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Introduction:Detectingwater contamination in community housing is crucial for
protecting public health. Early detection enables timely action to prevent
waterborne diseases and ensures equitable access to safe drinking water.
Traditional methods recommended by the Environmental Protection Agency
(EPA) rely on collecting water samples and conducting lab tests, which can be
both time-consuming and costly.

Methods: To address these limitations, this study introduces a Graph Attention
Network (GAT) to predict lead contamination in drinking water. The GAT model
leverages publicly available municipal records and housing information to model
interactions between homes and identify contamination patterns. Each house is
represented as a node, and relationships between nodes are analyzed to provide a
clearer understanding of contamination risks within the community.

Results: Using data from Flint, Michigan, the model demonstrated higher
performance compared to traditional methods. Specifically, the GAT achieved
an accuracy of 0.80, precision of 0.71, and recall of 0.93, outperforming XGBoost,
a classical machine learning algorithm, which had an accuracy of 0.70, precision
of 0.66, and recall of 0.67.

Discussion: In addition to its predictive capabilities, the GAT model identifies key
factors contributing to lead contamination, enablingmore precise targeting of at-
risk areas. This approach offers a practical tool for policymakers and public health
officials to assess and mitigate contamination risks, ultimately improving
community health and safety.
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1 Introduction

Detecting contamination in drinking water is critical for safeguarding public health, as it
prevents exposure to harmful pollutants and ensures access to safe drinking water. In the
United States, nearly one-fifth of the population, approximately 63 million people, have
been exposed to potentially unsafe water multiple times over the past decade (News21,
2023). An investigation by the Environmental Protection Agency (EPA) reported over
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680,000 water quality violations, affecting communities ranging
from rural Central California to urban New York City. This
widespread issue underscores the need for effective detection
methods that address both the severity and scale of
contamination. Health risks associated with lead in drinking
water are well-documented, with even minimal concentrations
posing significant concerns. Although the EPA has established an
action level of 15 ppb for lead (Pb), no concentration is considered
entirely safe because lead is non-biodegradable and can accumulate
in the food chain (Doré et al., 2020; Han et al., 2020; Sawan et al.,
2020). Prolonged exposure can harm the brain, kidneys, and other
organs (Vlachou et al., 2020; Martin and Griswold, 2009; Trueman
et al., 2016).

Lead service lines (LSLs) are a primary source of contamination,
contributing 50%–75% of the lead mass in drinking water, followed
by premise piping (20%–35%) and faucets (1%–3%) (Sandvig et al.,
2008). In the U.S., an estimated 6.1 to 10.2 million LSLs supply water
to approximately 15–22 million people, accounting for about 7% of
community water system consumers (Cornwell et al., 2016; Hensley
et al., 2021). Addressing LSLs is critical for reducing lead exposure
risks and safeguarding public health.

Various methods exist for detecting LSLs, including record
screening, visual inspections, water quality testing (e.g., EPA
methods 200.8 and 200.9), excavation, and advanced techniques
like cumulative lead sampling devices and acoustic wave technology
(Hensley et al., 2021). More recently, predictive data analysis,
particularly machine learning, has emerged as a cost-effective
alternative. Machine learning enables researchers to analyze
patterns in existing data, identifying high-risk areas without
relying on expensive sampling or specialized equipment. By
focusing on areas most at risk, these models support more
efficient mitigation efforts and help reduce lead exposure in
drinking water.

The extent of lead release from LSLs depends on a combination
of factors, including water chemistry, pipe scale composition, and
environmental conditions (Pasteris et al., 2021; García-Timermans
et al., 2023). Tools such as Raman spectroscopy have been used to
analyze the stability of lead-pipe scales under changing treatment
conditions, providing insights into how factors like pH adjustments,
disinfectants, and orthophosphate dosing affect lead release (Pasteris
et al., 2021). Similarly, pilot-scale water distribution studies have
shown that biofilm formation, pipe aging, and transport conditions
also influence water quality (García-Timermans et al., 2023). To
mitigate these factors and manage lead release, effective corrosion
control strategies are essential.

Corrosion control strategies play an important role in managing
lead release from service lines. Zinc orthophosphate has been
effective in reducing nitrate-induced lead corrosion, particularly
in systems with high nitrate levels (Lopez et al., 2024). However,
challenges such as aluminum accumulation in pipe scales can delay
the performance of phosphate inhibitors, indicating the need for
adaptive strategies (Li et al., 2020). The composition of pipe scales
influences lead dynamics: iron-rich scales accelerate the oxidation of
Pb(II) to Bae et al. (2020b), while manganese facilitates the oxidation
of lead carbonate, stabilizing PbO formation in chlorinated systems
(Pan et al., 2019). Interactions with other metals, such as chromium,
add further complexity. Chromium release from pipe scales is
influenced by anion concentrations; sulfate and chloride promote

release under certain conditions (Devine et al., 2024; Ni et al., 2024;
Bae et al., 2020a). Orthophosphate can stabilize lead release by
forming calcium–lead–phosphorus solids, but trade-offs like
calcium phosphate precipitation illustrate the complexities of
balancing corrosion control and water quality (Bae et al., 2020c;
Devine et al., 2024). These findings highlight the intricate interplay
among water chemistry, pipe materials, and environmental factors
in determining lead behavior in drinking water systems.
Understanding these dynamics emphasizes the need for
predictive tools to effectively address lead contamination.

Machine learning offers an approach to complement traditional
water quality assessments by modeling interactions between water
chemistry, pipe scales, and environmental factors. These models
provide insights that help identify areas of elevated contamination
risk and guide targeted mitigation strategies. Unlike traditional
methods that often require extensive infrastructure interventions,
machine learning leverages spatial and temporal data to improve the
accuracy of risk predictions. This approach addresses challenges
such as variable lead levels and incomplete service line data, enabling
more efficient resource allocation and decision-making.

Recent studies have applied machine learning models to address
lead contamination. Random Forest models achieved cross-
validation scores of 0.88 for Massachusetts and 0.78 for
California (Lobo et al., 2022). In Pittsburgh, precise predictions
(over 90%) were made for only 13% of customers, suggesting that
unnecessary excavations could be reduced by improving short-term
replacement decisions (Hajiseyedjavadi et al., 2022). Incorporating
field observations of tap water materials further improved prediction
accuracy to 94% when integrated into models (Blackhurst, 2021).
Gradient Boosting models predicted high lead levels (over 15 ppb) in
tap water for the Pittsburgh Water and Sewer Authority, achieving
an AUC score of 71.6% (Hajiseyedjavadi et al., 2022). Similarly,
Support Vector Machines identified lead service lines with an
average accuracy of 90% (Gurewitsch, 2019). In Flint, Michigan,
an XGBoost model identified 1,000 homes most likely to exceed the
EPA’s action level of 15 ppb, even without direct test results
(Chojnacki et al., 2017).

Despite these advancements, challenges remain. Imbalanced
datasets can bias model training, and incomplete or inaccurate
service line data compromise prediction reliability. The variability
of lead levels adds complexity, and many models focus exclusively
on lead results without incorporating spatial factors such as
proximity to contamination sources. Addressing these limitations
is crucial for improving the accuracy and broader applicability of
machine learning models.

Machine learning applications for lead contamination have been
explored across diverse regions. In Flint, Michigan, researchers
developed predictive models combining residential water test data
with infrastructure information, though these efforts faced
computational and data limitations (Abernethy et al., 2016). In
Saudi Arabia, techniques like Nonlinear Autoregressive Neural
Networks and Long Short-Term Memory networks were used to
predict the Water Quality Index, but the findings were specific to
that region (Aldhyani et al., 2020). In Chicago, Illinois, models such
as Random Forest, logistic regression, and support vector machines
assessed lead poisoning risks in children, often focusing on lead
paint rather than waterborne contamination (Potash et al., 2015). In
Pittsburgh, Pennsylvania, Support Vector Machine and Random
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Forest models assessed lead service line risks in residential areas, but
their performance was limited by incomplete data and a narrow focus
on factors like housing age and spatial characteristics (Hajiseyedjavadi
et al., 2020; Gurewitsch, 2019). Similarly, in California and
Massachusetts, Random Forest models identified high-risk areas for
lead in school drinking water, relying heavily on publicly available data
without establishing causality (Lobo et al., 2022).

Given the complexity of environmental data and the limitations
of existing models, advanced methods are required to address these
challenges. This study applies GATs to lead contamination risk
assessment, leveraging their ability to capture geographic
relationships and complex interactions. Previous research on
Graph Neural Networks (GNN) has shown their effectiveness in
environmental and water management tasks. For example, Graph
Convolutional Recurrent Neural Networks (GCRNN) have been
applied to water demand forecasting, capturing spatial and temporal
dependencies (Zanfei et al., 2022). Similarly, GNN have been used in
groundwater level prediction in British Columbia, Canada, by
representing wells as graph nodes and learning spatial
relationships through a self-adaptive adjacency matrix (Bai and
Tahmasebi, 2023). In river networks, GATs combined with
spatiotemporal fusion have modeled spatial dependencies among
nodes and temporal dynamics (Lin et al., 2022). These applications
suggest that GATs have the potential to improve predictions of lead
contamination in drinking water.

While lead service lines remain a primary source of
contamination, this study focuses on developing predictive tools
to assess contamination risks rather than conducting direct
experimentation on service lines. By utilizing GATs, this
research aims to address the limitations of existing machine
learning models and enhance risk assessment accuracy. The
study contributes to the field by providing a robust framework
for contamination prediction, integrating spatial dependencies and
environmental factors. To provide a structured view of the
implemented approach, Figure 1 summarizes the key steps
involved in the water contamination detection framework.

2 Materials and methods

2.1 Data collection

Our study is centered on the city of Flint, Michigan, which has been
facing a significant crisis due to lead contamination in its water supply
(Michigan.gov, 2023). Our initial dataset was derived from the water
testing services in Flint, in collaboration with theMichigan Department
of Environmental Quality (Michigan.gov, 2023). This dataset spans
January through December 2016, capturing household-level water
sampling efforts undertaken after the Flint water crisis. The time
frame is critical, as it reflects lead contamination trends during early
remediation measures, including the introduction of corrosion control.
This dataset comprised approximately 14,000 records, predominantly
from the year 2016 as mentioned earlier. However, the limited diversity
of features within this dataset rendered it inadequate for machine
learning analysis.

To address this limitation, we utilized web scraping techniques
to augment our dataset with additional property information from
the Zillow online real estate database (www.zillow.com) (Sarr and

Diallo, 2018; Zillow, 2023). The web scraping process was
implemented using Python, which provided flexibility for data
retrieval and processing. The approach used libraries like
googlesearch-python to programmatically retrieve URLs
via Google searches, requests and json for HTTP requests
and API responses, and pandas for handling and storing the data.
Additional utilities, such as io and time, supported auxiliary tasks.
The scraping process began by identifying relevant links using
googlesearch-python, followed by parsing HTML content
and integrating with RapidAPI to extract structured data about
properties. Key attributes, such as longitude and latitude, building
size, year built, and condition, were systematically stored in Comma-
Separated Values (CSV) format for downstream analysis. To ensure
the validity and accuracy of the web-scraped data, we cross-
referenced residential addresses and features (e.g., year built) with
the Michigan Department of Environmental dataset and Arc GIS
parcel records. This validation step confirmed the consistency of the
scraped data and ensured its reliability for further analysis. The web
scraping process retrieved approximately 1,070 property records.
Following the cleaning and validation steps described, 154 records
were excluded due to missing over 80% of key features, such as
longitude and latitude, building size, year built, and condition or due
to a lack of alignment with other sources. This left 916 records that
met the inclusion criteria. These excluded records were largely
incomplete and unlikely to impact the findings or the model’s
ability to generalize contamination patterns. This cleaning and
validation process was applied uniformly across the dataset to
maintain integrity and avoid systematic bias. Figure 2 illustrates
our entire data source.

Furthermore, we enriched our dataset with Arc GIS parcel
record data from the City of Flint office, incorporating critical
property details such as location and valuation to enhance the
depth of our analysis. Any inconsistencies or unmatched data
were omitted to maintain data integrity. Additionally, we
examined seasonal variations in lead concentrations to determine
whether temperature fluctuations or changes in water usage patterns
influenced contamination levels. A seasonal breakdown of lead
levels showed minor variations, with slightly higher
concentrations in summer and fall and lower levels in winter.
These trends suggest that increased corrosion in warmer months
and shifts in water demand may have contributed to fluctuations.
However, the differences were not large enough to indicate strong
seasonal dependence.

2.2 Geographic information systemmapping
in flint

To provide a visual representation of our study area, Figure 3
presents a GIS map indicating the houses in Flint that were sampled
for these prediction studies. Such a map offers a spatial
understanding of the scope of our research and the distribution
of samples across the city. The data for our study was carefully
sampled homes from the initial dataset of 14,000 records. Homes
with higher lead concentrations were prioritized to train the model
effectively in identifying contamination patterns. This approach
ensured that the dataset was representative of homes across
various lead contamination levels, as categorized in Table 1.
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2.3 Data curation

To focus on houses affected by varying lead levels, we adopted a
labeling scheme aligned with EPA standards (Agency, 2023). Houses
with lead levels below 5 ppb were categorized as Level 0; those with
levels from five to less than 10 ppb as Level 1; from 10 to less than
15 ppb as Level 2; and houses with lead levels of 15 ppb or higher as
Level 3 Table 2. These classification thresholds reflect real-world

standards, enabling the model to detect and differentiate multiple
levels of lead contamination severity. Recognizing that no level of
lead is entirely safe, this scheme emphasizes early detection and
intervention. By identifying contamination even at minimal levels,
the model aims to provide actionable insights to mitigate risks and
facilitate timely responses.

Out of the initial 14,000 records, only 916 homes met the
inclusion criteria for our analysis. Specifically, each included

FIGURE 1
Gnn development with multiple data sources.

FIGURE 2
Workflow for data consolidation from multiple sources for lead contamination analysis.
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home had consistent and verified data across all sources (Michigan
Department of Environmental dataset, Zillow, and Arc GIS records).
Samples that lacked corresponding information or exhibited more
than 80% missing data were excluded. This stringent cleaning
process ensured a quality dataset for modeling. Each lead sample
was also matched to a specific parcel of land in Flint, and one-hot
encoding and normalization techniques were applied to the final
dataset, following best practices outlined in Kuhn and
Johnson (2013).

Each dataset was categorized based on lead contamination levels
according to the EPA standards Table 2. The lead levels are divided
into four categories:

Proportions and Counts.

• Level 0: 59.5% of the homes (545 homes) are categorized as Level 0,
indicating minimal lead contamination. Lead levels less than 5 ppb

• Level 0: 59.5% of the homes (545 homes) are categorized as Level
0, indicating minimal lead ad levels between 5 and 10 ppb

FIGURE 3
GIS map showing sampled houses in Flint for prediction studies.
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• Level 0: 59.5% of the homes (545 homes) are categorized as
Level 0, indicating minimal lead Level 2: 8.2% of the homes
(75 homes) are in Level 2, with moderate lead contamination.
Lead levels between 10 and 15 ppb

• Level 0: 59.5% of the homes (545 homes) are categorized as
Level 0, indicating minimal lead Level 3: 15.6% of the homes
(143 homes) are classified as Level 3, showing the highest
levels of lead contamination. Lead levels 15 ppb or greater

The dataset is predominantly composed of homes with very low
or no lead contamination (Level 0). However, a significant portion of
the dataset (approximately 40.5%) consists of homes with varying
degrees of lead contamination (Levels 1, 2, and 3). This stratification
was crucial for ensuring the model could learn to identify both
contaminated and homes at very low risk of contamination
effectively. While minor seasonal variations in lead levels were
observed, they do not significantly impact the overall assessment
of contamination risk. The seasonal trends suggest that lead levels
remain relatively stable throughout the year, with slight increases in
warmer months. This reinforces the importance of long-term
monitoring beyond seasonal patterns, as lead contamination is
influenced by multiple factors beyond temperature fluctuations.
Although this dataset does not represent the entire population of
Flint homes, it provides a robust sample for testing and refining the
model. The inclusion criteria ensured data quality and reliability,
while the prioritization of contaminated homes allowed the model to
focus on identifying risk patterns. This study lays the foundation for
future work with larger, more representative datasets.

In summary, we utilize data from Flint, Michigan’s lead
contamination crisis to develop a machine-learning model for the
detection of lead in drinking water.

2.4 Machine learning models

We employed GAT for our primary model, developed using
libraries including PyTorch, PyTorch Geometric, NetworkX, and
GeoPy (Veličković et al., 2018). For ensemble modeling, we used
classical machine learning algorithms such as
RandomForestClassifier, SVC, and XGBoost (Abernethy et al.,
2016). The models’ performance was assessed using metrics like
the Receiver Operating Characteristic (ROC) curve, ROC, and the
AUC score. Throughout this process, we adhered to ethical
guidelines, particularly ensuring that data was not publicly
accessible online, to safeguard our dataset’s privacy and ethical
integrity (Floridi and Taddeo, 2016).

2.5 Graph attention network

The Graph Attention Network (GAT), a specialized variant
of Graph Neural Networks (GNNs), incorporates an attention
mechanism to emphasize the influence of specific
neighboring nodes. This approach was introduced in the
study by Veličković et al. (2018). The attention mechanism,
originally developed for sequence-based tasks, has been applied
in areas such as machine translation (Bahdanau and Bengio,
2015; Vaswani et al., 2017). More recently, this concept has been
adapted for graph-based applications, resulting in various
models that integrate the attention operator into graph neural
networks. The work by Veličković et al. (2018) represents an
important step in extending attention-based methods to graph-
structured data.

In this study, we utilize the GAT model to generate higher-level
feature representations. The model applies self-attention
mechanisms to an input graph composed of N nodes, each with
F. Our implementation diverges from the original architecture by
employing a single attention head, simplifying computations
without significantly compromising performance (Veličković
et al., 2018). The input to the GAT layer is a set of node
features, represented as shown in Equations 1–4:

h � �h1, �h1, . . . , �hN,{ } (1)

Here �hi ∈ RF. The layer produces a new set of node features,
potentially with different cardinality F′, denoted by
h′ � {h1′, h2′, . . . , h′N̂}, hi′ ∈ RF̂ as output. A shared linear
transformation, parametrized by a weight matrix W ∈ RF̂ × F,
is applied to every node. This transformation allows the network
to express higher-level features. The self-attention mechanism
computes attention coefficients eij � a(W �hi,W �hj), reflecting the
importance of node j’s features to node i. The model includes
masked attention, considering only nodes j ∈ Ni, whereNi refers
to the first-order neighbors of i (including i). Attention
coefficients are normalized across nodes using the
softmax function:

αij � softmaxj eij( ) � exp eij( )∑k∈Ni
exp eik( ). (2)

The attention mechanism a is modeled as a single-layer
feedforward neural network, parametrized by a weight vector

TABLE 1 Lead contamination range (ppb) and categorization.

Type Lead value range (ppb)

Classifier 1 Less than 5 ppb

5 ppb to less than 10 ppb

Classifier 2 Less than 5 ppb

10 ppb to less than 15 ppb

Classifier 3 Less than 5 ppb

15 ppb or greater

TABLE 2 Lead contamination range and implications.

Lead
level (ppb)

Implications

0–5 None detectable

5–10 Minimal contamination, yet no safe level for children

10–15 Violates trigger level under the Revised Lead Rule; action
required

>15 Exceeds EPA action level, indicating significant
contamination and need for immediate action
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�a ∈ R2F′, using a LeakyReLU nonlinearity with negative input slope
α � 0.2. The coefficients are computed as:

αij �
exp LeakyReLU �a T W �hi‖W �hj[ ]( )( )∑k∈Ni

exp LeakyReLU �a T W �hi‖W �hk[ ]( )( ). (3)

Here ·T represents transposition and ‖ is the concatenation
operation. After the normalized attention coefficients are
calculated, they are used to form a linear combination of the
features that correspond to them, generating the final output
features for every node:

�hi′ � σ ∑
j∈Ni

αijW �hj⎛⎝ ⎞⎠, (4)

where σ is the activation function (e.g., ReLU or softmax).

2.6 Advantages and challenges of graph
attention networks

GATs have emerged as an effective tool for handling graph-
structured data, offering numerous benefits that are particularly
relevant to tasks requiring nuanced relational modeling. At the heart
of GATs lies their attention mechanisms, which selectively prioritize
important nodes and edges within a graph. This selective focus
enhances computational efficiency through parallel processing while
simultaneously boosting the model’s ability to extract and
emphasize critical relationships. Moreover, the inductive learning
capabilities of GATs, enabled by their shared attention mechanisms,
extend their versatility to a wide range of scenario. The
interpretability of GATs is another significant advantage; by
providing insights into the decision making process through
learned attention weights. Additionally, their inherent flexibility
in accommodating dynamic structures has made them good
choice for graph-based data analysis (Zhou et al., 2020).
Nevertheless, despite these strengths, GATs are not without
challenges. They are often hindered by scalability issues,
computational intensity, and a susceptibility to overfitting
(Vrahatis et al., 2024). Recognizing these limitations, we adopted
several measures to address these concerns and optimize the
performance of GATs in our study. To manage computational
demands, we simplified the architecture by employing a single
attention head instead of multiple, thereby streamlining
computations while maintaining effective performance.
Furthermore, the stability of the model was enhanced through
the use of LeakyReLU activations, which mitigated the risk of
gradient vanishing during softmax normalization and ensured
reliable convergence throughout the training process. In addition,
to address the challenges posed by graph density, we optimized
graph construction by connecting nodes based on meaningful
geodesic distance thresholds. This approach not only reduced the
overall sparsity of the graph but also preserved essential spatial
relationships, thereby improving computational efficiency without
compromising the quality of the relational data captured. By
implementing these targeted strategies, we tailored the GAT model
to align with the specific requirements of our dataset and problem
context. Ultimately, while GATs excel in capturing the complexities of

graph-structured data, these adjustments underscore the importance
of acknowledging their limitations. Our approach strikes a balance
between leveraging their inherent strengths and mitigating their
constraints, ensuring that GATs remain a practical and effective
choice for our study without overstating their universal applicability.

2.7 Evaluation metrics

In the field of machine learning, evaluationmetrics play a pivotal
role in assessing the performance and reliability of the models. The
Receiver Operating Characteristic (ROC) curve serves as a critical
tool for evaluating classification performance across various decision
thresholds of the model (Fawcett, 2006). It represents the trade-off
between the True Positive Rate (TPR), or sensitivity, and the False
Positive Rate (FPR), defined as shown in Equation 5:

TPR � TP
TP + FN

, FPR � FP
FP + TN

, (5)

where TP, FN, FP, and TN correspond to true positives, false
negatives, false positives, and true negatives, respectively. The ROC
curve is instrumental in evaluating a model’s ability to balance
sensitivity and specificity. Additionally, the Area Under the Curve
(AUC) quantifies the model’s overall discriminatory power and is
calculated using Equation 6:

AUC � ∫1

0
TPR FPR( )d FPR( ), (6)

where an AUC of 0.5 indicates random chance, while a value
closer to 1.0 signifies exemplary classification performance.

2.7.1 Cross-validation and stability
To ensure the robustness of the proposed model, we employed

10 independent runs with cross-validation, calculating the mean
accuracy and standard deviation as measures of prediction
consistency. These metrics were computed as shown in Equation 7:

MeanAccuracy � 1
n
∑n
i�1

Accuracyi,

StandardDeviation �
�����������������������������
1
n
∑n
i�1

Accuracyi −MeanAccuracy( )2√
, (7)

where n � 10 denotes the number of runs. This approach
highlighted the model’s stability and minimized concerns
regarding overfitting or variability across training sessions. By
including standard deviation as a performance measure, we
ensured reliable predictions under varying conditions.

2.7.1.1 Probability distribution
A softmax function was applied to the output layer of the model

to normalize raw scores into interpretable probabilities as defined in
Equation 8:

P y � c|x( ) � exp zc( )∑C
k�1 exp zk( ), (8)

where zc represents the logit score for class c, and C denotes the
total number of classes.
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2.7.1.2 Feature normalization
Input features were scaled to comparable ranges, promoting

numerical stability and preventing biases from dominating training.
This scaling was achieved using Equation 9:

xnorm � x − μ

σ
, (9)

where μ is the mean, and σ is the standard deviation of
the feature.

2.8 Addressing overfitting and
computational considerations

In our model wemitigated Overfitting through the integration of
dropout and weight decay. Dropout was applied at a rate of p � 0.6,
reducing the risk of overfitting by randomly excluding neurons
during training. Additionally, weight decay (λ � 0.001) provided
L2 regularization, further enhancing the model’s generalization
capabilities.

Numerical stability, particularly in the self-attention
mechanisms of the Graph Attention Network (GAT), was
maintained through the use of LeakyReLU activations, as shown
in Equation 10:

LeakyReLU x( ) � x if x≥ 0,
αx if x< 0,

{ (10)

with α � 0.2. This ensured non-zero gradients, preserving
learning dynamics even during softmax normalization. Careful
parameter initialization further stabilized training, particularly in
the early stages, reducing the risk of vanishing or exploding gradients.

2.9 Baseline ensemble approach

Ensemble learning is a principled approach in machine learning
that combines predictions from multiple models to achieve
improved predictive accuracy. This model implementation closely
follows the approach of Abernethy et al. (2016), as we aim to
compare their XGBoost approach to our GAT-based
methodology. Figure 4 shows the flow chart of the XGBoost
method. This section delves into the techniques and
mathematical formulations used in the ensemble learning
methodology, particularly focusing on the stacking technique,
models employed, evaluation metrics, and calibration measures.
The ensemble learning method used constructs a predictive
model by aggregating predictions from a collection of individual
models. The combined prediction can be expressed mathematically
in Equation 11:

f x( ) � ∑M
i�1

wi · fi x( ) (11)

Here, f(x) denotes the ensemble prediction,M is the number of
models, wi are the weights, and fi(x) are the individual model
predictions. The given model adopts stacking, a popular ensemble
technique that uses predictions from various models (first layer)
which includes (Chen and Guestrin, 2016), random forest (Breiman,

2001), extremely randomized trees(Geurts et al., 2006), logistic
regression (Fisher, 1936), nearest neighbor (Cover and Hart,
1967), and linear discriminant analysis (LDA) (Guisan et al.,
2002) as input and a second layer of a single XGBoost classifier
for ensembling.

The first layer trains multiple classifiers on the dataset. Each
model, fi(x), produces a prediction, and these predictions are then
stacked together as shown in Equations 12–13:

P � p1, p2, . . . , pM[ ] (12)
here pi is the prediction of the i-th model.

The second layer is responsible for training the final model (e.g.,
XGBoost) on the stacked predictions P to form the final prediction:

f x( ) � g P( ) (13)
here g is the second-layer model.

The ensemble’s performance is assessed using the ROC-AUC
and a confusion matrix. It measures the area under the Receiver
Operating Characteristic curve, representing the model’s ability to
discriminate between positive and negative classes.

3 Results and discussion

3.1 Overview of results

This study used a Graph Attention Network (GAT) to predict
lead contamination levels in Flint, Michigan, focusing on
contamination thresholds between 5 and 15 ppb. Our model
performed well, with an Area Under the Curve (AUC) of 0.93,
precision of 71.55%, and recall of 93.77%. In contrast, the XGBoost
implementation had an AUC of 0.66, indicating its limitations in
capturing complex spatial and relational data patterns.

These results highlight the effectiveness of GAT in modeling
lead contamination, especially in incorporating spatial features like
parcel adjacency and housing proximity. Figure 5 illustrates the
ROC curve for our model tested on the test dataset. The model,
incorporates data from both the parcel layer and the Zillow data,
achieving an impressive Area Under the Curve (AUC) of 0.93. This
AUC value, combined with its proximity to the top-left corner of the
graph, demonstrates the model’s efficiency in classification,
indicated by a high TPR and a low FPR.

3.2 Comparative analysis with existing
literature

We conducted a comparative analysis with key studies in the
field to contextualize our findings within broader lead
contamination research. This comparison underscores the
progress achieved by our GAT model and its strengths in using
spatial and relational data for better predictive performance.
Abernethy et al. (2016) used an ensemble method to identify lead
service lines in Flint, achieving an accuracy of 0.677. Although their
approach demonstrated the potential of ensemble methods helping
to identify lead, our GATmodel’s AUC of 0.93 indicates a significant
improvement. This suggests the importance of incorporating spatial
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and relational features, which are key strengths of GAT. Similarly,
Goovaerts (2019) used a multivariate geostatistical approach
(cokriging) to predict water lead levels, achieving an AUC of
0.76. Cokriging effectively captures spatial variability by
integrating multiple data sources. Despite this, our GAT
model achieved a higher AUC. While Goovaerts’ work offers
very valuable insights into data integration, our results show that
graph based modeling might provide a robust framework for
predicting lead contamination. Mulhern et al. (2023) applied
Bayesian Networks (BN) to predict lead risk, achieving an AUC
of 0.74. Their method was particularly good at identifying high-
risk facilities with clustered contamination. However, our GAT
model showed higher AUC and recall, reflecting its ability to

identify contaminated parcels more effectively. GAT’s capacity to
model complex spatial relationships gives it broader
applicability, particularly in urban areas where contamination
is influenced by neighboring properties. In the study by Early
Warning Systems (Khaksar Fasaee et al., 2022), Bayesian
classifiers and Ensemble Decision Trees (EDT) were used to
predict lead contamination in private water systems, achieving
an AUC of 0.77 and recall of 75%. Although these models were
effective, especially when incorporating household-level features,
our GAT model achieved a higher AUC and recall. Overall, these
comparisons show that our GAT model not only achieves high
performance but also addresses some of the limitations in
previous methods. By effectively integrating spatial and
relational data, our approach improves predictive accuracy of
the previous studies. This methodology offers a tool for lead
contamination mitigation, ensuring resources are efficiently
allocated to at risk households. The information presented in
this study contribute to the ongoing research on lead
contamination prediction and highlight the potential of using
graph based methods in environmental health.

In Figure 6, the graph shows how the accuracy of the model
changes as the distance threshold for connecting houses in the
graph increases. Here, the threshold is the maximum distance
between houses, in miles, that defines whether they are
considered connected in the Graph Attention Network (GAT).
At a 0.1-mile threshold, houses are connected only to their closest
neighbors, and this setting yields the highest model accuracy
(ACC), slightly above 80%. As the distance threshold increases to
0.3 miles, the model accuracy gradually decreases to just above
77%. This indicates that the model benefits from focusing on
more local relationships. The trade off seen in the graph
highlights the importance of selecting an appropriate
threshold to find the right balance between connectivity and
prediction quality. The confusion matrix results for the different
thresholds are summarized in Table 3.

FIGURE 4
Flowchart of Ensemble-based Method used in the XGBoost algorithm Method WebHarvy (2022).

FIGURE 5
True positive vs. False positive rates ROC curve for GAT Model.
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3.3 Ensemble learning with XGBoost

In addition to our evaluation of the GAT model, we compared
the performance with an ensemble learning approach using the
XGBoost method, a gradient-boosted decision tree algorithm, which
was previously used by Abernethy et al. (2016). Ensemble models
like XGBoost combine multiple individual models to achieve better
predictive performance compared to individual models. XGBoost, in
particular, has gained recognition for its ability to handle large and
unbalanced datasets effectively. Abernethy et al. (2016) employed a
model to identify lead service lines in Flint, reporting an accuracy of
67.7% and a log loss of 0.054. In our study, the XGBoost model
achieved an accuracy of 70.0%, a precision of 65.57%, and a recall of
66.67%. While these results were comparable to those reported by
Abernethy and Yang, the GATmodel performed better across all key
metrics. Specifically, the GAT model achieved an AUC of 0.93, a
precision of 71.55%, and a recall of 93.77% Table 4. This
demonstrates that the GAT model was better in identifying and
correctly labeling homes that might have lead contamination. The
confusion matrix in Figure 7 further illustrates the classification
performance of the GAT model, showing the distribution of correct

and misclassified predictions for both models. The main reason for
this difference is that GAT can better leverage relationships between
neighboring houses, which appears to be crucial for predicting lead
contamination accurately. XGBoost, in contrast, focuses more on
the volume and diversity of data without directly incorporating
spatial relationships, which could explain why the GAT model
proved to be effective.

Although the GAT model had higher accuracies than XGBoost,
XGBoost model still has strengths, such as its resistance to
overfitting and scalability, which is a common advantage of
gradient-boosted models. This was particularly useful in our case,
where the dataset contained a lot of features. Moreover, the XGBoost
model offered insights into which features were important, such as
Housing Age and Property Address Street, which were also
identified as significant by the GAT model. While GAT uses the
spatial relationships between houses, XGBoost did well with the
volume and variety of data. This difference explains their varying
performance. In situations where spatial relationships are not the
most critical aspect, XGBoost might still be a good alternative or
complement to GAT. Future research could also explore combining
both models to see if that improves its accuracy.

3.4 Performance comparison of GAT and
XGBoost across different contamination
thresholds

To show the performance difference between GAT and
XGBoost, we turned the classification into a binary problem,
using different lead contamination thresholds (5 ppb, 10 ppb,
and 15 ppb). The GAT model consistently had higher accuracies
compared to the XGBoost across all thresholds.

3.5 Sensitivity analysis

To further evaluate (GAT) model, we conducted sensitivity
analyses, including an assessment of the ROC curve across
contamination thresholds and an examination of different spatial
distance thresholds.

3.6 ROC curve analysis

The ROC curve was used to assess how well the GAT model
balances sensitivity and specificity across different thresholds.
The model achieved an AUC of 0.93, showing its ability to
distinguish between contaminated and non-contaminated
parcels. This performance was better than that of XGBoost

FIGURE 6
GAT model accuracy across different threshold.

TABLE 3 Performance metrics based on distance threshold GAT model.

Distance Threshold Performance metrics (%)

TP FP FN TN

0.1 96.15 3.28 28.57 71.43

0.2 96.72 3.28 24.05 75.95

0.3 95.08 5.45 26.58 73.42

TABLE 4 Performance Metrics for Lead Contamination Prediction Models.

Model and data source Accuracy (%) Precision (%) Recall (%)

XGBoost Ensemble (Parcel Data) 70.0 65.57 66.67

GAT (Parcel and Zillow Data) 80.57 71.55 93.77

The table shows accuracy, precision, and recall for each model. Accuracy is the percentage of correct predictions, precision indicates the correctness of positive predictions, and recall measures

how well the model identifies all positive cases.
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(AUC: 0.66) and Bayesian Networks (AUC: 0.74), highlighting
GAT’s effectiveness in handling imbalanced datasets and
capturing spatial relationships. Figure 5 shows the ROC curve
for the GAT model across multiple thresholds, while Figure 8
focuses specifically on classifier performance at the EPA action
level of 15 ppb. The model’s proximity to the left-top corner in
these curves indicates strong predictive accuracy. In practical
terms, this means that the GAT model can identify contaminated
households effectively while reducing misclassification, which is
important for managing limited resources in lead
mitigation efforts.

3.7 Spatial distance threshold analysis

To complement the ROC curve analysis, we also evaluated
how different spatial distance thresholds affected recall and
precision. The GAT model was tested with thresholds
ranging from 0.1 to 0.3 miles, which represented different
levels of connectivity within the graph. At a 0.1-mile
threshold, the model achieved the highest recall (93.77%),
ensuring that most contaminated parcels were identified.
Increasing the threshold to 0.3 miles slightly reduced recall
but improved precision. This trade off highlights the
spatial sensitivity of the model and the importance of selecting
appropriate thresholds for specific public health goals.
While spatial threshold analysis offers useful insights for
optimizing the graph structure, the ROC curve analysis
remains the primary metric for evaluating overall model
performance. The ROC curve effectively summarizes the trade
off between sensitivity and specificity across different decision
thresholds.

3.8 Practical applications and implications

In public health contexts, such as the Flint water crisis,
accurate predictive models are crucial for safety. A model that
can predict lead levels in residential water helps guide
interventions, ensuring that resources are directed to the
areas that need them most. The aim is not just to achieve
good accuracy but to reduce health risks for residents.
Traditional methods often struggle to capture the spatial
dependencies in lead contamination data. The GAT model
effectively uses these spatial relationships, which allows for a
better understanding of how contamination spreads. Future
work could explore hybrid models that combine GAT with

FIGURE 7
Confusion matrix comparison for model performance.

FIGURE 8
ROC Curve for Classifier 3 (15 ppb): Evaluating Model
Performance at the EPA Action Level. This curve demonstrates the
model’s ability to distinguish between houses with lead contamination
levels above and below the EPA action threshold of 15 ppb.
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statistical approaches, like cokriging, for more predictive accuracy.
Additionally, the model’s predictions can be used to help strategize
local interventions, ensuring efficient use of resources.

3.9 Relative variable influence

In our research utilizing the GAT framework, we aimed to pinpoint
key node features crucial for predicting homes at risk for lead
contamination in water. It is important to note that the identified risk
factors do not directly imply causation of lead contamination but are
useful in differentiating parcels with a higher likelihood of unsafe lead
levels. By applying the GAT framework, which is effective in handling
relational data, we identified features such as the Age of Building,
Property Address, Zoning, and Parcel as significant predictors. For
instance, older buildings may have outdated plumbing that increases
lead risk. These findings could lead to more targeted inspections and
informed policy-making aimed at reducing lead contamination.

To explain the importance of each feature, we used GraphLIME, a
local interpretable model-agnostic explanation method tailored to Graph
Neural Networks. This method approximates the complex GNN model
with a simpler, interpretablemodel for a specific node’s neighborhood. By
perturbing the node features and observing the changes in the model’s
output, we determined the importance score of each feature:

I fi( ) � P F( ) − P F\fi( )
Where.

• I(fi) represents the importance score of feature fi.
• F is the complete set of features.
• F\fi denotes the feature set excluding feature fi.

Figure 9 shows the top important features as determined by our
model’s output.

Interestingly, our model revealed that some features traditionally
considered important in lead contamination studies, such as Longitude
Elevation, were less influential. This suggests a more complex role for
geographic factors in lead contamination risk. Features like DraftZone
and Housing Condition (HCond 2012) were more influential,
emphasizing the importance of housing-related factors in lead risk.
Even features that might seem less critical, such as Living Area Value
and Parcel Acres, provide valuable context for understanding potential
lead contamination sources. These insights can help guide targeted and
effective interventions, shaping policies to prioritize resources for
mitigating lead contamination.

3.10 Practical applications and
broader context

The accuracy of predictive models in public health, particularly
in scenarios like Flint’s lead crisis, has real implications for
community safety. Correctly predicting lead levels in residential
water allows authorities to plan interventions and allocate
resources efficiently, focusing on the most vulnerable areas first.

The ROC curves in Figure 10 provide additional insight into the
model’s classification performance at these thresholds. Our model
consistently performed better than traditional methods in
identifying contaminated homes, particularly across different lead
thresholds (>5, >10, >15 ppb), as shown in Figure 11. The use of
GAT captures spatial dependencies and relationships effectively,
something that traditional methods, including Flint’s ensemble
models, struggled to do. The attention mechanism of GAT allows
it to weigh neighboring nodes differently, which leads to a better
understanding of how lead contamination spreads or clusters.

The success of integrating alternative data sources, such as
Zillow information, highlights the potential for unconventional
but relevant data to provide additional context in a crisis. It also

FIGURE 9
Top-predicting features.
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shows the importance of collaboration between public entities and
private data holders to enrich available data and improve model
accuracy. Future research could explore how other data sources
might be leveraged in similar contexts, whether for pollution
monitoring, understanding disease spread, or urban planning.

3.11 Applicability beyond the USA

Although this model was developed using U.S. data, applying it
elsewhere requires adjusting for local regulations, infrastructure, and
data availability. Different regions may have stricter or more lenient
lead thresholds, unique sources of contamination (e.g., industrial
pollution or agricultural runoff), and varying monitoring practices.
Retraining or recalibrating the model with local data is often
necessary to capture these differences accurately. In areas lacking
centralized water quality records, community-driven sampling or
municipal reports might be required. The lessons from Flint
demonstrate how data-driven approaches can support public
health interventions, reinforcing the importance of predictive
models that integrate machine learning with real-world applications.

4 Conclusion

The Flint water crisis is a clear reminder of the serious
consequences that happen when environmental and public health
problems collide. This study shows that Graph Attention Networks
(GAT) can be a valuable tool to help predict lead contamination
more accurately, thanks to its ability to capture complex spatial
relationships. However, it’s important to note that the GATmodel is
just one part of the solution it complements other efforts and
supports better decision making.

One of the key findings of this study is the identification of
features that are strong predictors of high lead levels in homes, even
without knowing the exact composition of Lead Service Lines
(LSLs). This is crucial information that can help policymakers
and community members target high-risk areas, allocate
resources more efficiently, and take action to protect public health.

Technical Implications: The GAT model has shown strong
potential in improving how we assess water quality risks, helping
us identify high-risk areas more effectively. Municipalities could use
similar models to focus their efforts on the neighborhoods most
vulnerable to lead contamination. Future monitoring systems

FIGURE 10
ROC curves of true positive rates vs. false positive rates for themodels with different thresholds. The first figure represents a threshold of >5 ppb, the
second figure represents a threshold of >10 ppb, and the third figure represents a threshold of >15 ppb. These figures illustrate the model’s ability to
distinguish between contaminated and non-contaminated houses at different levels of lead concentration.

FIGURE 11
Our algorithm’s binary classification performance comparisons for different thresholds with different baseline algorithms. The left figure shows
overall performance, while the middle and right figures show performance for each class (contaminated vs. non-contaminated) for thresholds
(>5, >10, >15 ppb).
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should look to integrate such graph-based tools to get ahead of issues
before they escalate.

Policy Implications: The findings suggest that incorporating
predictive models like GAT can help public health authorities
make better use of limited resources. By pinpointing areas most
likely to face lead contamination, actions can be prioritized to
prevent health risks before they become widespread. Additionally,
this research highlights the value of using diverse data sources—like
real estate information—to enrich monitoring efforts. Collaborations
between public and private entities can make datasets more robust
and improve the ability to address contamination proactively.

Limitations: While the GAT model offers many benefits, it’s not
without its limitations. The model relies heavily on the quality and
availability of data as well as scalability. Users of this model should be
mindful of these constraints and recognize that the model should be
seen as a guiding tool rather than a definitive solution. Continuous
data collection, validation, and refinement of the model are needed to
improve accuracy and reduce uncertainties.

The findings from this research are not just relevant to Flint. The
approach used in this study can be applied in other areas, like urban
planning, pollution monitoring, and public health research. By
bringing together public health agencies, local governments, and
private data providers, we can create more effective datasets that
ultimately lead to safer communities.

In conclusion, addressing public health issues like lead
contamination requires a combination of advanced technology
and practical policy changes. By using tools like GAT alongside
careful policymaking and resource allocation, we can tackle
challenges like the Flint water crisis more effectively. The future
focus should be on refining these models, improving data quality,
and extending these approaches to other communities to better
manage lead contamination risks on a broader scale.
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