethylene
(PTFE) lining depending on the compatibility of the chemicals
used. Solutions and liquids were prefiltered to remove

contaminants with PTFE filters (0.45 µm pore size, 47 mm Ø
diameter, Millipore). A stainless steel (316 grade) filtration system
was used with sizes (263, 77 and 26 µm) to obtain post treatment
residual. Three pore sizes (263, 77 and 26 µm) of stainless steel
filters (19 mm Ø) were punched from woven mesh. All samples
were prepared in laminar flow and were rinsed thoroughly with
Milli-Q water before and after dissection. Digestion and filtration
was carried out in either a fume hood (acid digestion) or laminar
flow (base, oxidant digestion).

3.2 Method Development
Following the stepwise approach to select an optimum extraction
treatment in fish (Karami et al., 2017), the experimental design of
this study was divided into three phases (Figure 2).

Two variations (treatment duration or homogenization
status of the tissue sample) were compared for each
treatment according to preliminary visual assessments. The
results of Phase 1 were assessed using gravimetric and image
analysis to select satisfactory treatments. The satisfactory
methods obtained in Phase 1 subsequently proceeded to
Phase 2. Phase 2 evaluated the impact on reference polymers
by analyzing the physical and chemical characteristics of
polymers before and after treatment using microscopy image
analysis and spectroscopy. Combining the result of Phase 1 and
Phase 2, the optimal treatment is further applied to
environmental sample captured in the wild. The results of
Phase 3 are available in Dawson et al. (2022).

3.3 Tissue Sample Digestion Treatment in
Phase 1
A total of five digestion methods with two variations of each were
chosen based on preliminary tests via visual assessment of the

FIGURE 2 | Schematic summary of the microplastic extraction treatments on prawn digestive tracts. * RT—room temperature (approx. 22–24°C). †v:w is the
proportion between the volume of chemical added and the wet weight of the tissue sample.
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remaining chitinous gut tissue after treatment (Figure 2). Each
method was tested in triplicate following the protocols outlined
below. All treated samples were filtered sequentially onto pre-
weighed filters. These were then rinsed with Milli-Q water
followed by 70% EtOH using a PTFE wash bottle, to reduce
the possibility of particulates adhering to the sides of the
container and to remove any chemical residue. Filters and the
filtration system were flushed at least three times or until there
were no particulates adhering to the system. Filters were dried
overnight (approx. 18–24 h) at room temperature (approx.
22–24°C) and stored in a desiccator. All treatments except
microwave assisted oxidant treatment were conducted at 40°C
or below to achieve maximum enzyme activity and reduce MP
degradation at high temperature, as previous studies have
thoroughly demonstrated MP degradation above 50°C (Karami
et al., 2017; ?). Once the treated samples were completely dry and
re-weighed, the remaining residue was stained with lactophenol
cotton blue, a commonly used staining agent demonstrating an
affinity for chitin (Leck, 1999). The staining agent gave chitin a
blue colour that was used to visualize the chitinous residues
remaining on the filter after digestion.

3.3.1 Acid Treatment
70% HNO3 was added to the tissue samples at a ratio of 10:1 v:w,
or until covering the sample. Samples were then covered with
PTFE lined caps and stored at room temperature inside a fume
hood during the treatment time (12 or 24 h). Before filtration, the
solution was neutralized using 10% KOH in a ratio of 3:1 (v:v,
10% KOH: 70% HNO3).

3.3.2 Base Treatment
10% KOHwas added to the tissue samples at a ratio of 10:1 v:w or
until the sample was submerged. Samples were incubated at 40°C
in an oven during the treatment time (72 or 120 h).

3.3.3 Oxidant Treatment
30%H2O2 was added to the tissue samples at a ratio of 10:1 v:w or
until the sample was submerged. Samples were incubated in a
Thermoline incubator at 40°C and shaken at 90 rpm throughout
the treatment time (48 or 96 h).

3.3.4 Enzyme Treatment
Each frozen tissue sample was homogenized using a glass rod.
Both homogenized and non-homogenized tissue sample were
digested in Proteinase-K in 15 ml homogenizing solution (pH =
8.0) for 48 h. Samples were then filtered and rinsed before adding
chitinase with citric acid buffer solution (pH = 5.6) for a further
72 h. Protease digestion was maintained at 40°C and chitinase was
maintained at 37°C in the incubator and shaken at 90 rpm
throughout the treatment.

3.3.5 Microwave Assisted Oxidant Treatment
10%H2O2 was added to the tissue samples at a ratio of 25:1 v:w in
a glass tube with a small glass beaker loosely covering the top to
prevent a buildup of pressure within sample tubes. Samples were
heated to the boiling state inside the microwave at half power
(i.e., 550W). Samples were closely monitored for throughout

digestion, with the heating briefly paused periodically to avoid
overflow of the reaction agent. The microwave time, 5 or 10 min
(Figure 2) was the run time only, without taking the cooling-off
time into account.

3.4 Sample Digestion in Phase 2 With
Spiking Reference Polymers
Based on Phase 1, the three most satisfactory digestion methods
were selected to evaluate their impacts on seven different types of
polymers: polyamide (PA), polyethylene (PE), polyester (PES),
polypropylene (PP), polystyrene (PS), polyvinylchloride (PVC),
and rayon. Each sample was spiked with 10 replicates of each
polymer type. Triplicates of spiked samples were subsequently
digested using the same protocols outlined in Subsection 3.3.

3.5 Gravimetric Analysis (Phase 1)
Digestive efficiency is for each method was calculated as per
Karami et al. (2017) using Equation (1). Treatments resulting
greater than 95% average digestive efficiency among all three
replicates were considered efficiently digested.

Digestive efficiency% � Wi − Wa −Wb( )
Wi

× 100 (1)

where Wi = Initial wet weight of tissue samples and spiked
polymers; Wa = Weight of dry tissue and stainless steel filters
after filtration; Wb = Weight of stainless steel filters before
filtration.

3.6 Image Analysis (Phase 1 and 2)
Digestive efficiency alone has recently been suggested to be an
inadequate metric to evaluate complete digestion (Dawson et al.,
2020). Thus in Phase 1, image analysis was applied to examine the
retention of chitinous tissue after treatment as visualized by
lactophenol cotton blue stain: 1) overall digestion level, 2)
normalized undigested residue coverage, and 3) average blue
value. True colour, high resolution, RGB images were taken using
a Leica Stereo microscope MZ16A. Overall digestion level was
defined as a score (1–4, with higher scores relating to lower
residual tissue) assigned to the status of remaining residues on
263 µm filters for each sample. The four digestion scores
(Figure 3) corresponded to the following criteria:

• 1: very poor, i.e. the entire esophagus and proventriculus
chambers intact;

• 2: poor, i.e. the esophagus and proventriculus chambers
partially intact;

• 3: moderate, i.e. no obvious chitinous structure with many
irregular particles;

• 4: good, i.e. no obvious chitinous structure with little
irregular particles.

Both normalized undigested residue coverage and average blue
value were computed using a computer vision image analysis
algorithm (OpenCV library with Python 3.8) (Bradski, 2000). All
images were taken under consistent brightness and nadir angle
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with a microscopic camera as 8-bit true colour RGB images with
pixel having a value for the brightness of the red, blue, and green
colour ranging from zero to 255 (with zero indicating no light and
255 indicating maximum light). The algorithm detected the area
with remaining tissues and calculated the percentage coverage of
undigested residual over the whole filter (Figure 4A) as well as the
average value encoded in the blue channel of all pixels located in
the detected area (Figure 4B). A black and white mask was
created for both filter area and residue area ((Figure 4A) which
were quantified by their pixel count, normalised by the wet weight

of the tissue measured during the sample preparation stage. The
undigested residual coverage measures how widely the residue
was spread over the filter per unit weight. I.e., a high normalised
undigested residual value implies the tissue sample had been
broken down into small pieces that are able to spread over the
filter. The last criteria, average blue value, was used as an indicator
to show how well chitin has been broken down due to the binding
specificity of the colouring agent. A higher the value suggests that
less colouring agent has combined with the residue, thus, more
chitin has been digested.

FIGURE 3 | Illustration of overall digestion level scores.

FIGURE 4 | Illustration of image analysis protocol for (A) using masks of filter and residue and sample tissue wet weight to calculate “normalized undigested residue
coverage”, (B) extracting blue channel from RGB images of stained tissue to calculate “average blue value”, and (C) an example of reference polymers (e.g. PE)
comparison before and after treatment.
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FIGURE 5 | Boxplot for all evaluated aspects. The triangle marker is the mean value of each treatment. The red dash line is the cut-off line: (A) digestive
efficiency—95% adopted from (Karami et al., 2017), (B) normalized overall digestion level—Q3 = 3.5, (C) undigested residue coverage—Q3 = 40.7%, (D) average blue
value—Q3 = 145.
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Treatments achieving an average value equal or greater than
the value of third quartile (Q3), i.e. top 25% of the values in the
dataset, for each assessment were considered acceptable in
Phase 1.

Image analysis was also performed in Phase 2 to evaluate the
degradation of each treatment on the physical properties of each
polymer. The size of spiked reference polymers was determined
by the length of fibres or the Feret’s diameter of particles, which
were measured from microscopic images before the treatment
(i.e. virgin polymers), and after the treatment (i.e. exposed
polymers) in FIJI ImageJ (Schindelin et al., 2012) (Figure 4C).
Polymer recovery rate was calculated using the equation below:

Recovery rate% � Nv −Ne

Nv
× 100 (2)

whereNv = Counts of virgin reference polymers before treatment;
Ne = Counts of exposed reference polymers after treatment.

3.7 Spectroscopic Analysis (Phase 2)
Reference polymers also had their chemical characteristics
analysed using Fourier transform infrared (FTIR) spectroscopy
with a PerkinElmer Spectrum 100 Spectrometer (16 scans at
4 cm−1 resolution, wavenumber range = 4,000-600 cm−1). Spectra
of virgin (n = 3) and exposed polymers (n = 9) were acquired
measuring attenuated total reflectance (ATR-FTIR). Spectral
signature of virgin and exposed polymers were correlated
within the PerkinElmer Spectrum IR software, generating a
coefficient of correlation (R) (Kroon et al., 2018). If exposed
polymers obtained R that is greater than 0.9, they were considered
as very similar to the virgin polymers.

3.8 Data Analysis
Tukey’s boxplots were adopted to visualize the distribution of all
collected data (Tukey, 1977). Mann-Whitney test (RStudio
1.4.1106) was performed to check whether there was a
significant difference between the size of reference polymers
before and after treatment in Phase 2.

4 RESULTS

4.1 Efficacy on the Chitinous Tissue Sample
Removal
Acid, oxidant, and microwave assisted oxidant digestion
methods resulted in digestive efficiency values greater than
95% (Figure 5A). Both variations of acid digestion resulted in
digestive efficiency > 97% (97.51 ± 0.76% and 98.63 ± 0.58%
for short and long treatment duration, respectively). While
both variations of microwave assisted oxidant gave a mean
digestive efficiency higher than 95%, the longer treatment time
resulted in lower variability between replicates (95.09 ± 1.29%
and 96.86 ± 0.72% for short and long treatment duration,
respectively) and the shorter treatment time resulted in more
than half of the replicates failing to achieve a high digestive
efficiency. The shorter treatment duration (95.68 ± 2.60%) of
oxidant digestion resulted in a higher digestive efficiency than

the longer variation (93.90 ± 0.41%), however the data was
more variable between replicates. For image analysis, the
results varied with the efficacy of the chitinous lining
degradation. Acid digestion with longer treatment duration
resulted in the highest overall digestion level (Figure 5B).
Enzyme treatment with homogenized tissue samples had
particles spread across the largest area on the filters
(Figure 5C). Both variations of microwave assisted oxidant
treatment performed well when assessing the chitin digested
level using average blue value (Figure 5D).

Overall, base digestion and enzyme digestion failed to satisfy
most of the evaluation criteria (Table 1). Whereas acid, oxidant
and microwave assisted oxidant digestion all had one variation
each that met 3 of the 4 cut-off criteria. These were the 70%
HNO3 for 24 h, 30% H2O2 for 96 h, and 10% H2O2 10 min
microwave method. Thus, these three treatments proceeded to
the next phase. The details of the performance of each treatment
can be seen in supplementary material (Supplementary
Table S2).

4.2 Impacts of Selected Treatments on
Reference Polymers
Recovery rate, colour and spectra of MPs exposed acid, oxidant
and microwave assisted treatments varied considerably, while,
other than PA, the shape and size did not show significant
changes for all recovered polymers. Rayon fibers were unable
to be recovered in any treatment, and PVC fragments were
fully recovered in all treatments. PE, PP, and PS were almost
fully recovered in all treatments. PA and PES had very low
recovery rate (0 and 36.7%, respectively) after being treated
with 70% HNO3 for 24 h (Table 2). Moreover, the image
analysis further showed that PE fragments and PES fibers
were discoloured, and the surface of some polymers were
smoothed after the treatment (Supplementary Figure S2).
Minor color and morphological changes occurred during
oxidant and microwave assisted oxidant treatments,
however some remaining tissue residue adhered to the
surface of the polymers (Supplementary Figures S3, S4).
The size distribution of recovered exposed polymers was
very similar compared to virgin polymers (Figure 6). The
exposed PE, PES, PP, PS, and PVC polymers show no
significant difference to the virgin polymers
(Supplementary Table S3). Only PA recovered from
microwave assistant treatment had significant changes in
size (Mann-Whitney test, nv = 30, ne = 28, p = 0.0014).
The average length of PA fragments before and after the
treatment was 1.71 ± 0.05 mm and 1.54 ± 0.04 mm
respectively. Notwithstanding these significant differences,
the changes in size were small and the polymers had no
obvious shape and colour changes.

In terms of the chemical characteristic changes after each
treatment, polymers recovered from microwave assisted
oxidant digestion had very high FTIR spectra correlation
scores (R > 0.95 for all nine polymer types on average) to
their virgin polymer counterparts (Figure 7, Supplementary
Table S4). After oxidant treatment, the correlation score of
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exposed polymers to the virgin polymer spectrum library
showed that PA, PE, PES and PP had high average
correlation scores for recovered polymers (R > 0.9) while PS
(R = 0.81 ± 0.07) and PVC (R = 0.76 ± 0.06) had low scores. As
for acid treatment, PA were unable to recovered with no
correlation score available and the score of PVC polymer
was the lowest (R = 0.75 ± 0.03) amongst all polymers
recovered.

5 DISCUSSION

5.1 Optimal Tissue Removal and MP
Extraction Approach for Prawns
The oxidant treatment successfully removed the chitinous lining
of the prawn digestive tract, however the addition of microwave
radiation to this treatment resulted in more complete and
efficient digestion while maintaining the integrity of the

TABLE 1 | Summary of gravimetric and image analysis results in an evaluation matrix, where a tick (✓) indicates that the cut-off criteria is met.

Treatment Acid Base Oxidant Microwave Enzyme

Variation a b a b a b a b a b
Digestive efficiency ✓ ✓ ✓ ✓ ✓
Overall digestion level ✓ ✓ ✓ ✓
Undigested residual coverage ✓ ✓ ✓
Average blue value ✓ ✓ ✓
Total no. of ✓ 3 2 0 0 1 3 2 3 0 1

TABLE 2 | Recovery rate of reference polymers under acid, oxidant and microwave assisted oxidant treatment (PA—polyamide, PE—polyethylene, PES—polyester,
PP—polypropylene, PS—polystyrene, PVC—polyvinyl chloride).

Treatment PA PE PES PP PS PVC Rayon

Acid 0.0% 76.7% 36.7% 100.0% 96.7% 100.0% 0.0%
Oxidant 93.3% 93.3% 90.0% 100.0% 100.0% 100.0% 0.0%
Microwave 100.0% 100.0% 83.3% 96.7% 100.0% 100.0% 0.0%

FIGURE 6 | Size distribution of virgin and exposed polymers. PA—polyamide, PE—polyethylene, PES—polyester, PP—polypropylene, PS—polystyrene,
PVC—polyvinyl chloride.
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polymer samples. Even though the solution was heated to the boiling
point of the 10% H2O2 solution (approx. 100°C), the spectral
signature of exposed polymers remained very similar to the
virgin polymers. In contrast, colour change has previously been
described in PA and PVC at temperatures of 50–60°C, which is likely
a result of prolonged incubation (96 h) using traditional heating
oven (Karami et al., 2017). Microwave heating converts
electromagnetic energy to thermal energy by water molecule
oscillation rather than relying on heat transfer from the ambient
environment using ovens or incubators (Kuss, 1992; Sun et al., 2016).
As a result, the materials in microwaves are heated with a uniform
thermal field in much less time (Sun et al., 2016). The short reaction
time may reduce the likelihood of MP degradation as the high
temperature is only maintained very briefly compared to other
digestion methods used in our study. Furthermore, the
microwave energy creates a small but consistent vibration of the
molecules throughout the solution. Mechanical movement facilitates
the digestion process (Cole et al., 2011; Therien et al., 2019)making it
likely that the molecular vibration imparted by microwaves would
improve digestion of chitin. Therefore, in the absence of significant
MP degradation, microwave assisted oxidant digestion presents a
promising approach for a standardized method of MP extraction
and quantification from crustacean gastrointestinal tracts. It is worth
point out in this study that relatively large MPs were used for ease of
manipulation and measurement. Although these particles are still
within the size range of microplastics, further studies should verify
that this method also applies to smaller MP (<1mm). Recent
method developments using very small immobilised MPs may be
of use to validate this digestion method (?).

This study further confirmed that treating prawn digestive tracts
with 70% HNO3 at room temperature for 24 h could remove the
majority of the tissue samples with very high digestive efficiency
(> 97% on average) but with an unacceptable level of damage to
some MP polymers. Acid digestion, using HNO3 or a mixture of
inorganic acid such as HNO3, HCl or HClO4 is well known to
degrade crustacean exoskeletons and chitinous digestive tract lining
(Desforges et al., 2015; Devriese et al., 2015). However, HNO3 was

very destructive to PA polymers. This is consistent with previous
work, where Claessens et al. (2013) was unable to recover spiked
nylon fibers after HNO3 incubation.While HNO3 treatment did not
cause the loss of PVC particles or result in a colour change, it did
reduce the clarity of the FTIR spectrum (R = 0.75 ± 0.03). Thus
polymers may not be identifiable from environmental samples if
HNO3 was used to digest the samples, as spectral signature is
currently the optimal method to accurately identify a putative
polymer from the environment (Miller et al., 2017).

In contrast to acid digestion, alkaline and enzyme treatments
failed to break down the complex lining in the foregut, resulting
in intact proventriculus in all replicates (Supplementary Figure
S5). It is reasonable to suspect that any MP polymers present
inside the proventriculus would not be isolated for further
analysis, as isolation and identification of putative MP is based
on visual inspection of the filter residue after digestion. KOH is
one of the most widely used chemical digestion solutions for MP
extraction, but extensive treatment with 10% KOH (40°C for
120 h) without degrading the lining could be a result of
insolubility of chitin in mild basic solutions. The samples
treated sequentially with protease and chitinase also failed to
break down the tissue.This is consistent with a recent study by
(Kallenbach et al., 2021), demonstrating that the chitinous
exoskeleton of terrestrial isopods can resist broad-spectrum
enzymatic digestion. A combination of pharmaceutical
pancreatic enzyme mixes and chitinase was applied to the
isopod for 48 h (24 h for pancreatic enzyme mix and 24 h for
chitinase), yet the exoskeleton remained intact. On the other
hand, the study claimed that a combination of 30% H2O2 and
chitinase has removed the exoskeleton efficiently (Kallenbach
et al., 2021). Since the experiment design did not compare this
method with H2O2 treatment only, our current results suggest
that the success of chitin degradation has little to do with
chitinase, but mainly due to the addition of H2O2, which is
same as the oxidant treatment used in this study. Chitinase is
widely used to derive glucosamine from the α-chitin in shrimp
and crab shells (Chen et al., 2010). Enzymatic hydrolysis the
preferred method in industrial process due to its environmental
friendliness comparing to other methods that tend to produce
large quantities of chemical waste (Chen et al., 2010). Various
chitinolytic enzymes exist in the wild including endochitinases
(EC 3.2.1.14), exochitinases (EC 3.2.1.52), chitobiosidases (EC
3.2.1.30) and N-acetylglucosaminidases (NAGases) (EC 3.2.1.96)
(Chen et al., 2010). This study tested endochitinases which would
cleave chitin at internal sites on the glycosidic bonds randomly to
generate the soluble oligosaccharides (Chen et al., 2010; Wang
et al., 2019). There is little information about the chemical
composition and structural difference amongst the chitinous
tissues from the proventriculus and oesophagus, and that of
the exoskeleton, which is widely used for glucosamine
production. This knowledge gap may have hindered the use of
targeted enzymes, thus leading to insufficient breakdown of the
endogenous chitinous tissue in the prawns. It is also important to
note that the aim of industrial chitinase utilization is yield of
glucosamine rather than the complete removal of tissues to reveal
their contents, so while an enzyme may be efficient for industrial
aims, it is not applicable to MP research in this context.

FIGURE 7 | Correlation score distribution of all recovered polymers for
each treatment. PA*—polyamide, PE—polyethylene, PES—polyester,
PP—polypropylene, PS—polystyrene, PVC—polyvinyl chloride. * PA was not
able to be recovered from the acid treatment and thus this data is
absent.

Frontiers in Environmental Chemistry | www.frontiersin.org June 2022 | Volume 3 | Article 9033149

Li et al. Digest the Indigestible

https://www.frontiersin.org/journals/environmental-chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-chemistry#articles


5.2 Digestion Efficiency as an Indicator of
Method Suitability
The five treatments were assessed by combining all the results into
an evaluation matrix, in order to make an informed decision on the
method suitability. In conventional MP extraction methodology
development, the optimal treatment is typically selected based on
one or more of the following criteria: digestive efficiency, weight
changes of reference polymers, and FTIR spectral changes of the
polymers (Cole et al., 2014; Desforges et al., 2015; Devriese et al.,
2015; Karami et al., 2017; Hara et al., 2020). The results of this study
clearly demonstrate that in cases involving crustacean digestive
systems, digestive efficiency is not sufficient for method
evaluation. For instance, the oxidant treatment (30% H2O2, 48 h)
achieved a digestive efficiency of 95.68 ± 2.60%, but visual inspection
showed that the undigested residuals were still clustering after
filtration, making isolation of putative particles impossible
(Supplementary Figure S6). The KOH treatment recommended
by Hara et al. (2020) showed a similar pattern of results, with intact
proventriculus material clearly visible despite a gravimetric digestive
efficiency greater than 95% (Figure 1B). Furthermore, MPs can be
too light to measure accurately, rendering gravimetric measures
severely limited. Using larger particles that are able to be weighed is
also problematic, as larger particles are more stable due to
diminished surface to volume ratios. As demonstrated in this
study, visual inspection of remaining residues could play a crucial
role in verifying digestion methods.

It is worth noting that the evaluation matrix is not identical
among all tissues. A selection of gravimetric analysis and image
analysis will be case specific. In this study, digestive efficiency was the
only conventional decision criterion in MP studies, while the three
image analysis criteria were developed according to specific features
of the prawn digestive tract. Overall digestion level is a
straightforward visual cue to evaluate if the chitinous lining still
exits after treatment, which may not apply to other biota or tissues
that lack clear structures. Undigested residual coverage is highly
related to the filtration technique. The rinsing andwashing angle and
force could influence the distribution of the particles. Thus, it is
crucial to keep the operating procedure consistent throughout the
experiment. It may also be desirable to increase the sample size in
order to mitigate any potential artefacts. Additionally, the computer
vision algorithm chosen to determine the particle distribution on
filters also played an important role in the evaluation criteria. Since it
is impossible to manually select all fine particles on the filters, the
presence of distributed particles were approximately detected using
the OpenCV library with the embedded Gaussian blur and binary
threshold functions (Bradski, 2000). The optimization of the
parameters for these functions could improve the detection
accuracy in future research.

6 CONCLUSION

In conclusion, microwave assisted oxidant digestion
outperformed the traditional acid, alkaline, oxidant and
enzyme digestion treatments in MP extraction and
quantification. The method achieved high digestion efficiency

and satisfactory visual assessment. Thus, it was successfully
applied to disintegrate the lining of P. merguiensis digestive
tracts. Importantly, six out of seven types of reference
polymers were recovered at a high rate with minimal shape,
size, and spectral changes after treatment. This has highlighted a
new method to efficiently remove difficult organic tissues and
thereafter identify putative MP particles.
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