
TYPE Original Research

PUBLISHED 21 February 2025

DOI 10.3389/frevc.2025.1434796

OPEN ACCESS

EDITED BY

Mostafa Esmaeili Shayan,

University of Cagliari, Italy

REVIEWED BY

Ali Q. Al-shetwi,

Fahd bin Sultan University, Saudi Arabia

Juan Carlos Belausteguigoitia,

Instituto Tecnológico Autónomo de

México, Mexico

*CORRESPONDENCE

Daniel Llarens

daniel.llarens@grupome.com

RECEIVED 18 May 2024

ACCEPTED 27 January 2025

PUBLISHED 21 February 2025

CITATION

Llarens D (2025) Electricity markets price

projection: an innovative approach for risk

assessment based on a convolution

algorithm. ERCOT case study.

Front. Environ. Econ. 4:1434796.

doi: 10.3389/frevc.2025.1434796

COPYRIGHT

© 2025 Llarens. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.
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In electricity markets, the determination of future energy prices is relevant for

risk assessment associated with investment projects in new generation capacity

and in the evaluation of risks associated with the operation of the market whose

mitigation requires increasing the operating reserves in the electrical system.

Traditional methods for estimating energy prices in electricity markets are based

on using simulation models that represent the expected future operation of

the electricity market. These models fail to estimate market prices when the

greatest uncertainty that a�ects the system reserve is due to the unavailability

of the generation fleet and the volatility of the production of renewable wind

and solar generation. This document presents a new methodology that allows

determining energy prices in electricity markets that is considered superior

to traditional methods. It is an innovative approach for risk assessment in

power markets with high participation of renewable generation (wind, solar)

and thermal generation. The model determines market prices considering

the randomness in the typical production of renewable generation and the

randomness in the availability of thermal power plants due to forced failures.

Market prices are determined through a convolution algorithm applied to the

probability functions that characterize energy demand, the randomness in the

production of renewable generation, and the availability of thermal generation

units. The calculation methodology is considered superior to Monte Carlo-type

methodologies used by other simulation programs. A case study is included

where the electricity market of Texas USA (ERCOT) is simulated and comparing

the market prices resulting from the new simulation model with the real market

prices recorded in the year 2022. The market prices determined by the proposed

new methodology provide relevant information for consumers to evaluate

energy purchase alternatives correctly and for investors in new generation

capacity to determine the profitability of their projects. In particular, it allows the

correct determination of energy prices in periods of scarcity allowing storage

media (BESS) to be correctly sized so that they can provide a quickly managed

reserve and thus improve the reliability of the electrical system.
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electricity markets, market prices, risk assessment, economic dispatch, convolution

algorithm, marginal cost, reliability, optimization

Frontiers in Environmental Economics 01 frontiersin.org

https://www.frontiersin.org/journals/environmental-economics
https://www.frontiersin.org/journals/environmental-economics#editorial-board
https://www.frontiersin.org/journals/environmental-economics#editorial-board
https://www.frontiersin.org/journals/environmental-economics#editorial-board
https://www.frontiersin.org/journals/environmental-economics#editorial-board
https://doi.org/10.3389/frevc.2025.1434796
http://crossmark.crossref.org/dialog/?doi=10.3389/frevc.2025.1434796&domain=pdf&date_stamp=2025-02-21
mailto:daniel.llarens@grupome.com
https://doi.org/10.3389/frevc.2025.1434796
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frevc.2025.1434796/full
https://orcid.org/0000-0002-7393-7246
https://www.frontiersin.org/journals/environmental-economics
https://www.frontiersin.org


Llarens 10.3389/frevc.2025.1434796

1 Introduction

In many countries around the world, the production and

consumption of electrical energy are organized through Wholesale

Electricity Markets (WEM). Market rules establish the mechanisms

based on which generation dispatch is determined each hour. The

hourly generation dispatch seeks to supply the demand of each hour

with an adequate quality of service at the lowest possible cost.

To meet the aforementioned objectives, the operation of the

market is carried out by Independent System Operators (ISO).

One of the most relevant activities of the ISO is to schedule

the production of all generators in advance so that they know (for

the next hours) the expected operation of their units. This will

allow them to carry out the required actions so that the generation

units are available to produce energy according to the operation

programming carried out by the ISO.

The programming of the operation carried out by the ISO

typically covers one week (168 h), and is also carried out one day

before (Day Ahead) and during the actual operation (real-time).

In systems with a high hydraulic generation component, long-term

operation programming is also carried out (typically for the next 2

years), which aims to program the operation of hydro plants and

the use of their reservoirs with high regulation capacity. that exist

in the electrical system.

To carry out the programming of the operation, the ISOs use

computer programs as tools that solve the optimization problem

(minimum cost) with the technical restrictions that exist in the

electrical system (transmission limits, start and stop times of

generators, the safety conditions of the system, etc.) (Roald et al.,

2023; Allan et al., 1981; Pereira and Pinto, 1985).

To determine the operation schedule, the simulation models

use information from the electrical system: forecast hourly demand,

available power from the generators, intermittent renewable

generation (ERV-Wind/Solar), transmission system configuration,

and the transmission capacity limits of each circuit. It is also

necessary to know the production costs of the generators (fuel and

O&M costs). In some markets, generators offer a price at which

they are willing to produce electrical energy. It is also required to

know the shortage price that is activated when the existing reserve

in the system is reduced below the minimum required to guarantee

the normal supply of demand. It is highlighted that the scarcity

price is usually much higher than the variable production cost of

thermal generators.

The programming of the operation is carried out under

conditions of uncertainty. The main variables that affect the

operation programming are (i) evolution of hourly demand, (ii)

availability of the generation units, (iii) hourly production of the

ERV generators, and in systems with high participation of hydro

generation, the inflows to hydro plants reservoirs, activation of

restrictions imposed by the transmission system.

As a result, Day-Ahead dispatch scheduling generally differs

from Real-Time operation.

1.1 Market prices

At the end of each day, the ISO determines the energy prices in

the market for each hour of the day. The price of energy (Market

FIGURE 1

Hourly variations of Net Demand, with and without Solar PV

generation. Source: data from ERCOT.

Price) is equal to the price offered by the generator that was

dispatched at the time and whose price offered is the maximum.

When the hourly generation reserve is lower than the minimum

required, the energy price reflects the scarcity price.

The ISO does not have, as part of its obligations, to make

projections of future market prices. This implies that market agents

(generators, consumers) do not have information about expected

future market prices that allow them to make decisions about

investments, energy purchases/sales, risk assessments, etc.

To solve this problem, market agents usually use the

same computer programs (simulation model) that the ISO

uses to program the market operation or other software with

similar characteristics (Jedrzejewski et al., 2022).

These programs determine the expected operation of the

generation fleet in the future (within a defined time horizon) and

the expected marginal cost of generation in each hour [Lagrange

multiplier for the (Generation = Demand) constraint]. To take

into account the existing uncertainty regarding the variables that

affect economic dispatch and energy prices, random draws (Monte

Carlo algorithm) are usually used to determine the availability

of generating units. In the case of electrical systems with high

participation of hydraulic generation, the simulation programs

consider different hydraulic contributions to the hydro plants, and

calculation algorithms are used that allow optimizing the use of

water within the calculation horizon.

In electricity markets with reduced participation of hydro

generation (such as the ERCOT of Texas-USA) (Hegar, n.d.), the

greatest source of uncertainty that affects the projection of market

prices are (i) the availability of thermal generation units, (ii) the

production of the generators ERV, and (iii) the occurrence of

operating conditions with low generation reserves that activate

scarcity prices. It is noted that since the scarcity price is much

higher than the production cost of the generators, the activation

of low reserve conditions has the effect of significant increases in

market prices.

Figure 1 presents the hourly variations [Demand (h) – Demand

(h-1)] of the demand in the ERCOT (red curve), for the year 2023.

It is observed demand variations are limited to±5,000 MW.

The hourly variations in demand that are supplied by

thermal generation (net demand) show a greater variation (greater
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volatility) with maximums of ±10,000 MW, which is directly

associated with the volatility in solar production.

The energy transition expected in the future will increase the

share of renewable generation in the electricity markets. As an

example, at the ERCOT it is projected to increase the installed

solar PV capacity by 200% (+30 GW; source: Potomac Economics)

in the next 5 years. This will increase the volatility in demand

that is supplied by thermal generation (Net Demand), resulting in

significant variations in market prices, putting the normal supply

of demand at risk, and increasing the need for adequate forecasts of

the expected future evolution of market prices (Llarens et al., 2022).

This document proposes a new methodology to determine

market prices under the aforementioned conditions which is

considered superior to Monte Carlo-type methods. The proposed

methodology is based on using a convolution algorithm of

independent statistical functions to determine the expected

production of the generating units and the energy market prices.

The convolution algorithm allows consideration in the calculation

of all possible operating states resulting from contingencies in the

generation fleet, resulting in a better quantification of the effect of

scarcity prices on market prices.

A case study is included where the proposed new methodology

is applied to determine market prices in ERCOT of TX, and results

are compared with the real prices of the year 2022.

2 Market prices considering
uncertainty in generators’ availability

In a thermal generation fleet, the availability of the generation

units determines the power available in the market to supply the

demand. A conventional generator has two possible operation

states (Available and unavailable). A Combined Cycle type

generator composed of three generation units (2xTG+ST) has

three operating states. A thermal generation fleet composed of N

conventional generators has 2N possible operating states.

As an example, Figure 2 show the possible operating states

corresponding to a generation fleet composed of three conventional

generation units. The operating states are 23 = 8. A “0” is

indicated when the operating unit is unavailable and a (1) when the

generating unit is available. For each state, the total power results

from the sum of the power of the available units. Each state has a

probability of occurrence (pT) determined by the Failure Rate (q)

of each generating unit.

if g(i) = 0, p(i) = q(i), p(i) = (1− q(i))

pT = p (1) × p(2) × p(3)

i: each generator

g(i)= (0, 1): operative state of the generator (i)

q(i): generator failure rate (i)

Figure 2 shows the resulting probability function. The example

considers three conventional generators (G#1, G#2, G#3). There are

therefore 8 (=23) possible operating states for the three generators.

In the table, the operating state of each generator is indicated by

0 or 1 (0; unavailable; 1: available). The total available capacity

is the sum of the available capacities of each generator in each

state. The probability of each state results from the product of

the probability that each generator is available or unavailable.

The cumulative probability function (Figure 2 right) shows the

probability of having a total power greater than the value of

the abscissa.

It is observed that the probability of having the total power of

the generation fleet available is 54% and that there is a probability

(>0) that the generation fleet has an available power equal to zero.

The production of each generator that supplies a certain

demand at minimum cost results from the economic dispatch of

generation. For this purpose, the price at which the generators

produce energy (VPC), the demand to be supplied and the cost of

insufficient reserve (NSEC) must be defined.

Figure 3 shows an example of calculation considering all the

operating states of the three generators.

To carry out the economic dispatch of generation, the demand

to be supplied (240 MW) and the generation available in each

operating state is considered. The available generation is ordered by

their increasing variable production costs (VPC; fuel cost+O&M).

The cheapest generators are dispatched first until the demand is

met.When the available generation capacity is insufficient to supply

the demand, the residual demand determines the unsupplied

demand (NSE). The market price for each operating state is equal

to the VPC of the unit with the highest VPC dispatched; when there

is NSE, the market price is equal to the NSEC.

It is observed:

• For the same demand (240MW), there are different dispatches

of the generating units and correspondingly different values of

the Market Price.

• Even though the total installed power of the generation fleet

(550 MW) is much higher than the demand to be supplied

there is a probability (>0) of not being able to supply all of

the demand.

• Events with a very low probability of occurrence (low reserve)

determine high market prices.

• The market price probability function has very different P50

(18 USD/MWh) and Paverage (126.72 USD/MWh) values.

2.1 Conclusion

For a conventional generation fleet (with G generators) in

which the availability of the generators is dependent on fortuitous

events (failures), there are N = 2G possible operating states.

Therefore, the market prices will have associated an probability

function (p(i)) that depends on the failure rate of the generating

units. In the example before the Market Prices probability

function is shown in the Figure 4. The average market price is

126.72 [USD/MW].

In Electricity Markets, with high participation of thermal

generators, typically the average market price resulting from all

possible operative states is considered to be representative of the

most probable projected value of market prices. In the following,

the projected average market price will be referred to as the

“expected market price – MkPe.”

Therefore, for a given demand to be supplied (240 MW in the

example before) the expected market price (MkPe) resulting from
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FIGURE 2

Available generation probability function.

FIGURE 3

Operative states probability function. In this example, the market

price of each state corresponds to the marginal cost of generation,

including the cost of not having enough reserve to supply all

demand.

the probability function (p(i)) is equal to 126.72 USD/MWh.

MkPe =

N
∑

i=1

p (i) ×MkPrice(i)

where,

i: each possible operating state

N: total number of possible operating states

p(i): Probability of state (i)

MkPrice (i): Market Price determined for the state (i)

MkPe: Expected Market Price.

The total operating cost ($TC) is also a probability function

since it depends on the production (EG) and operative costs (VPC

= fuel cost + O&M costs) of each generator and the cost of

insufficient operating reserve (NSEC).

The NSEC represents the cost incurred by consumers when

their demand cannot be met due to insufficient generation capacity.

In electricity markets, the NSEC is established as part of the grid

code nd is a key value for generation fleet expansion studies and

reliability studies.

The expected total supply cost ($TCe) for consumers results

from the product of the average production of the generators

valued at their respective production cost (VPC) plus the cost of

insufficient reserve.

$TCe =

G
∑

j=1

EGej × VPCj + NSEe× NSEC

EGej =

N
∑

i=1

p (i) × EGj(i)

NSEe =

N
∑

i=1

p (i) × NSE(i)

Where

$TCe [USD]: total expected supply cost

j: each generator

i: each operating state

G: number of generators

N: number of operating states

p(i): Probability of state (i)

EGj(i) [MWh]: energy generated by the generator (j), in the

operating state (i)

NSE (i) [MWh]: energy not supplied in the operational state (i)

VPCj [USD/MWh]: variable production cost of the

generator (j)

NSEC [USD/MWh]: cost of energy not served due to

insufficient reserve

The expected total supply cost ($TCe) is an increasing function

with the demand to be supplied, as seen in the Figure 5 for the

example previously analyzed. The function is increasing because

the greater the demand to be supplied, the more expensive

generation units will be required to be dispatched, which increases

the total supply cost.

The expected Market Price (MkPe; 126.72), for a given demand

(D0), is equal to the derivative of the expected total supply cost

function (slope of the regression line) forD=D0.We can therefore

determine market prices with the following expression:

MkPe (D0) =
d

dD
$TCe (D)

]

for D = D0

Frontiers in Environmental Economics 04 frontiersin.org

https://doi.org/10.3389/frevc.2025.1434796
https://www.frontiersin.org/journals/environmental-economics
https://www.frontiersin.org


Llarens 10.3389/frevc.2025.1434796

FIGURE 4

Market prices probability function.

FIGURE 5

Total supply cost (average) function.

This property allows us to determine market prices by

evaluating total expected supply costs.

In the next point, a methodology is developed to determine

the total expected supply cost using a convolution algorithm from

which market prices will be determined.

3 Market’s prices—convolution
algorithm

In the electricity market, the demand and the available

capacity of each generator at each moment can be considered as

independent probability functions (f1, f2).

The demand for each hour (h) of the period (T) can

be represented as a probability density function f1, where the

probability of each demand value is equal to (1/T).

Figure 6 show an example of the calculation procedure for the

f1 function considering T = 168 h (1 week). The hourly demand

(Figure 6 left) is ordered from highest to lowest values, resulting

in what is called a monotonic demand curve (Figure 6 right).

Each demand value on the monotonic demand curve is assigned

a probability (1/T = 1/168), resulting in the curve in the Figure 6

represents the cumulative probability function (F1) of the demand.

The sum of all demand values times (1/T) equals the average

demand for period T.

Dem (ave) =

i=T
∑

i=1

Dem(i)× f 1 (i) =
1

T
×

T
∑

h=1

Dem(h)

The accumulated probability function F1 shows that the

demand has a 0% probability of being greater than the maximum

value (37,750MW), it has a 100% probability (the 168 h of the week)

of being greater than the minimum value (22,091 MW) and during

the 50% of the time (84 h) the demand is <30,101 MW.

The probability function corresponding to a generator

(f2) takes into account the possible operating states of the

generator with their corresponding probabilities of occurrence.

A conventional thermal generator has two possible operating

states: (1) Available to produce energy with a power equal to its

installed power, and (2) Unavailable. If the generator has a failure

rate (q) the probability of being unavailable will be (q) and the

probability of being available will be (1 – q). A Combined Cycle

(CC) type thermal generator composed of three generating units

(2xTG+1xST) will have 8 possible operating states (2G where G =

number of generating units).

Figure 7 show typical accumulated probability functions (F2)

for a conventional thermal power plant and a Combined Cycle

(CC) type thermal power plant. Figure 7 (left) corresponds to a

conventional generator with an installed capacity of 200 MW and

an Availability Rate of 85%. Figure 7 (right) corresponds to a CC

generator composed of three units (2xTG+1xTV) where each unit

has a capacity of 200MW, a total capacity equal to 600MW, and an

availability rate of 85%.

In both cases, an available power greater than the total installed

capacity (200 MW, 600 MW) has a probability equal to zero,

and there is a 100% probability that the available capacity is

(≥0). A conventional generator has two operating states (available,

and unavailable), correspondingly, The probability of having an

available power (>0) is equal to the generator availability rate

(85%). A CC-type generator has 8 (=23) possible operating states,

the curve shows the probability considering all operating states.
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FIGURE 6

Hourly demand accumulated probability function.

FIGURE 7

Thermal generators accumulated probability function (Conventional, Combine Cycle).

3.1 Convolution algorithm

The convolution of discrete probabilistic functions is a

mathematical operation used to find the probability distribution of

the sum of two independent random variables (f1, f2). Convolution

of discrete statistical functions is a fundamental operation in the

analysis of discrete signals and systems. It is used to combine two

discrete probability sequences to produce a third sequence that

represents how one of the sequences superimposes on the other. It

is widely used in various areas such as signal processing, statistics,

optics, acoustics, engineering, and physics (Xu et al., 2023; Tsun,

2020).

The convolution procedure used to determine the production

of each generator is shown in Figure 8. The demand to be

supplied (monotonic curve) is shown in ❶. The evaluation

period (T) is normalized to 1.0. To supply this demand, a

conventional generator G1 is available, which has an unavailability

rate (q1). The generator has two possible operating states: 1:

Available, with probability (1 – q1), and 2: Unavailable, with

probability q1.
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FIGURE 8

Procedure for determining the generation dispatch by convolution.

When G1 is available, part of the demand will be supplied by

the generator. In ❷ the residual demand is indicated. The curve is

equal to ❶ multiplied by (1 – q1) and shifted to the left G1[MW].

When G1 is unavailable the residual demand is ❸. The curve is

equal to ❶ multiplied by (1 – q1).

The residual demand considering the two possible operating

states of the generator is indicated in ❹. It is obtained by adding

both curves ❷ and ❸.

The energy generated by G1 is the shaded portion of ❷

multiplied by T.

If other generators are available to supply the demand (G2,

G3, GN), the procedure indicated above is repeated until all the

generators have been considered. In each recursion, the initial

demand ❶ is equal to the residual demand of the previous

recursion ❹. In each recursion, the energy production of each of

the generators is obtained as a result.

In the electrical systems, in each hour (h), the “net demand

(ND)” is equal to the difference between the demand and the

production of the generators.

Net Demand (h) = Demand (h) + (− generation (h))

The probability functions of demand (f1) and generator

(f2) determine the Net Demand (ND), therefore ND is also

a probability function (f3). Since f1 and f2 are independent

probabilistic functions, the probability function f3 can be obtained

by convolution of the functions f1 and f2.

f3 = f1 ∗ f2

f3 (z) =
∑

x

f1(x) · f2(z − x)

Where:

f1: probability density function of hourly demand, F1;

accumulated distribution function

f2: probability density function of (− generation (h)), F2;

accumulated distribution function

f3: probability density function of net demand, F1; accumulated

distribution function

∗ is the convolution operator:

The concepts indicated above can be used to determine the

production of the generators under conditions of uncertainty in the

availability of the generating units and the average market prices of

a period of interest (1 h, 1 day, a week, etc.).

The convolution algorithm allows determining the production

of each generator (i). The resulting production will be the average

power for the evaluated period. The calculation procedure is

recursive as shown in Figure 9 considering that the system has “i”

generators. In each recursion, the net demand probability function

(f3) resulting from the convolution of the functions f1 and f2 is

determined. Net Demand (ND(i)) is the residual demand after

the generator (i) is dispatched. The net demand is determined for

each recursion, which allows the production of each generator to

be determined (by difference), and the energy that could not be

supplied by the generators (NSE).

ND (0) =

DMax
∑

j=1

j× f10(j)

ND (i) =

DMax
∑

j=1

j× f1i(j)

G (i) = ND (i− 1) − ND(i)

NSE =

DMax
∑

j=1

j× f1NG(j)
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FIGURE 9

Block diagram of generation dispatch based on convolution algorithm applied to the demand and generation probability functions.

Below is the source code of a FORTRAN 77 program that

allows carrying out the calculation indicated above for the following

example where the production of three generators and the NSE

are determined by convolution. The demand to be supplied has a

maximum power of 15 MW (Figure 10).

Figure 11 show the results of the generation dispatch obtained

by applying the convolution algorithm above described and the

probability density functions corresponding to the demand [f1(0)]

and the net demand probability functions after the dispatch of each

generator [f1(1), f1(2), f1(3) respectively].

3.2 Determination of market prices

Once the average production of each generator and the average

NSE are calculated, using the convolution algorithm described in

the previous point, it is possible to determine the production cost

of each generator ($G(i)), the cost of the NSE ($NSE) and the total

cost ($TC) resulting from the sum of the costs indicated above

considering all generators (NG).

$G (i) = VPC(i)× EG(i)

$NSE = NSEC × NSE

$TC =

NG
∑

i=1

$G(i)+ $NSE

If the order in which the convolution is performed considers

the generators ordered according to their variable production costs

(VPC; first the cheapest generator, followed by the highest cost

generators – MERIT LIST), the total cost determined will be the

MINIMUM average operating cost for the evaluated period.

By repeating the procedure indicated above, increasing the

demand (1D = 1MW), a new total cost corresponding to the

increased demand ($TCI) will be obtained.

The expected market price (MkPe) of the evaluated period

results from the difference of both total costs indicated above.

MkPe = $TCI − $TC

4 EMPP simulation model

Based on the theoretical concepts described in the previous

points, the Electricity Markets Price Projection Software (EMPP)

simulation model was developed, whose functional diagram is

shown in Figure 12. The model allows determining market prices

in electricity markets with a high participation of thermal and

renewable wind/solar generation such as ERCOT in Texas—USA.

Prices are determined by the periods required by the user.

The model considers as data the total hourly demand of the

market, the hourly production of the wind and solar renewable

generators, the characteristics of the thermal generation fleet

(installed capacity, availability of the generating units, production

costs), and the NSEC of the market. An example of using the

software is presented in this document.

The model determines the following results for the

evaluated period:

• Production of each generating unit (renewable, thermal)

• NSE

• Total supply cost

• Average market prices.

The data required by the EMPP model are the following:

1. Simulation period (T): corresponds to the period for which the

expectedmarket price is required to be determined. It can be 1 h,

168 h of a week, all hours of the month, a particular hour of each

month, or any other period.

2. Hourly demand [MW]: demand of the electricity market for

each hour of the period T
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FIGURE 10

Fortran code for generation dispatch based on the convolution algorithm applied to the demand and generation probability functions.

3. Renewable generation [MW]: total renewable generation

(wind, solar, others) of the electricity market for each hour of

the period T

4. Thermal generators data: Type (TG, CC), Effective Installed

Power at the plant location site, Availability, Thermal Efficiency,

Fuel Cost, O&M Costs

The calculation process is recursive.

Step 1: The net hourly demand is determined [Net Demand

(h) = Demand (h) – Renewable Generation (h)]. The probability

function corresponding to Net Demand is f1(0).

Step 2: The (N) existing thermal generators are ordered in

ascending order of their VPC, the cheapest first (MERIT LIST)

Step 3: The counter (i) that identifies each generator in

the MERIT LIST is initialized. (I = 1) corresponds to the

cheapest generator.

Step 4: The probability function f2 corresponding to the

generator (i) is determined.

Step 5: The convolution between the probability

functions (f1, f2) is performed. As a result, the probability

function f3 corresponding to the residual demand

resulting from the dispatch of generator i is obtained,

f1(i)= f3

Step 6: Generator recursion: Steps 4 and 5 are repeated until

I = N, in each recursion the function f1(i) will be obtained as

a result
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FIGURE 11

Example of generation dispatch based on convolution algorithm.

Step 7: With the functions f1(0), f1(1), f1(2), . . . , f1(N) the

residual demand as a result of the dispatch of each generator

is determined

D (0) =

DMax
∑

j=1

j× f1 (0)(j)

D (1) =

DMax
∑

j=1

j× f1 (1)(j)

D (N) =

DMax
∑

j=1

j× f1 (N)(j)

Step 8: The expected production of each generator (i) and the

NSE are determined by difference

G1 = D(0)− D(1)

G2 = D(1)− D(2)

Gi = D(i− 1)− D(i)

NSE = D(N)

Step 9: With the production of each generator, its

corresponding VPC, and the NSEC, the Reference total cost

of supply ($TCR) is determined.

$TCR =

NG
∑

i=1

G(i)× VPC(i)+ NSE× NSEC
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FIGURE 12

EMPP Software block functional diagram.

Step 10: Demand Recursion. System Demand is increased

by 1D = 1 MW and steps 1 to 8 are repeated. The

result is the total supply cost corresponding to the increased

demand ($TCI)

Step 11: The expected market price in period T (MkPe) is:

MkPe = ($TCI)− ($TCR)

4.1 Limitations of the EMPP model

1. The EMPP model does not allow for optimizing the generation

of hydro-power plants. This is the reason why it cannot be

used directly to determine market prices in hydrothermal

systems where the hydro generation component is important

(e.g. Colombia, Brazil). In electrical systems, such as PJM-

USA, Mexico, where the hydro generation component is

<20%, it is possible to use EMPP in combination with

traditional simulation models to determine market prices. The

calculation is done in two steps: Step 1: using traditional

models the hydro generation is determined. Step 2: with

EMPP, market prices are determined considering, as data, the

hydro production pattern (hourly production) determined in

Step 1.

2. The EMPP model considers generation and demand

located in the same node of the transmission system.

Therefore, the EMPP model does not include the restrictions

imposed by the transmission network on the economic

dispatch of generation. As a result, market prices must

be considered as representative of the market without

considering possible effects (losses, congestion) on the prices of

each node.

4.2 Comparison with Monte Carlo
methodology

Next, the market prices determined using EMPP are compared

with prices determined using the Monte Carlo methodology

(random draws).1

Figure 13 present the data considered for the simulation.

In this example, the demand to be supplied is 7,000 MW,

the same throughout the simulation period. The generation

fleet includes 100 generating units with a total installed

capacity of 12,560 MW. The NSEC is equal to 4,000

USD/MWh.

Using EMPP the result average market price is

MkPe = 93.28 USD/MWh

Using the Monte Carlo methodology, the average market

price is very dependent on the number of draws and the

seed used to initialize the random draw. Figure 14 presents

the average price determined for 10 different seeds considering

1,000 draws. Significant differences are observed between the

results (up to 15.9 USD/MW) even for a significant number

of draws.

Figure 15 presents the average market price determined for

3 different seeds as a function of the number of random

1 Monte Carlo analysis is a method that uses random numbers to simulate

a phenomenon or process that has uncertainty or variability. The seed is a

number that determines the starting point of the random number generator,

which produces the random numbers used in the simulation. The seed is

important for the reproducibility and validity of the Monte Carlo analysis, as

di�erent seeds can produce di�erent results.
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FIGURE 13

Demand and generation data used for the comparison.

FIGURE 14

Monte Carlo methodology. Expected market prices [USD/MWh]. 1,000 draws.

FIGURE 15

Monte Carlo methodology. Average market prices function of # of

draws.

draws. For a reasonable number of draws (200), a high

dispersion in average prices is observed. For a large number of

draws (1,000), the average prices determined by Monte Carlo

methods converge to the value determined by convolution using

EMPPmodel.

The aforementioned results show that it is not convenient

to use a methodology based on Monte Carlo to estimate

market prices in systems with a high participation of thermal

generation considering a reasonable number of draws to limit the

simulation times.

It is highlighted that the simulation carried out using EMPP

produces exact results since it considers all possible operating

states (associated with the availability of the generation units) and

that the computing time required to perform the simulation is

not significant.

5 ERCOT case study

The Electric Reliability Council of Texas (ERCOT) provides

electricity service in Texas (USA) to more than 90% of the state’s

consumers. The demand in 2022 was 525.6 TWh with a maximum

demand of 78,325 MW.

To supply the demand, ERCOT has an installed generation

capacity (Dec-2022) made up of 120,570 MW of independent

power producers (IPP) plus 28,329 MW owned by distribution

companies (Utilities). The generation capacity is mainly thermal

plus renewable generation. The main fuel used for thermal

generation is Natural Gas, abundant in the state of TX. Figure 16

show the generation capacity by type.

ERCOT determines generation dispatch using offers of

available capacity and prices done by generators. Every hour, the

generators that offer the lowest prices are dispatched until the

hourly demand is met, complying with operational safety criteria

and systems constraints.

As a result of the operation, ERCOT determines the market

prices for the Day AheadMarket (DAM) and the Real TimeMarket

(RTM). The prices in each hour are equal to the price offered by

the generator with the highest price offered that was dispatched in

the hour (marginal offer). Typically, Market Prices show seasonal

variations associated with variations in demand; they are maximum

in the summer months when system demand is maximum. Also,

variations are observed between MDA and MTR prices mainly

due to random effects of variations in demand and availability of

generation units.

When the electrical system operates in conditions of low

generation reserve, market prices are determined by the curve in

Figure 17, reaching 5,000 USD/MWh when the reserve is <3,000

MW (scarcity prices).

The Figure 17 shows the duration curves of market prices for

the years 2020–2022. Very high prices are observed in at least

1,000 h/year, which are associated with low generation reserves

Frontiers in Environmental Economics 12 frontiersin.org

https://doi.org/10.3389/frevc.2025.1434796
https://www.frontiersin.org/journals/environmental-economics
https://www.frontiersin.org


Llarens 10.3389/frevc.2025.1434796

FIGURE 16

ERCOT. Generation installed capacity by type.

FIGURE 17

ERCOT. Energy prices duration curves. Source: Potomac

Economics.

that force the dispatch of high-cost generation units and eventually

the activation of scarcity prices. This demonstrates that the effects

of generation availability are relevant in ERCOT in recent years,

affecting the risks faced by investments in new generation capacity

and the operational security of the electric system.

In 2023, the problems of low reserve reserves continued

ERCOT said in May it has enough power to meet peak

demand through the summer, unless an unlikely confluence of

events happens. If a big coal or natural gas power plant goes

offline, there’s less wind and solar energy available than forecast

and there’s intense heat, ERCOTmay have to implement rolling

blackouts for a couple hours to stabilize the grid.

Source: Houston Chronicle, June 22, 2023.

Unlike many other electricity markets, in ERCOT there is no

Capacity Balancing Market. Therefore, the generators that operate

in the market do not have a remuneration associated with their

Installed/Firm Capacity. This makes the market energy price the

only economic signal to promote efficient investments in new

generation capacity, making the correct estimation of market prices

very important.

In the future, it is expected that the operational problems

of low reserves will increase due to the combined effect of the

unavailability of generation units and the expected increase in

wind/solar generation which are characterized by a high volatility

of its production.

Under the operating conditions mentioned above, the risk

assessment analysis associated with market prices will be a relevant

aspect in the economic evaluation of new generation projects and

for the purchase of energy through long-term contracts.

5.1 ERCOT’s market prices: case study

The future operating conditions at ERCOT are expected to

result in very high volatility of Market Prices due to the activation

of scarcity prices in low reserve hours.

As mentioned in the previous points, traditional simulation

models fail in determining market prices when scarcity prices

are frequently activated since they cannot correctly simulate all

the expected operating states of the generation fleet. To obtain

approximate results, thousands of draws are required, which makes

the simulation unfeasible due to the times required to do the

simulations and subsequent processing of the information that

arises from the model.

Using traditional simulation models, the only viable alternative

is to project market prices, in markets such as ERCOT, using
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FIGURE 18

Energy prices duration curves comparison.

FIGURE 19

Energy prices monthly average comparison.

the available capacity of the generation units and their respective

variable production costs (not a Monte Carlo methodology). This

methodology produces good results when the generation reserve

is adequate.

The simulation model described in this document based

on the use of a convolution algorithm (EMPP model) takes

into account all operating states which allows us to determine

market prices considering the generation reserve that exists

at each moment due to the random effects associated with

demand variations, availability of generation units, intermittency

of wind/solar generation.

As an example, Figures 18, 19 compares, for year 2022, the

ERCOT prices, year 2022 (source: Potomac Economics; black dash

line) with the prices resulting from:

• A traditional simulation model based on the available capacity

of the generation units (red line).

• EMPPmodel based on a convolution algorithm (blue line).

It is highlighted

• EMPP model produces market prices similar to the real ones,

resulting in a price duration curve and monthly average prices

similar to the real one.

• The price duration curve based on the traditional model has

significant differences with the real curve for prices with a

duration of <3,000 h (prices during scarcity hours).

• In the summer months (Jun–Aug), when demand is

maximum and generation reserves are minimum, the average

prices projected by EMPP are similar to the real ones, while

those projected with traditional models are less showing

significant differences.

It is noted that due to the structural characteristics of ERCOT,

energy prices in the summer months are always high as a way of

producing economic signals for the expansion of the generation

fleet. Since traditional models cannot adequately represent the

economic signals associated with scarcity, they will always produce

results that do not allow the identification of the need for expansion

of the generation fleet. On the other hand, EMPP evaluates all

the operating conditions resulting from the unavailability of the

generation units, resulting in the correct projection of energy prices

mainly under conditions of scarcity.

6 Conclusions

The determination of future market prices is relevant to the

functioning of electricity markets since it allows generators and

consumers to define their strategies regarding energy purchases

and investments in new generation capacity. It is also relevant to

guarantee the operational security of the electrical system through

investments in storage media (BESS) that allow for mitigating the

adverse effects of intermittency in the production of wind/solar

generators. The energy transition planned in the future, which

will lead to an increase in renewable generation, will increase the

need for adequate forecasts of the expected future evolution of

market prices.

The operation simulation models that are used by system

operators (ISO) and market agents allow for estimating the

expected future production of each generator. They are also

suitable for estimating market prices in electrical systems with high

participation of hydraulic generation (e.g. Brazil, Colombia), where

the main uncertainty is the water inflows to the system reservoirs.

These models generally fail to determine market prices in

electricity markets where the main uncertainty is the availability

of the generation units. This is the case of electrical systems

with a high participation of renewable wind, solar, and thermal

generation. An example of this type of system is ERCOT market

(Texas, USA).

Traditional models use Monte Carlo-type techniques to

perform a statistical analysis of market prices by making random

draws to determine the availability of generation units. The results

obtained with this methodology demonstrate that the determined

prices are highly variable depending on (i) the seed used by the

random number generator, and (ii) the number of draws carried

out. Thousands of draws are typically required for the prices to tend

to the expected average value, which increases the computing time

without guaranteeing that the result obtained is correct.

A new simulation model called EMPP is presented in this

document, which allows for determining the minimum cost

generation dispatch and the average market prices expected in a
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time interval. To this end, the model uses a convolution algorithm

to evaluate all possible operating states in electrical systems with a

high participation of renewable generation and thermal generation.

Test simulations carried out with the EMPP show that the

prices determined are similar to those obtained with Monte Carlo

techniques only when conventional models a large number of

draws are carried out (>>10,000). Therefore, using the EMPP

correct results can be obtained with minimal computer system

requirements and at reasonable computer time.

Test simulations of the ERCOT (Texas-USA electricity market)

show that the prices obtained with EMPP are close to the real

ones, while the prices determined with traditional models show

a significant difference during the hours in which the electrical

system has low generation reserves, where Market prices are

affected by scarcity prices.

Based on the aforementioned, EMPP model is considered

superior to traditional simulation models for risk assessment

analysis in electricity markets where themain source of uncertainty

is the availability of the generator units due to combined effects of

contingencies in the generation fleet and variations in the primary

resource of wind/solar generation.

The use of EMPP provides significant information for the

development of renewable generation projects, mainly Solar-PV

generation. EMPP allows determining the expansion of thermal

generation and storage media (BESS) required to ensure safe and

low-cost operation of the electrical system. So, the possibility

of developing Solar-PV generation is conditioned by thermal

expansion since the total cost must be minimized. Therefore,

EMPP also allows sizing the existing market space for the

development of Solar-PV generation.

6.1 Potential improvements for the EMPP
model

The provision of ancillary services (operating reserves) is

required in electricity markets as a way of ensuring the safe

operation of the electrical system. The determination of operating

reserves is the result of an optimization process where the cost of

the reserve is compared with the cost of supplying the demand plus

the NSE avoided by having the operating reserve.

The EMPP model can be improved to determine optimum

operative reserves using the results of NSE and the market prices

for different values of the operating reserve, which allows the supply

of the demand safely and at minimum total cost (co-optimization).
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