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The atmospheric deposition surrounding the Horne Smelter, a major metal
processor of electronic wastes in North America has been studied primarily
for metals historically associated with local mining operations, but not for other
inorganic contaminants (e.g., rare earth elements, REEs) likely related to
increasing recycling activities. To address this issue, the present work assessed
the atmospheric deposition of a wide range of trace elements (TEs) using
complementary monitoring approaches: passive air samplers (PAS) equipped
with polyurethane foam (PUF), lichens (Cladonia rangiferina) and spiders
(Lycosidae). Sampling was conducted in forest ecosystems (up to 24 sites)
along a south-east transect spanning 52 km from the Horne Smelter. Metal
concentrations in monitors consistently confirm the deposition of various TE
(e.g., As, Cd, Cu, Hg, Pb) associated with the long-term mining activities in the
region. Additionally, Hg and Ag were the only two TEs negatively correlated (p <
0.05) with lichen abundance, suggesting a toxic effect. A significant exponential
decay regression was observed between TE concentration in the indicators with
the distance from the smelter for most metals. Such findings indicated that the
Horne Smelter is the main source of TE emission in the area. We also observed a
clear enrichment in the first 30 km closest to the smelter compared to farther
locations, where similar spatial gradient ranges of TE concentration were
reported in the PAS (from 376 to 2) and in lichen (from 297 to 4). We
measured, for the first time, levels of REEs and other metals (e.g., V, Mo) in
the smelter-impacted area of Rouyn-Noranda. REE data showed no anomalies in
their distribution across the sampled sites, suggesting that their source is probably
not related to specific enrichment in recycled new technologies. Since the
transect spatial results were similar for the PUF-PAS (short-term monitor) and
the lichens (longer-term monitor), no significant changes in deposition patterns
have occurred in recent years. Further, TEs in spiders were more variable,
suggesting that ecological processes may alter this spatial pattern. This study
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highlights the importance of expanding biomonitoring efforts to include a broader
variety of inorganic contaminants for smelter operations of electronic wastes
around the world.
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1 Introduction

Air pollution remains one of the major challenges facing modern
societies, despite increased environmental regulation and enhanced
public awareness. In the environment, the natural levels of trace
elements (TEs) in a given area are generally described as baseline
concentrations. Certain industrial activities, such as mining and
smelting operations, release a variety of inorganic contaminants that
are deposited in the surrounding environments, leading to increased
concentrations above baseline levels that disrupt natural
biogeochemical cycles (Dinis et al., 2021; Rauch and Pacyna,
2009; Savard et al., 2006; Kasongo et al., 2024). The atmospheric
deposition of TEs released from smelting and mining activities
impacts terrestrial ecosystems and poses a risk to environmental
and public health (Ali and Khan, 2017; Lanier-Christensen, 2015).
Since smelter emissions are notoriously subject to « batch processes
» that vary over time, monitoring approaches must provide time-
integrated information to avoid being merely an
instantaneous snapshot.

Monitoring studies that combine the use of several tools
reflecting environmental conditions found in different
compartments have the potential to accurately gather valuable
and time-integrated data on TE atmospheric deposition in
adjacent environments (Cucu-man & Steinnes, 2013; Hussain
et al., 2022; Gačnik et al., 2024). For example, passive air
samplers (PAS), such as TE-200-PAS, collect pollutants by
spontaneous adsorption within a polyurethane foam (PUF) filter
that has a high retention capacity and low sensitivity to sudden
fluctuations in pollutant concentrations (Chaemfa et al., 2009; Gaga
et al., 2019). They do not require energy input, and are therefore
relatively inexpensive, making them ideally suited for environmental
monitoring on large spatial scales and for integrating TE
atmospheric deposition over several months in remote sites (Li
et al., 2018; Sawvel et al., 2015; Zhang et al., 2022). In addition,
biomonitoring organisms are useful to measure levels of bioavailable
TEs, i.e., those absorbed in tissues (Cecconi et al., 2021; Heikens
et al., 2001; Loppi et al., 1997). Lichens in particular are well-known
biomonitors because of their capacity to absorb airborne pollutants
(Conti and Cecchetti, 2001; Kousehlar and Widom, 2020; Monaci
et al., 2022). Due to their poikilohydric nature, they absorb water,
minerals, and contaminants associated with atmospheric deposition
(wet and dry) via their entire surface over longer time periods than
PAS (Jeran et al., 2007; Loppi et al., 1997). They accumulate TEs in
excess of their physiological requirements, making them of prime
interest for biomonitoring of mining areas. Several lichen species
such as Parmelia sulcata, Evernia mesomorpha, Usnea spp., and
Cladonia rangiferina have already been used to assess atmospheric
TE contamination in the boreal forest located in Québec, Canada
(Carignan and Gariépy, 1995; Carignan et al., 2002; Darnajoux et al.,
2015; Widory et al., 2018). To determine TE concentrations in the

soil, some studies suggested the use of wolf spiders (Lycosidae) as
biomonitors (Jung et al., 2005; Larsen et al., 1994; Ponton et al.,
2018). Arthropod predators consume prey inhabiting the soil
leading to bioaccumulation in their tissues, which can inform on
TE bioavailability within the terrestrial food chain (Polis and Strong,
1996). Approaches based on multi-monitors can provide a better
understanding of the contamination emanating from the smelter
and mining activities as well as to reflect the level of TE exposure
over long periods.

Over more than 90 years, the mining activities of the Horne
Copper Smelter have released considerable amounts of elements
such as Cd, Cu, Pb, Zn, and As, chronically affecting the terrestrial
ecosystems nearby (Bonham-Carter et al., 2006; Darnajoux et al.,
2015; Hou et al., 2006; Ministère de l’Environnement et lutte
contre les Changements Climatiques, 2018; Telmer et al., 2004).
Accumulation and effects of these non-essential and toxic elements
were extensively studied in past decades (Couture and Pyle, 2008;
Defo et al., 2018). In addition to these contaminants, other TEs
have not been measured consistently in the area such as Ba, Cr, Li,
Mo, Sb, Se, rare earth elements (REEs), and the platinum-group
metals (PGM). Given the Horne Smelter is considered as the
largest processor in North America of precious metal-rich
materials (e.g., electronic circuit boards, computer parts,
hazardous industrial waste, complex concentrates) (Aviseo
Conseil, 2019), there is a knowledge gap regarding the emission
of contaminants of emerging concern in the area. The effects of
these contaminants including REEs have only recently attracted
the attention of the scientific community because of their
increasing concentrations in aquatic and terrestrial ecosystems
(Brown et al., 2019; Khan et al., 2017; MacMillan et al., 2017; Yin
et al., 2021) and the lack of current environmental regulation.

To address the knowledge gap regarding TEs released from the
Horne Smelter’s recycling activities, we aimed to assess the
environmental contamination of a wide range of TEs in
terrestrial ecosystems near the Horne Smelter using
complementary monitoring tools such as PAS, lichens and
spiders. By making comparisons with TE concentrations
documented in other regions, we also provided some context to
the TE levels found in the most contaminated sites as well as the
estimated “geochemical background” for the Rouyn-Noranda
region. It was hypothesized that TE emissions from the Horne
Smelter also release other TEs that are not included in current
biomonitoring studies. These findings will help to better identify the
tools needed to track contaminants of historic and emerging
concern in the Rouyn-Noranda area during future environmental
research activities. Such information can also provide new insights
into the nature of environmental emissions derived from the
electronic waste recycling activities (e.g., releasing of emerging
contaminants), which will be applied not only in similar North
American smelters, but also in ones located around the world.
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2 Materials and methods

2.1 Sites and sample collection

The sampling sites are located near the Horne Smelter (Rouyn-
Noranda, region of Abitibi-Témiscamingue, Québec, Canada)
(Figure 1). Previous studies reported that the most contaminated
sites were downwind of the prevailing winds (eastward elongation;
Bonham-Carter et al. (2006)) and within the first 100 km from the
smelter (Ettler, 2016; Telmer et al., 2004). Based on these results,
sampling sites (n = 24) were selected along a 52 km transect starting
from the Horne Smelter and oriented towards the southeast
(Figure 1; Supplementary Table S1). All sites are far from other
potential sources of TEs such as roads, landfills, settling ponds and
mines. To minimize inter-site variability resulting from forest
diversity near the Horne Smelter, sampling was only carried out
in jack pine stands, an environment with rock outcrops where jack
pine (Pinus banksiana), black spruce (Picea mariana), lowbush
blueberry (Vaccinium augustifolium), and sheep laurel (Kalmia
augustifolia) are commonly found (Kenkel, 1986). These
conditions also meet the optimal ecological conditions for finding
reindeer lichen C. rangiferina as well as wolf spiders Lycosidae
(Koponen, 1987). In addition, the landscape topography of the
specific sites is suitable for our purposes because they all have

similar elevation (from 282 to 366 m) and they are directly
exposed to the atmospheric flow carrying stack emissions loaded
with TEs from the smelter (Aznar et al., 2008).

2.1.1 Passive air sampler
Passive air samplers (TE-200-PAS, Tisch Environmental)

equipped with polyurethane foam (PUF) collection substrate
(TE-1014, Tisch Environmental) were used to assess the relative
atmospheric TE concentrations in 16 sites (Supplementary Table
S1). To minimize background TE concentrations, PUF filters were
pre-cleaned prior to deployment using the method optimized by
Gaga et al. (2019). PUF filters were rinsed three times with milli-Q
water before being ultrasonicated in 1% HNO3 (volume/volume, v/v)
for 90min, followed by a thorough rinse with milli-Q water to remove
any residual acid. The pre-cleaning approach significantly reduced the
background TE concentrations in the PUFs (Supplementary Table
S2), achieving an 18%–92% reduction of TE concentrations, allowing
several elements (i.e., As, Ni, V, Se, Ag, Cd, Sb) to fall below the
method detection limit (Supplementary Table S2). The acid-washed
PUF filters were carefully placed in the TE-200-PAS while wearing
gloves. The TE-200-PAS were then fixed to trees approximately 4 m
above the ground for 3 months (June to September 2021). The PUF
filters were recovered after their 3-month deployment, placed in
plastic bags, and stored at room temperature under dark

FIGURE 1
(A) Location of sampling sites (n = 24) along the south-east transect (≈50 km). Sites where passive atmospheric samplers (PAS) and biomonitors
(Cladonia rangiferina, Lycosidae) were exposed or collected are indicated; (B) Location of the city of Rouyn-Noranda in the province of Québec, Canada;
(C) Wind rose estimates from 1989 to 2019 provided by the Meteorological Service of Canada, climate ID 7086716 et 7086720 (ECCC, 2019). For more
details, see Supplementary Table S1.
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conditions for preservation prior to TE measurements (Gaga
et al., 2019).

2.1.2 Biomonitor sampling
To assess TE contamination in terrestrial ecosystems, two

different biomonitors were used: the lichen C. rangiferina and
spiders from the Lycosidae family. Lichens were identified as C.
rangiferina based on the substrate, the growth form and the color
using the flora guide Lichens of North America (Brodo et al., 2001).
Samples (n = 4–5) were carefully collected from each sampling site
(23 sites, Supplementary Table S1). To standardize samples and
minimize contamination from soil, only the top 2.5 cm of the lichen
thallus lobe tips were collected in the laboratory following
indications described in Widory et al. (2018). In parallel, we
visually estimated the abundance of C. rangiferina in terms of %
ground cover within 1 m × 1 m quadrats (n = 5 per site) (Gagnon
et al., 2021). Spiders were identified as Lycosidae based on
morphology and other characteristics (arrangement of their eyes,
ground-dwelling behavior). Individual spiders (n = 3–5) were gently
hand-collected from populations at each sampling site (23 in total,
Supplementary Table S1). Most Lycosidae sampled were adult
females with an egg sac. To reduce differences in TE content due
to size, only spiders weighing under 10 mg dw (dry weight) were
analyzed. Samples of both biomonitors were then preserved in liquid
nitrogen before being rinsed with an EDTA solution (3 mmol L−1) to
remove adsorbed TE from their surface. Each sample was placed in
15 mL metal-free tubes for TE measurement.

2.2 Trace element measurements

All lab wares (i.e., tubes, microtubes, spatulas) were soaked in
15% (v/v) nitric acid and rinsed with milli-Q water several times to
minimize contamination. For PUF filters and lichens, a microwave-
based digestion was performed (Gaga et al., 2019; Charette et al.,
2021), while for spiders, a less aggressive digestion using an
incubator was applied (Rosabal et al., 2012). Each PUF filter was
divided into thirds of ~100 mg each for determination of total TE
concentrations. Microwave digestion of these thirds was performed
in a mixture of nitric acid (7.5 mL; 67%–69% HNO3, Optima grade,
Fisher Scientific) and hydrogen peroxide (2.5 mL; 30% H2O2,
Certified ACS, Fisher Scientific) for 20 min at 200°C in sealed
polytetrafluoroethylene (PTFE) vessels (Multiwave 5000, Anton
Paar) (Gaga et al., 2019). Ultrapure milli-Q water was then
added to reach a total volume of 100 mL before measurements.
C. rangiferina samples were freeze-dried for 24 h and homogenized
(reduced to fine dust). Analysis of total mercury (THg) was
performed on freeze-dried lichen samples using a direct mercury
analyzer (DMA-80, Milestone Corp.). Digestion of lichen samples
for determination of total TE concentrations was performed in a
solution of hydrochloric acid (1 mL; 32%–35% HCl, Optima grade,
Fisher Scientific), nitric acid (3 mL; 67%–69% HNO3, Optima grade,
Fisher Scientific) and hydrogen peroxide (500 μL, 30%–32% H2O2,

Optima grade, Fisher Scientific). To complete the digestion, samples
were heated to 200°C for 20 min in closed pressurized vessels in the
microwave oven (Multiwave 5000, Anton Paar) (Charette et al.,
2021). Ultrapure milli-Q water was then added to reach a total
volume of 15 mL. Lycosidae samples were freeze-dried for 24 h and

homogenized before digestion in nitric acid (500 μL, 67%–69%
HNO3, Optima grade, Fisher Scientific). They were heated at 65°C in
an incubator for 4h. Once samples cooled, hydrogen peroxide
(250 μL; 30%–32% H2O2) was added to oxidize organic matter
(Rosabal et al., 2012). Ultrapure milli-Q water was then added to
reach a total volume of 15 mL before TE measurement. All TE
measurements were performed using an inductively coupled
plasma-tandem mass spectrometer (ICP-QQQ, 8900 Triple
Quadrupole, Agilent). Method detection limit for each studied
TEs is shown in Supplementary Table S3.

To ensure the accuracy of measured concentrations and to assess
the degree of TE extraction of our different digestion protocols,
various certified reference materials were also analyzed. Reference
materials NIST1573a (tomato leaves, National Institute of Standards
and Technology, USA) and BCR-670 (Duck weed, Institute for
Reference Materials and Measurements, European Commission)
were used to assure quality measurement in lichens for
conventional TEs and REEs, respectively. For Hg measurements,
blanks were analyzed every 10 samples (No Hg contamination was
observed), and certified reference materials (CRMs) TORT-3
(lobster hepatopancreas, National Research Council of Canada)
and DORM-2 (fish protein, National Research Council of
Canada) were used for quality control. Average Hg recoveries
were 97.8% ± 0.3% (n = 3) for DORM-2 and 97.8% ± 2.4% (n =
9) for TORT-3. For spiders, the digestion was evaluated using
DOLT-5 (dogfish liver, National Research Council of Canada) for
conventional TEs and BCR-668 (mussel tissue, Institute for
Reference Materials and Measurements, European Commission)
for REEs as these CRMs have already been used for invertebrates
(Marginson et al., 2023). The recovery percentages (Supplementary
Table S3) for most TEs under study varied from 70% to 120%, with
the notable exception of La in BCR-668 which did not meet our
quality control requirements; La data were therefore removed from
this data set. The detection limit for each TE measured is shown in
Supplementary Table S3. NIST1573a, BCR-670 and BCR-668 were
used because they are the only CRMs available for REEs in the
analyzed matrices.

2.3 Statistics and data handling

All numerical data are presented in dry weight and as the
arithmetic mean (± standard deviation, SD). Statistical tests were
performed using SigmaPlot (10.0) and R (3.6.1). Normality was
confirmed using Q-Q plots and the Shapiro-Wilk test. Outliers
were identified using Grubbs test and removed from the dataset
(<1% of samples). Regression analyses were performed to explore
the relationship between TE concentrations and distance from
the Horne Smelter. Exponential decay relationship was explored
for all metals and three parameters (y0, a, b) were determined
(Equation 1) when significant regressions were obtained. The
determination coefficient (R2), regression line and equation were
reported when the model was significant (p < 0.05). The y0
parameter of Equation 1 was used to estimate TE baseline
concentrations.

y � y0 + a · e−bx (1)
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Spatial metal concentration gradients ([M]maximum/[M]minimum)
for each monitor collected over 52 km were calculated using mean
TE concentrations in each sampling site. To determine spatial
differences compared to the site closest to the Horne Smelter
(i.e., the presumed most contaminated site), a Kruskal-Wallis test
followed by Dunn’s test (after Bonferroni correction) was applied for
TE measurements in samples of PAS, lichen and spiders. The sum of
REEs (ΣREE) included Y (and excluded La) as it was strongly
correlated to the other REEs (Supplementary Table S4; R2 =
0.85–0.99). REE concentrations in lichen were normalized by the
Post-Archean Australian Shale values (PAAS) to assess possible
anomalies in their relative proportion, which were calculated using
Equation 2 (example from Ce) (Dang et al., 2023; Pourmand
et al., 2012).

Ceanomaly � 2 · CePAAS
LaPAAS + PrPAAS

(2)

Non-linear models were used to describe the relationship
between C. rangiferina ground cover (%) and distance
from the smelter Equation 3. Also, the exponential decay
relationship (Equation 1) was explored to relate TE
concentrations in lichens with the C. rangiferina ground
cover (%).

y � a

1 + e−
x−b
c( ) (3)

3 Results

3.1 Atmospheric trace metal contamination

The concentrations in deployed PUF-PAS showed significant
exponential decay relationships with the distance from the Horne
Smelter (p < 0.05) for a variety of TEs, including As, Ba, Cd, Cu, Fe,
Mn, Mo, Pb, V, Zn and some REEs (Y, Pr and Nd). The negative
relationship for Co was linear (p = 0.003) (Figure 2; Supplementary
Figure S1). The exponential decay relationships observed between
TE concentrations in filters and the distance from the smelter
showed a high level of association (based on R2 values), varying
from 0.50 (Zn, Y) to 0.97 (Pb, Se) (Figure 2; Supplementary Figure
S1). High spatial concentration gradients (ratio: [M]maximum/
[M]minimum) were observed along the 52 km transect sampled,
where this ratio ranged from 1.7 (Co), 4.5 (Zn), 83.3 (As) to 375
(Cu) (Supplementary Table S5). For most metals, the PUF-PAS
deployed after 28.7 km showed significant differences in TE
concentration compared with the measurement in the PUF-PAS

FIGURE 2
Relationship between concentration (μmol g−1 dw) of As (n = 36), Pb (n = 48), Cu (n = 36), Y (n = 47), Pr (n = 47) and Nd (n = 47) measured in PUF-PAS
and the distance from the Horne Smelter. Equation, coefficient of determination (R2) and p-value (p) are indicated in the panels.
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closest to the Horne Smelter at 1.4 km (i.e., the most contaminated
site) (Supplementary Table S6).

3.2 Trace metal contamination in
biomonitors

Similar to the passive air sampler results, highly significant
exponential decay relationships were observed between TE
concentrations in biomonitor samples and distance from the
Horne Smelter (Figures 3, 4, Supplementary Figures S2–S4).
However, the decay relationship was much less steep compared
to PUF-PAS. For lichens, this relationship was significant for a wide
range of TEs (As, Ag, Ba, Pb, Se, Sb, Cu, Ti, Co, Cd, Hg, Ni, Zn, Fe,

Mo, V, La, Ce, Pr, Nd, Sm, Gd, Y, Tb, Dy, Ho, Er, Yb) (Figures 3, 4;
Supplementary Figures S1–S4), while for spiders, significant
exponential decay relationships were observed only for As, Se, Ag
and Pb (Figure 3). For Cu and Cd in spiders, a linear relationship
with the distance from the Horne Smelter was observed. The spider
samples showed TE concentrations that are, in general, considerably
greater than the concentrations measured in lichens (more than
50 times higher for Cd). Based on concentrations in lichens and
spiders, TE enrichment generally extended up to 28.7 km from the
smelter (similar to PAS measurements), after which the
bioaccumulation concentrations significantly differed from the
TE concentrations of the more contaminated site located at
1.4 km (Supplementary Tables S7–S9). We observed high spatial
bioaccumulation gradients for elements previously reported in the

FIGURE 3
Relationship between concentration in biomonitor samples (μmol g−1 dw) of As, Se, Cu and Cd and the distance from the Horne Smelter. Lichens are
in the left panels and spiders in the right panels. Equation, coefficient of determination (R2) and p-value (p) are given.
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area (e.g., As, Cd, Cu, Zn, Pb) as well as for unstudied elements (e.g.,
Co, Mo, V, Ag, REEs) (Supplementary Table S10).

Despite clear REE enrichment in lichens, where Nd showed the
strongest spatial gradient among REE members (19.3), the REE
patterns in lichen samples reflect their relative natural abundance in
bedrock (Supplementary Figures S5, S6). The average REE
concentrations in lichens display a log-linear pattern decreasing
with atomic numbers, following the Oddo-Harkins rule, and is
consistent regardless of REE concentration (Supplementary
Figure S6A). The PAAS-normalized REE concentrations in
lichens showed that heavy REEs (i.e., Tb, Dy, Ho, Er, Yb) are
slightly enriched compared to light REEs (i.e., Ce, Pr, Nd, Sm)
(Supplementary Figure S6B). The REE patterns in lichen samples
also exhibited a slight positive Gd anomaly that is consistent
regardless of REE concentration.

3.3 Effect on lichen abundance

We recorded the presence of C. rangiferina at a minimum
distance of 2.7 km from the smelter. The site closest to the
smelter was also surveyed but C. rangiferina was absent.
Expressing the impact of reported TE contamination on C.
rangiferina abundance, we observed that vegetated ground cover
increased with the distance from the Horne Smelter. In the first 5 km
from the smelter, C. rangiferina presence was sparse, with ground
cover <1%. The abundance of lichens is considerably greater beyond
10–20 km from the smelter, although there was important variability
in lichen ground cover within sites (Figure 5A). The bioaccumulated
concentrations of Hg (p: 0.05; R2 = 0.69) and Ag (p: 0.05; R2 = 0.58;
data not shown) were correlated with lichen abundance in the
field (Figure 5B).

FIGURE 4
Relationship between concentration (μmol g−1 dw) of La (n = 114), Ce (n = 114), Pr (n = 114), Nd (n = 114), Sm (n = 99), Gd (n = 106), Er (n = 77) and
ΣREE (n = 114) in lichens samples and the distance from Horne Smelter. Equation, coefficient of determination (R2) and p-value (p) are given.

Frontiers in Environmental Chemistry frontiersin.org07

Dupont et al. 10.3389/fenvc.2025.1505053

https://www.frontiersin.org/journals/environmental-chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fenvc.2025.1505053


4 Discussion

4.1 Atmospheric contamination

Airborne particulates emitted from smelting operations are often
associated with higher concentrations of TEs such as As, Cd, Cu and Pb
in the surrounding environments than the natural background values
(Kasongo et al., 2024). Smelter-derived particulate emissions from a
point source have been shown to induce halo-like contamination
patterns, resulting from differential settling due to particle size
(Csavina et al., 2011; Csavina et al., 2014; Berryman et al., 2024). The
PUF-PAS measurements in this study are consistent with emissions
from a point source and showed a clear enrichment within the first
28.7 km of the smelter for most of the TEs studied, which could be
related to airborne particles emitted from the smelter. The highest
maximum/minimum concentration ratios estimated were for Cu
(375), Pb (184), and As (83), respectively, which is comparable with
reported stack emissions and field observations in the vicinity of other
copper smelters (Fernández-Camacho et al., 2012; Svoboda et al., 2000;
Zhang et al., 2022). In addition to Cu, Pb and As, there were also
significant spatial concentration gradients for TEs previously unreported
in this region such as Ba, Mo, Y, Nd and Pr. The ability of PUF-PAS to
detect REEs (i.e., Y, Nd, and Pr) in ambient air is supported by previous
studies where dispersion of REEs near smelting facilities was found to be
primarily mediated by the atmospheric deposition of fine REE-laden
particles (Brewer et al., 2022; Wang et al., 2014). These newly detected
elementsmight be associated with the smelter’s recycling of e-wastes and
hazardous materials, suggesting these recycling actions contribute to
environmental TE contamination (Bi et al., 2010; Song and Li, 2014). As
such activities are expected to increase in coming years, more
environmental monitoring efforts should be performed in the future
for these emerging TEs.

According to our passive samplers, sites located further away in
forested ecosystems (more than 28.7 km from the smelter) showed a
stable and relatively low concentration of TE-rich airborne particles,
which contrasted with the deposition of TE-enriched smelter dust
found up to 100 km away from the Horne Smelter in previous
studies (Knight and Henderson, 2006; Telmer et al., 2006). The
implementation of emission reduction measures taken in recent

decades may partly explain why PUF-PAS measurements detected
atmospheric TE enrichment at substantially shorter distances
compared to previous studies (Crouse et al., 2019; Diener and
Mudu, 2021; Wolf et al., 2020). However, the magnitude of
enrichment measured by the PUF-PAS should be viewed with
caution as they showed variations in their affinity for different
TEs and particle sizes (Gaga et al., 2019; Li et al., 2018). Metals
that tend to be found in very fine particles (Cu, Ni) were shown to
have significantly higher absorption rates in the PUF than those that
are bound to the coarse fraction. In addition, it has been shown that
the “unfilterable” phase, comprising gaseous species and solutes in
filter-penetrated droplets, accounts for a considerable proportion of
the atmospheric TE content, leading to underestimation when
considering only the particle collectors (Zhang et al., 2022).
Despite the fact that smelter emissions are notoriously subject to
batch processes (Ministère de l’Environnement et lutte contre les
Changements Climatiques, 2018), the PUF-PAS devices used
captured a 3-month snapshot of TE contamination in airborne
particles. Passive samplers have the potential to provide low-cost
alternatives to traditional air sampling techniques and here they
demonstrated their potential to meet the broad sampling
requirements posed by smelters, particularly in remote or
logistically constrained environments (Kasongo, et al., 2024).

4.2 Contamination in terrestrial
environments

Similar to PUF-PAS measurements, regression analyses of TE
concentrations in both biomonitoring organisms showed
contamination patterns typical of a point source emission (Ettler,
2016; Fry et al., 2020; Stafilov et al., 2010). Numerous studies have
reported analogous patterns using terrestrial biomonitors such as
lichens (Bari et al., 2001; Cloquet et al., 2006; Fry et al., 2020;
Grodzińska et al., 1999; Gačnik et al., 2024), but none have
measured a range of TEs (including contaminants of emerging
concern) as broad as in this study. We found a high TE
concentration gradient for Pb, Cd, Ni, Sb, Zn, and Cu, which is
comparable with previous reports of particulate contamination and

FIGURE 5
Relationship between C. rangiferina ground cover (%, n = 4 per site) in 22 sampling sites and (A). The distance from Horne Smelter. (B) Mean
concentration of Hg in C. rangiferina. Equation, coefficient of determination (R2) and p-value (p) are given.
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likely reflects the major TEs emitted from the Horne Smelter.
Consistent with the atmospheric particles analyzed from the PAS,
various elements (e.g., Mo, REEs) were newly reported for this region,
showing relatively slight TE gradients, but with significant spatial
differences compared to the TE concentrations of the closest site to the
Horne Smelter. These results reveal gaps in the monitoring of smelter-
derived inorganic pollution in the Rouyn-Noranda region,
particularly for emerging contaminants such as REEs, which are
currently unregulated (Gwenzi et al., 2018). Since several TE
measured in lichens are considered strategic and critical metals
(e.g., Cu, Ni, Co, REEs, etc.) because of their increasing use in
electronics, a link between their emission and the recycling of
e-waste and hazardous materials at the smelter is suspected (Song
and Li, 2014). Likewise, Sb, also found in the lichens in this study, has
been shown to be directly related to emissions from e-waste recycling
facilities (Bi et al., 2010). The presence of V in lichens suggests that
some particles may be emitted from the sulfuric-acid plant adjacent to
the smelter, where V2O5 is used as a catalyst to oxidize SO2 to SO3

(Samuel et al., 1989; Zdanowicz et al., 2006).
Lichen samples also showed TE enrichment extended to

approximately 28.7 km from the smelter in the southeast direction,
but still lower than the spatial TE deposition reported mostly 20 years
before (Knight andHenderson, 2006; Telmer et al., 2006). AlthoughPUF-
PAS capturesfine atmospheric particles and lichens are able to trap coarse
particles within their medulla, both monitors were jointly able to detect
significant metal concentration differences in the last sampled 35 km
compared to the closest sites (i.e., 3-35 km) to the Horne Smelter. This
consistency could reflect a high connection between atmospheric
emissions and deposition of various TEs emitted from the Horne
Smelter in sampled forest ecosystems. Interestingly, these spatial
differences are not only observed for TEs previously found in the area
(i.e., As, Cd, Cu, Pb) but also for newly detected TEs (REEs, Co, Mo). In
addition, the fact that these two monitors, which provide different time-
integrated information (for example, 3 months for PUF-PAS, some years
for lichen), yielded similar transect spatial results, means no significant
changes in TE deposition patterns occurred in recent years.

Regarding the magnitude of TE accumulation in the vicinity of a
smelter, Grodzińska et al. (1999) used the lichen Cladonia stellaris to
conduct a biomonitoring study near the Ni-Cu smelter complex in
Monchegorsk, one of the most polluted cities in Russia. Compared
to their results, in our study lichens sampled at the site closest to the
Horne Smelter had similar TE concentrations for Fe, Al, Cu, Cd, Cr,
Pb and Zn, but an order of magnitude lower for Co, Mn and Ni.
Similarly, a study conducted near the Cu-Ni smelter in the Finnish
city Harjavalta reported concentrations of Cu, Ni, Zn, Fe, Mn, Cd,
and Pb in C. rangiferina that aligned closely with the maximum
concentrations observed in our lichens (Salemaa et al., 2004)
(Supplementary Table S11).

Metal concentrations for all studied TEs (except Cr) in areas
farther from the smelter were estimated by exploiting the
relationship between their concentration in lichens and the
distance from an isolated point emission source (Supplementary
Table S12). A large-scale study of the TE concentrations in
peltigeralean lichens in northern Québec showed Al, Ti, V, Fe,
Co, Ni, Cu, Zn, Mo, and Cd levels similar to those calculated from
our regression-based estimates of the baseline values for C.
rangiferina lichens (Darnajoux et al., 2015). However, our
regression-based approach showed Mn concentrations that were

an order of magnitude lower, and Pb levels that were 6 times higher
than those from Darnajoux et al. (2015). Furthermore, estimated
C. rangiferina Cd, Cu and Pb concentrations exceeded those found
in terricolous lichen Peltigera canina from Yukon Territory,
Canada (Pouillé et al. 2024). It is worth noting that
comparisons between species of differing genera may be
questionable due to the specific physiology and distinct
morphologies of the species. Fortunately, a study conducted by
Chiarenzelli et al. (2001) in a remote region of northern Canada
(near Otter Lake, Nunavut) showed that concentrations obtained
using C. rangiferina are of the same level as our measurements for
most TEs, including As, Ag and REEs.

While metal quantification in C. rangiferina provided valuable
data, it remains unclear to what extent the observed TE enrichment
is due to current smelter operations and to what extent it is due to
resuspension of soil particles containing historical TE deposits.
Widory et al. (2018) used the relationship between 206Pb/204Pb
isotope ratio and Pb concentration in C. rangiferina samples to
determine its main atmospheric sources in the Rouyn-Noranda area.
Their results showed that Pb enrichment east of the city is the result
of binary mixing between emissions from the Horne Smelter and
regional Pb background. Although a rigorous source apportionment
analysis was not the focus of this study, the Pb enrichment in lichens
showing a strong correlation (R2 ≥ 0.89) with the concentrations of
Ni, V, Mo, Ag, Sb, Cu, As, Co, Se, Cd, Fe, Al, Zn, ΣREE across
2 orders of magnitude suggests a similarly proportioned mixed
origin for these TEs (Supplementary Table S13). A slightly
weaker correlation for Mn (R2 = 0.83) compared to the other
TEs could be due to a relatively higher proportion of Mn from
geogenic sources (Bargagli et al., 2002). As for Ba (R2 = 0.75), Ti
(R2 = 0.63) and Cr (R2 = 0.51), the weaker association with Pb
concentrations in lichens may be related to a more pronounced
mixing with traffic-related emissions (Birmili et al., 2006; Sakata
et al., 2021).

The REE log-linear decreasing pattern observed in lichen
samples is similar to that previously observed in other sites
(MacMillan et al., 2017; Picone et al., 2022) (Supplementary
Figure S6A). However, PAAS-normalized concentrations in
lichens typically show a clear downward slope, with higher
light REEs enrichment relative to heavy REEs. Our results
instead showed a somewhat small deviation from a horizontal
line, with even a slight enrichment in heavy REEs (Supplementary
Figure S6B). This trend should be interpreted with caution
because the concentrations further from the suspected source
were very low. Apart from the slight Gd anomaly, which may be
associated with anthropogenic sources (Lafrenière et al., 2023),
our results essentially indicate that the bioaccumulation patterns
were relatively uniform across the REE group. This uniformity
leads us to suggest that REE enrichment in the vicinity of the
Horne Smelter is not particularly associated with e-waste and
hazardous recycling activities, but rather to complex concentrate
inputs to the smelter containing some amount of REEs. However,
analyzes of representative samples of the smelter feed materials
would be required to conclusively establish this, especially since
no REE enrichment has ever been identified near a copper smelter
with recycling activities (Parviainen et al., 2019).

Measurements of C. rangiferina ground cover shows that this
biomonitor does not grow near the Horne Smelter. The same
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situation is observed near the Harjavalta smelter, where C.
rangiferina is only present sparsely starting from 2 km away
(Salemaa et al., 2004). The sigmoidal relationship between
distance from the smelter and abundance of C. rangiferina at
the sampling sites is consistent with what would be expected near a
point contamination source. Significant correlations between the
abundance of C. rangiferina in the field and its TE bioaccumulation
were observed, particularly for Hg (R2 = 0.69) and, although to a
lesser extent, for Ag (R2 = 0.58). These findings are consistent with
the results of Puckett (1976) who reported that both elements are
the most toxic metals to lichens, altering their cellular membrane
and inhibiting photosynthesis.

With respect to spiders as biomonitors, spatial differences were
observed only for As, Se, Cu, and Cd. Correlations have been shown
between TE bioaccumulation in invertebrates and the soil TE content
(Heikens et al., 2001), indicating the availability of these elements
from smelter-contaminated soils. Mean concentrations of
bioaccumulated Cu and Cd in spiders from the sites closer to the
Vaudray-Joannès Lakes Biodiversity Reserve are at comparable levels,
and of the same order of magnitude as studies in other part of the
world using ground-dwelling spiders as biomonitors (Jung et al., 2005;
Larsen et al., 1994). Previous research conducted near the Vaudray-
Joannès Lakes Biodiversity Reserve showed limited inter-individual
variability of TE concentrations in Lycosidae (Ponton et al., 2018), but
our measurements were more variable within sites, limiting the
observation of spatial trends along the studied transect for all TEs.
The spider samples for this study were only standardized for weight,
which may explain the amount of interindividual variation observed.
It is well known that biotic factors such as diet, sex, and age structure
can affect the bioaccumulation of TEs in organisms. Also, the lack of
spatial differences for the other TEs studied compared to lichens
(which is a primary producer) indicates that spider exposure to
polymetallic contamination is likely associated, in part, with the
dietary pathway as a consumer, rather than being solely
atmospheric like lichens. Spiders are also able to reflect the TE
deposition from the smelter, but some ecological processes may
alter this spatial TE concentration patterns.

5 Conclusion

The present study used complementary monitoring approaches
(based on PAS, lichen and spiders) to assess the atmospheric
deposition of a wide range of TEs in the areas located in the
southeast transect from the Horne Smelter. Data generated from
these three environmental tools consistently demonstrated
contamination patterns typical of point source emission for
metals already studied in this area (e.g., Cd, As, Cu, Zn, Pb) as
well as for newly reported TEs. These results illustrate the need to
monitor a wider variety of TEs (including REEs, Mo, V, Ag, Co) in
upcoming smelter biomonitoring efforts. In addition, significant
spatial differences were observed between the closest sites to the
smelter, which indicated a high TE concentrations, and further
locations (more than 28.7 km), which showed stable and relatively
low TE concentrations. Since the sites with the highest levels of
atmospheric TEs in our study include primarily the urban and most
densely populated sites in Rouyn-Noranda, more efforts should be
made to reduce emissions at the source and to intensify research on

the risks associated with exposure to such a complex mixture of TEs
(Cao et al., 2017). Additionally, it would be worthwhile to investigate
the source apportionment of different TEs using multi-isotope
analysis to confirm that they are indeed co-released from the
same source. Paleo-environmental studies using both biotic and
abiotic archives for temporal reconstruction of TEs contamination
from the smelter, particularly for the recently reported TEs, are also
highly recommended. Our study provided concentrations for
various TEs including those of emerging concern (REEs) with
comparable levels to those obtained in other regions without any
anthropogenic impact. These data will help developing better
monitoring of polymetallic contamination associated with
smelting operations and electronic waste recycling, which is of
major importance in the area and is likely to continue growing
in the near future. The combination of various monitors as strategy
to tackle TE contamination proves to be an optimal way to provide
time-integrated information and not an instantaneous snapshot of
the environmental quality of monitored terrestrial environments.
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