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The impact of new digital
infrastructure on agriculture
green development: evidence
from China

Yanru Zhao*, Chenyu Yang and Sarwar Khan

School of Economics and Management, Northwest A&F University, Yangling, China

Introduction:New digital infrastructure (NDI) is a key driver for agricultural green

development (AGD). However, its underlying mechanisms and heterogeneous

impacts remain to be explored. This study focuses on agricultural green total

factor productivity (AGTFP) in China, aiming to elucidate the direct e�ects

of NDI on AGD, its mediating pathways, and geographical heterogeneity,

thereby providing theoretical evidence and policy implications for the green

transformation of agriculture.

Methods: Based on panel data from 30 provinces in China from 2006 to

2022, this study employs the global Malmquist-Luenberger (GML) index and

the slack-based measure (SBM) model to measure AGTFP and constructs a

comprehensive NDI indicator using principal component analysis. The study

systematically examines the direct impact of NDI on AGD, the mediating e�ects

of technological and land factors, and the moderating role of labor quality

through fixed-e�ects models, instrumental variable regression, and moderated-

mediation e�ect models. Heterogeneity analysis is also conducted through

subgroup regression to explore geographical and institutional di�erences.

Results: NDI significantly enhances AGTFP, a conclusion that is robust to

endogeneity and sensitivity tests. technology level and farmland quality are the

dual mediating pathways through which NDI drives AGD. Labor quality amplifies

the green empowerment e�ect of NDI by strengthening the synergistic e�ects

of technological and land factors. Heterogeneity analysis shows that the e�ect

of NDI is more pronounced in ecologically fragile areas in the northwest, as well

as in regions with low marketization and strict environmental regulations.

Discussion: NDI promotes the green transformation of agriculture by optimizing

resource utilization e�ciency and driving technological innovation. However, it

requires matching with improved labor quality and region-specific policies. It is

recommended to prioritize the deployment of intelligent monitoring facilities in

ecologically fragile areas to compensate for institutional shortcomings through

digital technology; and to promote precision agronomic systems in intensive

agricultural areas to reduce resource dependence and accelerate the di�usion

of green technologies through market mechanisms. The limitations of this study

include the omission of spatial spillover e�ects and potential biases in the

calculation of agricultural value-added. Future research could further explore

these aspects by incorporating spatial econometric models.
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new digital infrastructure, agriculture green development, policy environment, market
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1 Introduction

Agriculture forms the cornerstone of national stability, where

a robust agrarian foundation underpins societal prosperity. The

global imperative to modernize agriculture now converges on three

transformative pillars: green transition, specialized production,

and digital integration (Wang J. et al., 2024). Agriculture

Green Development (AGD) has emerged as a paradigm

reconciling economic growth with ecological preservation,

emphasizing resource efficiency, pollution mitigation, and

ecosystem sustainability (Zhou andWen, 2023). Agricultural green

development is an essential pathway to address the global food

system crisis and achieve the symbiosis of ecology and humanity.

While conventional industrial agriculture has boosted short-term

yields through intensive production, its reliance on chemical

inputs and monoculture practices has led to profound issues

such as soil degradation, biodiversity loss, and social inequity.

Agroecology provides a systemic solution, centered on the “Five-

Level Transition Framework,” which progressively advances from

technical optimization to societal restructuring, aiming to reshape

sustainable food systems (Gliessman, 2016).

Concurrent with these developments, new digital infrastructure

(NDI) has risen as a catalytic force in rural revitalization,

redefining agricultural production systems through smart

technologies, and data-driven governance (Zhu and Liu, 2022).

Globally, nations increasingly recognize NDI’s dual role as an

economic stabilizer during recovery periods and a transformative

vector for green development (Balcilar et al., 2022). Yet critical

questions remain underexplored: Can NDI effectively drive

rural economic transformation while ensuring agriculture

green Development? Through what mechanisms might digital

infrastructure innovations translate into measurable ecological

gains? Addressing these questions carries urgent practical

implications for global agricultural modernization efforts.

Existing AGD research predominantly examines agricultural

green total factor productivity (AGTFP), identifying multifactorial

influences ranging from climatic stressors (disaster rates) to

institutional drivers (financial support, trade dependency) and

technical inputs (mechanization density) (Feng et al., 2021; Chi

et al., 2021; Wang et al., 2022; Li and Wang, 2019; Liu et al.,

2021; Zhou and Zhang, 2024; Ma et al., 2022; Sun, 2022). While

emerging studies tentatively explore digitalization’s spatial spillover

effects—noting paradoxical patterns where neighboring provinces’

digital progress initially boosts but subsequently inhibits local AGD

(Deng and Yan, 2018)—the literature remains fragmented. Limited

attention has been given to NDI’s systemic impacts, particularly

its interaction with evolving production factors (technology,

farmland, and labor) across heterogeneous institutional andmarket

contexts (Wang J. et al., 2024; Zhou and Wen, 2023).

This study advances the discourse through three key

contributions: First, departing from conventional sector-specific

analyses, we establish NDI-AGD linkages within an integrated

framework encompassing digital infrastructure’s multidimensional

components. Second, we unravel the black box of impact

mechanisms by quantifying how NDI reconfigures production

factors—NDI affects AGD through technology, farmland, labor.

Third, we pioneer heterogeneity analysis across China’s diverse

agro-ecological zones, revealing how resource endowments, market

maturity and environmental regulation intensity modulate NDI’s

effectiveness. These insights inform spatially differentiated

policy design for agriculture green Development in the

digital era.

2 Theoretical mechanisms and
research hypotheses

2.1 The direct impact of new digital
infrastructure on agriculture green
development

NDI acts as a catalyst for transitioning traditional agriculture

toward precision and low-carbon paradigms. By integrating smart

farming systems—encompassing IoT sensors, remote sensing,

and predictive analytics—NDI enables real-time monitoring

and optimization of agroecological variables (soil moisture,

nutrient cycles, and pest dynamics) and waste management

processes (Birnie et al., 1982; Sishodia et al., 2020; Xu, 2010). These

capabilities directly mitigate resource overuse (water, fertilizers,

and pesticides) and emissions intensity, thereby decoupling

agricultural productivity from environmental degradation

(Barakabitze et al., 2015). Concurrently, NDI reduces information

asymmetries across agricultural value chains through digital

platforms, enhancing resource allocation efficiency and fostering

data-driven decision-making among farmers, agribusinesses, and

policymakers (Deichmann et al., 2016). This dual mechanism—

operational optimization and market coordination—establishes

NDI as a structural driver of AGTFP growth.

2.2 New digital infrastructure and
agriculture green development: the
mediating role of land and technology
factors

NDI contributes to the improvement of farmland quality,

exerting an indirect impact on AGD. It can enhance the efficiency

of land use (Wang S. et al., 2024), mitigates the risks of exploitative

land management and natural destruction (Tan, 2015), and aids

in the transition of agriculture from a model reliant on increasing

inputs of fertilizers, pesticides, and water to achieve higher yields

and income, to one that reduces the use of these resources

(Yang et al., 2021). With the application of sensors, remote

sensing technology, and big data analysis, agricultural production

can monitor and precisely regulate soil conditions in real time,

avoid the mismatch of water resources, fertilizers, and pesticides

(Zheng et al., 2014), thereby improving farmland quality and

promoting agriculture green Development (Johnston et al., 2009).

The innovative effects brought about by NDI have been supported

by research (Zhao, 2022). An increase in agriculture environmental

technology efficiency can significantly improve AGTFP (Lv and

Zhu, 2019), ameliorate the severe situation of non-point source
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pollution, and facilitate the shift of agriculture toward high-quality

development (Li, 2023).

2.3 New digital infrastructure and
agriculture green development: the
moderating role of labor factors

On the one hand, the labor quality plays an important role in

AGD. Huffman (2001) and Wu et al. (2021) found that enhancing

the educational attainment of farmers is the key to protecting

farmland, and the protection of farmland is an inevitable choice

to maintain national food security and achieve agriculture green

development; Guo et al. (2010) pointed out that an increase in

average years of education is a favorable factor for improving

agricultural production efficiency. Ma and Tan (2021) reveal from

the perspective of environmental regulation that the Educational

level of labor has a positive effect on the AGTFP (Li et al., 2017).

Ascertained that compared to the western region, the AGTFP

in the central and eastern regions is more easily affected by the

quality of labor. On the other hand, the improvement of labor

quality can strengthen the application of technology. Zhou et al.

(2020) confirmed the impact of rural labor quality on agricultural

technology efficiency in China, using soil testing and formula

fertilization technology as an example; Rey (Shakulikova et al.,

2016) conducted an in-depth analysis of the interplay between

labor quality and agricultural technology, revealing a significant

positive correlation between the two. The findings suggest that

improvements in labor quality can effectively facilitate the adoption

and application of agricultural technology, thereby enhancing

agricultural production efficiency; Wu et al. (2017) pointed out

based on the Probit ISM model that labor quality is a deep-

seated root factor affecting the depth of farmers’ understanding

of green agricultural technology. Li (2012) and Liu et al. (2008)

reveal through micro research that improving the labor quality

will help to enhance their application and adoption of technology

in agricultural production; Zhai (2015) emphasized from a macro

perspective that improving the labor quality is the key to the

development of agricultural science and technology. In addition,

Abioye et al. (2024) and Gong et al. (2025) pointed out that the

educational level of farmers directly determines their application

of digital facilities such as computers and networks, as well as the

operation and use of modern production tools.

In summary, this article proposes the following

research hypotheses:

H1: New digital infrastructure has a positive promoting effect on

agriculture green development.

H2: New digital infrastructure promotes agriculture green

development through the path of land factor.

H3: New digital infrastructure promotes agriculture green

development through the path of technology factor.

H4: The labor quality can enhance the positive impact of new

digital infrastructure on farmland quality.

H5: Labor quality can enhance the positive impact of technology

level on agricultural green total factor productivity.

FIGURE 1

Research model of new digital infrastructure, factor integration and

agriculture green development.

The research model in this article is shown in Figure 1.

3 Research design

3.1 Variable setting and descriptive
statistics

3.1.1 Explained variable: agricultural green total
factor productivity

Building upon the methodological frameworks established

by Ma and Tan (2021) and Ge et al. (2015), this study

develops a comprehensive indicator system that integrates both

“expected output” and “unexpected output” dimensions. To

quantify Agricultural Green Total Factor Productivity (AGTFP)

across 30 provincial-level administrative units in mainland

China (excluding Hong Kong, Macao, Taiwan, and Tibet) from

2006 to 2022, we employ the Slack-Based Measure (SBM)

model and Global Malmquist-Luenberger (GML) index. These

methodologies are selected for their capability to (1) accommodate

multiple inputs and outputs, (2) account for both desirable

and undesirable outputs, and (3) generate precise efficiency

measurements while decomposing productivity changes into

distinct components. Specifically, AGTFP is decomposed into

agricultural green technology efficiency (AGEC) and agricultural

green technology progress (AGTC). This decomposition enables

a differentiated analysis of productivity dynamics, distinguishing

between improvements in resource utilization efficiency and

advancements in production frontiers. Such granular insights not

only enhance the interpretability of AGTFP evolution but also

provide empirical foundations for tailoring region-specific policies

to advance green agricultural practices.

Given that the calculated AGTFP represents a year-on-

year index reflecting annual productivity changes relative to the

preceding year, we implement a base-year normalization procedure

to construct a fixed-base index. This transformation enables the

tracking of cumulative AGTFP trends over the study period.

The normalization process follows these steps: First, we establish

2006 as the base year with AGTFP standardized to 1. Subsequent

annual values are then calculated through multiplicative chaining,

where each year’s AGTFP index equals the product of the current

year’s growth rate and the previous year’s cumulative index.
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TABLE 1 Input-output index of agricultural green total factor

productivity.

Indicator
category

Factor Meaning Unit

Input

metrics

Labor input Number of people

employed in

agriculture

Ten thousand

person

Land resource

input

Crop sown area Thousand

hectares

Agricultural

machinery inputs

Total power of

agricultural

machinery

Ten thousand

kW

Fertilizer inputs The amount of

chemical fertilizer

applied

(converted to pure)

Ten thousand

tons

Agricultural film

inputs

The amount of

agricultural film used

Ten thousand

tons

Pesticide inputs Pesticide application

rate

Ten thousand

tons

Irrigation inputs Agricultural water use Billion cubic

meters

Output

indicators

Expected output Gross agricultural

output

Billion yuan

Undesired outputs Agricultural carbon

emissions

Ten thousand

tons

Identical normalization procedures are applied to both AGEC and

AGTC components to maintain methodological consistency. The

complete specification of input and output indicators employed in

this measurement framework is presented in Table 1.

3.1.2 Core explanatory variable: new digital
infrastructure

NDI encompasses the foundational internet systems, user

networks, and technological frameworks that enable digital

transformation, with internet technology serving as its operational

backbone (Fan and Wu, 2022). Grounded in the theoretical

framework of production factors, this study adopts principal

component analysis (PCA) to quantify NDI development levels

through capital and data dimensions, aligning with methodologies

established by Zhao (2022) and Fan and Wu (2022). The

capital dimension reflects physical infrastructure investments

(e.g., optical cable networks, broadband ports), while the

data dimension captures information generation and utilization

capabilities (Table 2). PCA is prioritized over alternative methods

(e.g., factor analysis requiring predefined latent structures or

entropy weighting sensitive to indicator variability) given its

capacity to synthesize correlated multidimensional indicators—

common in infrastructure systems—into uncorrelated composite

indices while preserving 85.0% of original variance. Rigorous

validation via KMO sampling adequacy (0.78) and Bartlett’s

sphericity test (p < 0.01) confirmed dataset suitability, mitigating

multicollinearity risks inherent in traditional weighted aggregation.

By deriving capital (62.3% variance) and data (23.7% variance)

indices, this approach objectively distills complex infrastructure

TABLE 2 Index system of new digital infrastructure.

Primary
index

Secondary index Unit of
measurement

Index
type

Capital Length of long distance

optical cable line

Ten thousand

kilometers

Positive

Mobile phone exchange

capacity

Ten thousand

households

Positive

Number of broadband

Internet access ports

Ten thousand Positive

Data Number of Domains Ten thousand Positive

Number of pages Ten thousand Positive

Internet penetration % Positive

Mobile phone

penetration

Per hundred people Positive

metrics into interpretable drivers, facilitating cross-regional

comparisons of NDI’s role in agriculture green development.

3.1.3 Mediating and moderating variables
From the perspective of the five major production factors, the

mediating variables in this article are farmland and technology

factors, and the moderating variable are labor factor, represented

by farmland quality (FQ), technology level (TL), and labor quality

(LQ) in order: (1) farmland quality is measured by the ratio

of effective irrigated area to total cultivated land area; (2) The

technology level is measured by the total number of patents

announced by each province in each year. (3) The labor quality is

measured by the average years of education, and the calculation

method is: (primary school × 6 + middle school × 9 + high

school × 12 + college and above × 15)/population aged 6

and above.

3.1.4 Control variables
This article selects key factors affecting AGD as control

variables, building on existing research: (1) Disaster rate (DR),

expressed as the ratio of disaster area to crop sowing area;

(2) Agricultural machinery density (MD), expressed in per mu

mechanical power; (3) Agricultural structure (AS), expressed as

the proportion of grain crop sowing area to total crop sowing

area; (4) Agriculture financial support (AFS), expressed as local

government expenditure on agriculture, forestry, and water affairs;

and (5) Trade dependency (TD), expressed as the ratio of a region’s

foreign trade to its gross national product.

3.1.5 Data sources and descriptive statistics
This article selects the panel data of 30 provinces in

China (excluding Hong Kong, Macao, Taiwan, and Tibet) from

2006 to 2022 for empirical analysis. The data mainly comes

from China Statistical Yearbook, National Patent Database,

China Education Statistical Yearbook, China Population and

Employment Statistical Yearbook, provincial statistical yearbooks,

and national land survey. The descriptive statistical results of
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TABLE 3 Descriptive statistics.

Variable Observed value Mean value Standard deviation Minimum value Maximum value

AGTFP 510 2.248 1.488 0.488 9.426

AGEC 510 0.948 0.300 0.241 2.532

AGTC 510 2.566 1.714 0.757 9.208

FQ 510 5.332 1.029 3.046 8.170

TL 510 9.779 1.660 4.575 13.679

LQ 510 2.191 0.111 1.886 2.548

NDI 510 −0.000 0.578 −0.902 2.240

DR 510 0.182 0.145 0.000 0.696

MD 510 0.623 0.251 0.220 1.416

AFS 510 5.796 0.898 2.472 7.215

ED 510 9.167 0.606 7.648 10.590

AS 510 0.659 0.141 0.355 0.971

each variable are shown in Table 3. For the purpose of data

stationarity, logarithmic transformation is applied to technology

level, labor quality, agriculture financial support, and rural

economic development level.

3.2 Construction and description of
measurement models

3.2.1 Benchmark regression model
To explore the impact of NDI on AGTFP, this article constructs

a benchmark effect model between NDI and AGTFP. The specific

model is as follows:

Yit = β0 + β1NDIit + β2Controlit + εit (1)

3.2.2 Mediation and moderation models
To further verify the intrinsic mechanism of the promotion

of AGD by NDI, and to reveal the linkage between capital,

data, farmland, and labor factors, a three-layer mediation effect

regression model and a moderation effect model are constructed:

Yit = β0 + β1NDIit + βiControlit + εit (2)

LPit = β0 + β1NDIit + β2Controlit + εit (3)

Yit = β0 + β1NDIit + β2FQit + β3Controlit + εit (4)

LPit = β0 + β1NDIit + β3Inter1it + β4Controlit + εit (5)

3.2.3 Moderated mediation e�ect model
To further verify the intrinsic mechanism of the promotion

of AGD by NDI and reveal the linkage between labor and other

factors, this article draws on a moderated mediation effect model

(Wen et al., 2006).

Yit = β0 + β1NDIit + β2LQit + β3Controlit + εit (6)

TLit = β0 + β1NDIit + β2LQit+ β3Controlit + εit (7)

Yit = β0 + β1NDIit + β2LQit +β3TLit + β4Controlit + εit (8)

Yit = β0 + β1NDIit + β2LQit +β3TLit + β4Inter2it

+β5Controlit + εit (9)

Among the above types, Yit represents AGD, namely the

AGTFP index, AGEC index, and AGTC index, NDIit represents

new digital infrastructure, Controlit represents various control

variables, εit represents random disturbance term, FQit represents

farmland quality, LQit represents labor quality, TLit represents

technology level, Inter1it represents the interaction term between

labor quality and NDI, Inter2it represents the interaction term

between labor quality and technology level, β0 - β5 represents the

parameter to be estimated.

4 Empirical results and analysis

4.1 New digital infrastructure and
agricultural green total factor productivity

To validate the proposed hypotheses, we first conducted

benchmark regression analyses using panel data. The Hausman

test rejected the null hypothesis of random effects, confirming

the appropriateness of the fixed effects model. Table 4 presents

the regression results under two specifications: Columns (1)–(3)

report estimates without control variables, while Columns (4)–(6)

incorporate a comprehensive set of controls.

In the baseline specification (Columns 1–3), NDI exhibits

statistically significant positive effects on AGTFP and AGTC, with

coefficients of [β = 2.4076, p < 0.01] and [β = 2.8491, p < 0.01],

respectively. However, the regression of NDI on AGEC yielded a

negative goodness-of-fit metric (R2 = −0.042), indicating model
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TABLE 4 Baseline regression estimation results of the impact of new digital infrastructure on agriculture green development.

Variable (1) (2) (3) (4) (5) (6)

AGTFP AGEC AGTC AGTFP AGEC AGTC

NDI 2.4076∗∗∗ −0.0624∗∗∗ 2.8491∗∗∗ 2.9916∗∗∗ 0.0300 3.0464∗∗∗

(26.7768) (−3.0966) (27.2769) (16.4030) (0.7678) (14.5148)

DR −0.7825∗∗ 0.0417 −1.2665∗∗∗

(−2.0499) (0.5092) (−2.8831)

MD −0.6546 0.1179 −1.0191∗∗

(−1.5483) (1.2994) (−2.0947)

AS −2.6961∗∗ −0.9048∗∗∗ −0.2458

(−2.1164) (−3.3109) (−0.1677)

AFS −0.3958∗∗∗ −0.0943∗∗∗ −0.1013

(−3.5328) (−3.9222) (−0.7855)

TD −0.1326∗∗∗ 0.0418∗∗∗ −0.2095∗∗∗

(−3.6575) (5.3820) (−5.0236)

Constant term 2.2485∗∗∗ 0.9478∗∗∗ 2.5655∗∗∗ 6.9704∗∗∗ 1.9786∗∗∗ 4.3375∗∗∗

(57.4113) (108.0649) (56.3907) (6.5402) (8.6536) (3.5365)

Sample size 510 510 510 510 510 510

R2 0.574 −0.042 0.584 0.600 0.101 0.616

This table reports the estimation results of the impact of NDI on AGD. Columns (1), (2), and (3) show the estimates without control variables, while columns (4), (5), and (6) show the estimates

with control variables included. Robust standard errors clustered at subject level are reported in parentheses. Standard errors in brackets. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

misspecification or collinearity issues; thus, these results were

excluded from further interpretation.

The inclusion of control variables (Columns 4–6) reinforces

the robustness of NDI’s positive influence on AGTFP [β =

2.9916, p < 0.01] and AGTC [β = 3.0464, p < 0.01],

with marginal changes in coefficient magnitudes suggesting

limited confounding effects. Notably, NDI’s impact on AGTE

remains statistically insignificant (p > 0.10) across specifications,

implying that infrastructure-driven improvements in agriculture

green development operate predominantly through productivity

enhancements and technological innovation rather than efficiency

gains. These findings align with theoretical expectations and

underscore the multidimensional mechanisms linking NDI to

green agricultural transitions.

The validity of fixed-effects model estimates hinges on the

critical assumption of erogeneity in core explanatory variables.

However, the construction and application of NDI may engender

reverse causality with AGD, as the latter’s demand for data-driven

precision agriculture could simultaneously drive NDI expansion.

Furthermore, despite comprehensive control variable inclusion,

potential omitted variable bias persists, threatening estimation

consistency. To address these endogeneity concerns, this study

implements a two-stage least squares (2SLS) instrumental variable

approach, utilizing lagged terms of the independent variables (one-

period and two-period lags) as instruments.

Table 5 presents the instrumental variable regression results.

Columns (1)–(3), (4)–(6), and (7)–(9) correspond to the two-stage

least squares (2SLS) analyses, utilizing the first-lag of independent

variables as instruments, the second-lag of independent variables

as instruments, and both the first- and second-lags of independent

variables as instruments, respectively. The coefficients for NDI

remain statistically significant (p < 0.01) in explaining AGTFP and

AGTC across all specifications, with magnitudes consistent with

benchmark estimates. For instance, a one-unit increase in NDI

elevates AGTFP by 3.49–4.08 units (Columns 1–9), aligning with

prior fixed-effects results.

To mitigate potential biases arising from sample and indicator

selection, this study conducts robustness checks through two

complementary approaches: data winsorization and variable

reconstruction. First, given the substantial heterogeneity in

macro-level NDI endowments that may induce outliers in

total factor productivity measurements, we implement 1%

and 5% winsorization on the dependent variable (agricultural

green total factor productivity, AGTFP). The trimmed dataset

is then re-estimated using the baseline model specifications.

Second, to address concerns about subjective weighting in

indicator construction, the explanatory variables are recalculated

employing the CRITIC (Criteria Importance Through Intercriteria

Correlation) method, which objectively assigns weights based on

contrast intensity and conflict analysis between indicators.

As summarized in Columns (1)–(9) of Table 6, the robustness

analyses yield consistent findings. The coefficients for NDI

retain their statistical significance (p < 0.01) and directional

stability across all specifications, with magnitude variations

within ±8% of baseline estimates. For instance, the NDI

coefficient ranges between 3.49 and 3.75 in AGTFP regressions

post-winsorization, closely mirroring original results. Similarly,

CRITIC-based reconstructions produce comparable effect sizes

(3.70–4.08) without altering sign or significance thresholds.

These results demonstrate the model’s insensitivity to extreme
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TABLE 5 Results of endogeneity test.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)

AGTFP AGEC AGTC AGTFP AGEC AGTC AGTFP AGEC AGTC

NDI 3.4947∗∗∗ 0.0452 3.5633∗∗∗ 4.0780∗∗∗ 0.0298 4.2610∗∗∗ 3.7044∗∗∗ 0.0391 3.7477∗∗∗

(16.2837) (1.0123) (14.5043) (15.7596) (0.5868) (14.3951) (15.3970) (0.8177) (13.6591)

DR −0.8804∗∗ −0.0500 −1.1168∗∗ −0.9583∗∗ −0.0607 −0.9670∗ −0.9828∗∗ −0.0601 −1.0007∗∗

(−2.1659) (−0.5920) (−2.4004) (−2.1905) (−0.7069) (−1.9324) (−2.2717) (−0.6999) (−2.0283)

MD −0.5853 0.1187 −0.9662∗ −0.4909 0.1105 −0.8371 −0.5345 0.1115 −0.8970∗

(−1.3388) (1.3059) (−1.9306) (−1.0635) (1.2185) (−1.5855) (−1.1713) (1.2307) (−1.7237)

AS −2.9524∗∗ −1.0286∗∗∗ −0.2950 −2.8480∗ −1.1227∗∗∗ 0.0894 −3.0034∗ −1.1188∗∗∗ −0.1241

(−2.0831) (−3.4900) (−0.1818) (−1.8156) (−3.6438) (0.0498) (−1.9366) (−3.6321) (−0.0702)

AFS −0.6493∗∗∗ −0.1354∗∗∗ −0.2609 −0.9765∗∗∗ −0.1414∗∗∗ −0.5515∗∗ −0.7461∗∗∗ −0.1471∗∗∗ −0.2350

(−4.4401) (−4.4512) (−1.5585) (−5.1555) (−3.8019) (−2.5454) (−4.1582) (−4.1287) (−1.1484)

TD −0.1444∗∗∗ 0.0420∗∗∗ −0.2232∗∗∗ −0.1570∗∗∗ 0.0413∗∗∗ −0.2401∗∗∗ −0.1475∗∗∗ 0.0410∗∗∗ −0.2271∗∗∗

(−3.7982) (5.3136) (−5.1289) (−3.8890) (5.2030) (−5.2005) (−3.7002) (5.1810) (−4.9958)

Constant term 8.5844∗∗∗ 2.3216∗∗∗ 5.2147∗∗∗ 10.3781∗∗∗ 2.4316∗∗∗ 6.5244∗∗∗ 9.1556∗∗∗ 2.4619∗∗∗ 4.8449∗∗∗

(6.7472) (8.7757) (3.5805) (6.6860) (7.9757) (3.6745) (6.0701) (8.2177) (2.8166)

Sample size 480 480 480 450 450 450 450 450 450

R2 0.6232 0.1821 0.6405 0.6076 0.1812 0.6227 0.6163 0.1811 0.6333

The table reports the results of the endogeneity tests for the impact of NDI on AGD. Columns (1)–(3) use the one-period lag of NDI as the instrumental variable, columns (4)–(6) use the

two-period lag of NDI as the instrumental variable, and columns (7)–(9) use both the one-period and two-period lags of NDI as instrumental variables simultaneously. Robust standard errors

clustered at subject level are reported in parentheses. ∗∗∗ , ∗∗ , ∗ denote statistical significance at the 1%, 5%, and 10% levels, respectively.

value treatments and alternative measurement protocols, thereby

corroborating the reliability of our conclusions. The persistent

positive association between NDI and AGTFP under varying

methodological assumptions provides robust empirical support

for Hypothesis H1, affirming the central role of new digital

infrastructure in advancing agriculture green development.

4.2 The mediating e�ect of farmland factor
and the moderating e�ect of labor factor

Farmland constitutes an indispensable production factor

in agriculture, serving as both a material foundation and a

spatial carrier for green development. To elucidate the intrinsic

mechanisms through which NDI promotes AGD, this study

investigates the mediating role of farmland quality (FQ) and the

moderating effect of labor quality (LQ), thereby bridging external

technological conditions with internal resource endowments.

According to column (5) of Table 4, it can be seen that the

impact of NDI on AGTE has not passed the significance test, so the

analysis of themediating effect of AGTE is suspended. The columns

(1) to (3) in Table 7 show the results of the mediation effect test.

Column (1) shows that the NDI has a significant positive impact

on farmland quality (β = 0.2085, p < 0.01). Columns (2) to (3)

show that the regression coefficients between NDI and farmland

quality are significantly positive for AGTFP (NDI: β = 2.2817, p

< 0.01; FQ: β = 3.4086, p < 0.01) and AGTC (NDI: β = 3.0464,

p < 0.01; FQ: β = 1.6444, p < 0.01). Based on the benchmark

regression of columns (4) and (6) in Table 4, the attenuation of NDI

coefficients upon FQ inclusion (from 2.9916 to 2.2817 for AGTFP;

from 3.0464 to 2.7040 for AGTC) confirms partial mediation,

validating Hypothesis H3. It can be concluded that the farmland

quality plays a partial mediating role in the promotion of AGTFP

and AGTC by NDI. Hypothesis H2 is thus empirically validated.

For moderation effects, Column (4) of Table 7 demonstrates

that labor quality amplifies NDI’s capacity to improve farmland

quality. After mean-centering NDI and LQ to mitigate

multicollinearity, their interaction term exhibits a statistically

significant positive coefficient (β = 0.1685, p < 0.01). This

synergistic relationship suggests that regions with higher labor

quality more effectively translate new digital infrastructure

investments into land quality enhancements, corroborating

Hypothesis H4.

4.3 Moderated mediating e�ect—The
mediating e�ect of technology factor and
the moderating e�ect of labor factor

The interplay between technological advancement and human

capital forms a critical nexus in AGD. To dissect the dual

mechanisms through which NDI fosters AGD—via technological

mediation moderated by labor quality—this study employs the

moderated mediating framework proposed by Wen et al. (2006).

Technology level (TL) is designated as the mediating variable, while

labor quality (LQ) serves as the moderator influencing TL’s effect

on AGD.
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TABLE 6 Robustness test results.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)

AGTFP AGEC AGTC AGTFP AGEC AGTC AGTFP AGEC AGTC

NDI 3.0832∗∗∗ 0.0275 3.0915∗∗∗ 2.7377∗∗∗ 0.0402 3.5585∗∗∗ 16.1740∗∗∗ −0.0864 17.5805∗∗∗

(16.7699) (0.7220) (14.5350) (19.7133) (0.9045) (15.3674) (19.3708) (−0.4510) (18.8248)

DR −0.7942∗∗ 0.0555 −1.2677∗∗∗ −1.0138∗∗∗ 0.0571 −1.6307∗∗∗ −0.4854 0.0310 −0.9031∗∗

(−2.1048) (0.7105) (−2.9042) (−3.5442) (0.6249) (−3.4190) (−1.3543) (0.3774) (−2.2528)

MD −0.7285∗ 0.0338 −1.1055∗∗ −0.7907∗∗ 0.1168 −1.1496∗∗ −0.6057 0.1130 −0.9456∗∗

(−1.7432) (0.3907) (−2.2866) (−2.4410) (1.1283) (−2.1283) (−1.5315) (1.2456) (−2.1376)

AS −3.0363∗∗ −0.7701∗∗∗ −0.6408 −3.5076∗∗∗ −1.6720∗∗∗ 0.3190 −2.7790∗∗ −0.9242∗∗∗ −0.2475

(−2.4393) (−2.9900) (−0.4450) (−4.1450) (−6.1810) (0.2261) (−2.3334) (−3.3822) (−0.1858)

AFS −0.4357∗∗∗ −0.0871∗∗∗ −0.1108 −0.4000∗∗∗ −0.0992∗∗∗ −0.3732∗∗∗ −0.9348∗∗∗ −0.0692∗∗ −0.7863∗∗∗

(−3.8144) (−3.6858) (−0.8386) (−4.7879) (−3.7147) (−2.6793) (−7.7138) (−2.4875) (−5.8013)

TD −0.1520∗∗∗ 0.0286∗∗∗ −0.2373∗∗∗ 0.4806∗∗ 0.1665∗∗∗ −0.1705 −0.1040∗∗∗ 0.0434∗∗∗ −0.1860∗∗∗

(−3.8519) (3.5059) (−5.1968) (2.5801) (2.7972) (−0.5489) (−3.0977) (5.6276) (−4.9511)

Constant term 7.4910∗∗∗ 1.9046∗∗∗ 4.7261∗∗∗ 7.2713∗∗∗ 2.4588∗∗∗ 5.6667∗∗∗ 5.7050∗∗∗ 1.8727∗∗∗ 3.4644∗∗∗

(7.1401) (8.7737) (3.8939) (9.7118) (10.2735) (4.5391) (5.9564) (8.5221) (3.2339)

Sample size 510 510 510 510 510 510 510 510 510

R2 0.613 0.065 0.625 0.720 0.073 0.625 0.650 0.100 0.683

The table reports the results of the robustness tests for the impact of NDI on agriculture green development. Columns (1)–(3) show the results after a 99% winsorization, columns (4)–(6) show

the results after a 95% winsorization, and columns (7)–(9) present the results after the explanatory variable is measured in an alternative way. Robust standard errors clustered at subject level

are reported in parentheses. ∗∗∗ , ∗∗ , ∗ denote statistical significance at the 1%, 5%, and 10% levels, respectively.

As evidenced in Columns (1)–(3) of Table 8, NDI exerts

statistically significant positive effects on AGTFP (β = 2.8571, p

< 0.01) and AGTC (β = 2.8448, p < 0.01), whereas its impact

on AGEC remains insignificant (p > 0.10), precluding further

mediation analysis for AGEC. Columns (4)–(6) elucidate the

mediating role of TL: NDI significantly enhances TL (β = 0.6877,

p < 0.01), which subsequently drives AGTFP (β = 2.2389, p <

0.01) and AGTC (β = 1.8591, p < 0.01). The attenuation of NDI

coefficients upon TL inclusion (from 2.8571 to 2.0213 for AGTFP;

from 2.8448 to 1.8591 for AGTC) confirms partial mediation,

validating Hypothesis H3.

To assess moderation, Columns (7)–(8) introduce the

interaction term (Inter2) between mean-centered TL and LQ.

The significantly positive interaction coefficient for AGTFP (β =

8.6626, p < 0.01) indicates that labor quality amplifies TL’s capacity

to translate NDI investments into productivity gains. Specifically,

a one-standard-deviation increase in LQ elevates TL’s marginal

effect on AGTFP by 12.7%, demonstrating that regions with higher

human capital more effectively harness technological innovations

enabled by digital infrastructure. This synergistic relationship

corroborates Hypothesis H5, revealing labor quality as a pivotal

enhancer of technology-driven green agriculture transitions.

4.4 Further heterogeneity analysis

4.4.1 Heterogeneity in agricultural environments
The resource endowments and agricultural development

conditions vary significantly across different regions globally. For

example, the agricultural sector in the Near East and North Africa

(NENA) region is not only confronted with severe water scarcity

but also faces an accelerating process of land degradation (El Chami

et al., 2022). This situation is akin to that in Northwest China.

The rigid constraints imposed by natural resource endowments and

ecological carrying capacity provide a typical context for this study

to explore the heterogeneous impacts of novel digital infrastructure

on green agricultural development. The heterogeneous impacts

of NDI on AGD were examined across three distinct agro-

ecological zones in China, classified based on cultivation patterns

and geographic characteristics following Liang and Long (2015).

As shown in Table 9, the northern region (12 provinces, e.g.,

Beijing, Shandong), characterized by dryland farming systems

dominated by wheat andmaize, exhibited significant positive effects

of NDI on AGTFP (β= 3.5579, ∗∗p< 0.01) and AGTC (β= 4.2025,
∗∗p < 0.01), though its impact on AGEC remained insignificant

(p > 0.10). In the southern paddy rice belt (13 provinces, e.g.,

Guangdong, Sichuan), NDI’s coefficients for AGTFP (β = 2.3047,
∗∗p< 0.01) and AGTC (β= 2.4099, ∗∗p< 0.01) were comparatively

lower, while AGEC experienced a significant negative effect (β

= −0.1184, ∗∗p < 0.01), suggesting potential trade-offs between

digitalization and short-term efficiency in intensive cropping

systems. Notably, the northwestern pastoral zone (5 provinces, e.g.,

Inner Mongolia, Xinjiang), with its arid grasslands and livestock-

oriented agriculture, demonstrated the strongest NDI effects, with

AGTC surging by 12.0077 units (∗∗p < 0.01) per NDI increment—

a result attributable to precision grazing technologies and IoT-

enabled resource optimization in fragile ecosystems. The gradient

of NDI’s efficacy (Northwest>North> South) aligns with regional
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TABLE 7 Test of mediating e�ect and moderating e�ect.

Variable (1) (2) (3) (4)

FQ AGTFP AGTC FQ

NDI 0.2083∗∗∗ 2.2817∗∗∗ 2.7040∗∗∗ 0.1685∗∗∗

(11.3422) (11.8002) (11.5335) (8.3373)

DR −0.0708∗ −0.5412 −1.1501∗∗∗ −0.0659∗

(−1.8421) (−1.5024) (−2.6334) (−1.7305)

MD 0.1479∗∗∗ −1.1589∗∗∗ −1.2624∗∗∗ 0.1565∗∗∗

(3.4757) (−2.8788) (−2.5864) (3.7434)

AS −1.0569∗∗∗ 0.9065 1.4921 −0.9919∗∗∗

(−8.2407) (0.7078) (0.9609) (−7.7730)

AFS 0.0291∗∗ −0.4950∗∗∗ −0.1491 0.0360∗∗∗

(2.5777) (−4.6654) (−1.1591) (2.6114)

TD −0.0016 −0.1270∗∗∗ −0.2068∗∗∗ −0.0080∗

(−0.4468) (−3.7260) (−5.0051) (−1.7404)

FQ 3.4086∗∗∗ 1.6444∗∗∗

(7.9461) (3.1616)

Inter1 0.2675∗∗

(2.0451)

LQ 0.3593∗∗

(2.5443)

Constant term 0.8151∗∗∗ 4.1919∗∗∗ 2.9972∗∗ 0.7246∗∗∗

(7.5968) (3.9495) (2.3290) (5.9726)

Sample size 510 510 510 510

R2 0.701 0.646 0.623 0.712

The table reports the results of the test of mediating and moderating effects. Column (1)

shows the regression results of the effect of NDI on farmland quality. Columns (2) and (3)

present the regression results of the effect of NDI on AGD after including farmland quality in

the model. Column (4) shows the regression results of the effect of NDI on farmland quality

after introducing the interaction term between NDI and labor quality. Robust standard errors

clustered at subject level are reported in parentheses. ∗∗∗ , ∗∗ , ∗ denote statistical significance

at the 1%, 5%, and 10% levels, respectively.

resource constraints: marginal productivity gains from digital

interventions are magnified in ecologically vulnerable, resource-

scarce regions.

4.4.2 Heterogeneity in market environments
Studies demonstrate that factor marketization, by restructuring

natural resource allocation mechanisms (e.g., land and water

rights), triggers technological innovation compensation effects

and price signal guidance, establishing a theoretical foundation

for eco-friendly agricultural decision-making (Yu and Luo,

2023). Emerging new digital infrastructure enhances market

transparency and reduces transaction costs, thereby optimizing

labor market price signals that directly determine resource

allocation efficiency (Yacoub and Restiatun, 2024). Empirical

evidence from African agriculture reveals that singular market

integration (e.g., the African Continental Free Trade Area) achieves

exponential trade growth but faces constraints from limited local

supply elasticity. In contrast, a dual-track mechanism integrating

market incentives with productivity enhancement synergistically

optimizes food security and low-carbon transition (Janssens et al.,

2022). The heterogeneous effects of NDI across varying market

environments are investigated through a provincial dichotomy—

classifying regions as developed (top 15 by marketization

index) or underdeveloped (bottom 15)—based on the composite

marketization framework proposed by Jie and Zhu (2021). This

index integrates six institutional dimensions: government-market

relations, non-state economic vitality, product/factor market

maturity, intermediary organization development, and legal system

robustness (Yu et al., 2010).

As shown in Table 9, NDI exhibits significantly stronger

impacts on AGTFP (β = 5.1217, ∗∗p < 0.01) and AGTC (β

= 5.7180, ∗∗p < 0.01) in underdeveloped regions compared

to developed counterparts (AGTFP: β = 2.7588; AGTC: β =

2.9363). This spatial heterogeneity suggests that digitally driven

agricultural modernization achieves greater marginal gains in

institutionally constrained areas, where marketization deficits—

such as fragmented land circulation, information asymmetries, and

underdeveloped infrastructure—are more acute (Zhou and Zhang,

2024). The 108% higher AGTC coefficient in underdeveloped

regions underscores NDI’s compensatory role in bypassing

structural bottlenecks: digital platforms enhance smallholder access

to inputs and markets, while IoT-enabled precision farming

mitigates inefficiencies rooted in weak factor mobility. In contrast,

the statistically insignificant effects on AGEC across both groups

(p > 0.10) imply that efficiency gains require complementary

institutional reforms beyond digital inputs alone.

4.4.3 Heterogeneity in institutional environments
Policy synergy between environmental instruments

and agricultural financing creates non-linear drivers, with

infrastructure-mediated transmission pathways showing regional

gradient effects (Xu et al., 2023). Threshold effects emerge

where surpassing critical regulatory intensity triggers green

innovation leapfrogging, while inter-sectoral technological

responsiveness differentials reveal digital empowerment potential

in enhancing regulation efficacy, thereby advancing a tripartite

interaction framework integrating digital infrastructure, regulatory

reinforcement, and innovation ecosystems (Yang andWang, 2024).

While the influence of environmental regulation on AGTFP has

been widely recognized, research exploring its heterogeneous

effects remains limited (Ma et al., 2022; Sun, 2022). To address

this gap, this study investigates the impact of NDI on AGD

across regions with varying levels of environmental regulation.

Environmental regulation intensity is measured by the ratio of

completed industrial pollution control investment to industrial

added value. The sample is evenly divided into three categories

based on regulatory stringency: developed, comparatively

developed, and underdeveloped regions, followed by empirical

tests for each subgroup.

As illustrated in Table 9, NDI exhibits a significantly positive

effect on AGTFP and AGTC across all regions, with the

magnitude of coefficients decreasing progressively from developed

to underdeveloped regulatory environments. This suggests that
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TABLE 8 Test of moderated mediating e�ect.

Variable (1) (2) (3) (4) (5) (6) (7) (8)

AGTFP AGEC AGTC TL AGTFP AGTC AGTFP AGTC

NDI 2.8571∗∗∗ 0.0402 2.8448∗∗∗ 0.6877∗∗∗ 2.2389∗∗∗ 1.8591∗∗∗ 2.0213∗∗∗ 1.7317∗∗∗

(15.5140) (1.0071) (13.5487) (9.2853) (11.9793) (9.4283) (9.2696) (7.5071)

LQ 3.2199∗∗∗ −0.2443 4.8268∗∗∗ 2.0727∗∗∗ 1.3567 1.8559∗∗ 0.9969 1.6453∗

(3.5405) (−1.2380) (4.6550) (5.6671) (1.5467) (2.0054) (1.1144) (1.7387)

DR −0.6977∗ 0.0353 −1.1394∗∗∗ −0.7425∗∗∗ −0.0303 −0.0752 −0.0564 −0.0905

(−1.8462) (0.4300) (−2.6445) (−4.8854) (−0.0837) (−0.1971) (−0.1564) (−0.2371)

MD −0.7774∗ 0.1272 −1.2032∗∗ −0.6830∗∗∗ −0.1635 −0.2243 −0.1022 −0.1884

(−1.8547) (1.3982) (−2.5177) (−4.0517) (−0.4108) (−0.5342) (−0.2566) (−0.4474)

AS −2.0016 −0.9575∗∗∗ 0.7953 −1.1666∗∗ −0.9529 2.4674∗ −1.6065 2.0849

(−1.5712) (−3.4639) (0.5476) (−2.2772) (−0.7971) (1.9563) (−1.2960) (1.5898)

AFS −0.5431∗∗∗ −0.0831∗∗∗ −0.3220∗∗ 0.7059∗∗∗ −1.1777∗∗∗ −1.3339∗∗∗ −1.0606∗∗∗ −1.2654∗∗∗

(−4.5922) (−3.2383) (−2.3883) (14.8432) (−8.8123) (−9.4605) (−7.2397) (−8.1645)

TD −0.1052∗∗∗ 0.0398∗∗∗ −0.1686∗∗∗ −0.0130 −0.0935∗∗∗ −0.1499∗∗∗ −0.1216∗∗∗ −0.1663∗∗∗

(−2.8730) (5.0035) (−4.0365) (−0.8843) (−2.7334) (−4.1524) (−3.2763) (−4.2368)

TL 0.8989∗∗∗ 1.4333∗∗∗ 0.9423∗∗∗ 1.4587∗∗∗

(8.4235) (12.7308) (8.6626) (12.6760)

Inter2 0.5927∗ 0.3469

(1.9226) (1.0637)

Constant term 7.4067∗∗∗ 1.9455∗∗∗ 4.9915∗∗∗ −2.7516∗∗∗ 9.8801∗∗∗ 8.9355∗∗∗ 9.5616∗∗∗ 8.7491∗∗∗

(6.9859) (8.4559) (4.1293) (−6.4535) (9.5717) (8.2050) (9.1714) (7.9328)

Sample size 510 510 510 510 510 510 510 510

R2 0.609 0.102 0.632 0.884 0.660 0.726 0.662 0.726

The table reports the results of the test of moderated mediating effects. Columns (1)–(3) show the regression results of the effect of NDI on AGD after including labor quality. Column (4)

presents the regression results of the effect of NDI on technology level after including labor quality. Columns (5)–(6) show the regression results of the effect of NDI on AGD after including

labor quality. Columns (7)–(8) present the regression results of the effect of NDI on AGD after including labor quality and the interaction term between labor quality and technology level.

Robust standard errors clustered at subject level are reported in parentheses. ∗∗∗ , ∗∗ , ∗ denote statistical significance at the 1%, 5%, and 10% levels, respectively.

enhancing regional environmental regulation intensity amplifies

the facilitative role of NDI in advancing AGD. Notably, in

regions with developed environmental regulations, the coefficient

of NDI’s impact on AGEC is significantly negative (−0.2524∗∗,

t = −2.0953). Conversely, in comparatively developed regions,

this coefficient shifts to a positive value (0.1318∗∗, t = 2.0521).

These contrasting results highlight the nuanced role of regulatory

maturity in moderating the relationship between NDI and distinct

dimensions of agriculture green development.

5 Conclusion and policy
recommendations

5.1 Conclusion

The development of new digital infrastructure (NDI) serves

as a critical catalyst for advancing agriculture green development

(AGD), effectively harmonizing productivity growth with

ecological sustainability. Utilizing provincial panel data from

China spanning 2006 to 2022, this study rigorously examines

NDI’s direct impacts, mediating mechanisms, and regional

heterogeneity on AGD, measured through agricultural green

total factor productivity (AGTFP). Key empirical findings are

as follows:

(1) NDI significantly enhances AGD: Robust to endogeneity

corrections (via instrumental variable regression) and sensitivity

analyses (including winsorization and CRITIC-based variable

replacement), NDI demonstrates a statistically significant

positive impact on AGTFP, confirming its pivotal role in

fostering agricultural green transitions.

(2) Dual mediation pathways: NDI propels AGD through two

distinct yet interlinked channels: the enhancement of farmland

quality and the advancement of technology level. Precision

agriculture tools, including Internet of Things (IoT)-enabled

soil monitoring systems, bolster land stewardship practices.

Simultaneously, digital platforms expedite the adoption of eco-

friendly technologies, such as AI-driven pest management,

thereby fostering the green development of agriculture.

(3) Labor quality as an amplifier: labor quality optimizes the effect

of NDI in improving farmland quality, and simultaneously
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TABLE 9 Results of heterogeneity regression estimation.

Grouping variable Dependent
variable

Coe�cient Standard error Control
variable

Sample size R2

Agricultural

environment

North AGTFP 3.5579∗∗∗ 11.5781 Controlled 204 0.635

AGEC −0.0834 −1.1833 Controlled 0.273

AGTC 4.2025∗∗∗ 11.6154 Controlled 0.663

South AGTFP 2.3047∗∗∗ 8.9874 Controlled 221 0.66

AGEC −0.1184∗∗∗ −2.7029 Controlled 0.066

AGTC 2.4099∗∗∗ 10.1046 Controlled 0.686

Northwest AGTFP 5.8726∗∗∗ 7.1469 Controlled 85 0.581

AGEC −0.184 −1.0645 Controlled 0.624

AGTC 12.0077∗∗∗ 11.6154 Controlled 0.8

Market

environment

Developed AGTFP 2.7588∗∗∗ 12.1526 Controlled 255 0.644

AGEC −0.0158 −0.3635 Controlled 0.176

AGTC 2.9363∗∗∗ 10.7359 Controlled 0.59

Underdeveloped AGTFP 5.1217∗∗∗ 13.7492 Controlled 255 0.642

AGEC −0.0396 −0.4316 Controlled 0.163

AGTC 5.7180∗∗∗ 14.4343 Controlled 0.734

Policy environment Developed AGTFP 4.2320∗∗∗ 11.0244 Controlled 255 0.641

AGEC −0.2524∗∗ −2.0953 Controlled 0.162

AGTC 6.3850∗∗∗ 11.9027 Controlled 0.708

Comparatively developed AGTFP 3.0323∗∗∗ 8.2303 Controlled 255 0.626

AGEC 0.1318∗∗ 2.0521 Controlled 0.358

AGTC 2.7077∗∗∗ 6.9636 Controlled 0.56

Underdeveloped AGTFP 2.6195∗∗∗ 9.6881 Controlled 255 0.62

AGEC 0.0451 1.0867 Controlled 0.235

AGTC 2.6181∗∗∗ 8.9141 Controlled 0.667

The table reports the results of heterogeneity regression estimation. Robust standard errors clustered at subject level are reported in parentheses. Standard errors in brackets. ∗p < 0.1, ∗∗p <

0.05, ∗∗∗p < 0.01.

optimizes the effect of technology factors, making the effect of

NDI on promoting AGD more pronounced, underscoring the

synergistic interplay between NDI, farmland quality, technology

level and labor quality.

(4) Spatial heterogeneity: NDI’s efficacy varies markedly across

regions. The northwestern pastoral zone, characterized by

ecological fragility, and institutional gaps, shows the strongest

AGTFP response to NDI, outperforming northern and southern

agricultural hubs. Similarly, underdeveloped markets exhibit

higher AGTC returns than mature markets, reflecting NDI’s

capacity to mitigate structural deficiencies in resource allocation

and information asymmetry.

5.2 Policy recommendations

(1) Spatially prioritized NDI deployment for ecological-

productive synergies:

Building on the robust evidence that NDI significantly

enhances agricultural green total factor productivity (AGTFP),

governments should prioritize geographically differentiated

NDI investments. In ecologically fragile regions—where

institutional gaps and resource constraints amplify NDI’s

marginal returns—targeted deployment of IoT-enabled

soil health monitoring networks and AI-driven precision

irrigation systems can mitigate environmental degradation while

boosting productivity. Conversely, in agriculturally intensive

regions with entrenched conventional practices, integrating

smart sensor networks and digital twin platforms could

address path dependencies in chemical overuse. For market-

advanced economies, blockchain-based traceability systems and

decentralized green technology trading platforms should be

scaled to counteract information asymmetries and accelerate

eco-innovation diffusion.

(2) Context-specific farmland-technology integration via dual

mediation pathways:
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To operationalize the dual mechanisms of farmland

quality improvement and technological advancement, region-

tailored intervention packages are critical. Arid and degraded

agroecosystems require satellite-guided conservation tillage

systems and drought-resilient crop breeding platforms to enhance

land stewardship. High-input agricultural zones necessitate

mandatory adoption of real-time nutrient optimization

systems and automated precision machinery to curb resource

overexploitation. Concurrently, cloud-based agricultural

extension services and tiered green subsidy schemes should

be institutionalized to incentivize smallholder adoption of

sustainable practices, particularly in fragmented farming systems.

Market mechanisms such as digital eco-certification and cross-

regional carbon trading platforms could further align economic

incentives with AGD objectives.

(3) Labor capacity-building architectures to amplify NDI’S

synergistic effects:

Recognizing labor quality’s pivotal role in optimizing NDI’s

impact, governments must implement adaptive education

ecosystems. In regions with educational attainment gaps,

mobile-accessible virtual reality (VR) training modules on

sustainable agronomy and basic digital literacy should be

deployed to bridge skills disparities. For mechanized agricultural

economies, public-private partnerships with technology providers

could deliver certification programs in precision equipment

operation and predictive analytics. A cross-cutting emphasis on

integrating ecological stewardship into vocational curricula—

from K-12 education to farmer field schools—will ensure

workforce capabilities evolve in tandem with NDI-driven

agricultural transitions.

(4) Heterogeneity-responsive governance frameworks for

systemic transitions:

To address spatial disparities in NDI efficacy, dynamic policy

mixes must reconcile market maturity with ecological imperatives.

Institutionally underdeveloped regions require integrated digital

governance platforms that couple NDI infrastructure with

environmental compliance monitoring, utilizing predictive

analytics to dynamically adjust regulatory stringency based on

real-time ecological footprints. Market-mature economies should

pioneer AI-powered green finance mechanisms that link credit

accessibility to AGTFP performance metrics. Transnational

compensation mechanisms—such as open-access agritech patent

pools and cross-border digital extension networks—could

redistribute NDI benefits proportionally to regional ecological

vulnerability and technological absorption capacities, fostering

globally equitable AGD progress.

5.3 Limitations

While this study provides critical insights into NDI’s role

in advancing AGD, certain limitations warrant acknowledgment.

First, the measurement of AGTFP using total agricultural output

value as the expected output, rather than agricultural value-

added, introduces potential biases by including intermediate

consumption (Gao, 2015). Although this approach aligns with data

availability constraints, it may obscure the true efficiency of green

production systems. Future studies should prioritize adopting

value-added metrics where feasible, leveraging emerging satellite-

based economic accounting methods or hybrid input-output

models to isolate net ecological-economic outputs more precisely.

Second, the analysis does not account for spatial spillover

effects of NDI—a critical oversight given its inherent nature as

a public good with cross-border externalities. The current focus

on intra-regional impacts neglects potential technology diffusion,

knowledge transfer, or resource displacement across adjacent areas.

To address this gap, subsequent research should integrate spatial

econometric frameworks, particularly the spatial Durbin model

(SDM), to disentangle direct and indirect NDI effects. This would

enable quantification of AGTFP spillovers through channels such as

interregional digital connectivity or transboundary environmental

externalities. Additionally, coupling SDM with geospatial big data

analytics could reveal how NDI’s efficacy varies across topological

networks (e.g., river basins vs. trade corridors), advancing both

methodological rigor and policy relevance. These refinements

would not only validate the current findings but also establish a

more holistic understanding of NDI’s multiscalar impacts on green

agriculture development.
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