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Introduction:Ground-level ozone (O3) remains a persistent air quality concern in
Ontario, Canada’s most populous province. Understanding long-term trends and
spatially explicit details of O3 is important for supporting air quality management
in Ontario.

Method: We construct a high-resolution (daily, 10 km) dataset of maximum daily 8-
hour average O3 (MDA8 O3) over Ontario from 2004 to 2023, through a two-step
machine learning model. The model has incorporated our hypothesis that
accounting for transboundary influences can enhance the accuracyofO3 estimation.

Results: Validation against in-situ measurements confirms the hypothesized high
accuracy of the dataset (R2 = 0.82, RMSE = 4.99 ppb), outperforming the traditional
model and two existing datasets. The dataset reveals pronounced spatiotemporal
heterogeneity in MDA8 O3 concentrations, which are low in northern Ontario but
high in southernOntario, especially in southwest Ontario. Seasonally, the provincial
mean MDA8 O3 peaks in spring (~40 ppb) and dips in autumn (~27 ppb), while
spatial MDA8O3 in summer is most heterogeneous among all seasons, with a peak
in southwestern Ontario. From 2004 to 2023, the provincial meanMDA8O3 shows
no significant trend, while a significant decreasing trend (−0.1 ppb/year, p < 0.05)
appears in southern Ontario, where MDA8 O3 increases in winter but decreases in
summer, both significantly. The number of days exceeding the World Health
Organization (WHO) O3 guideline range from 10 to 80 days in southern
Ontario, with a decline of 1–4 days (up to 15%) per year over 2004–2023.

Discussion: The analysis suggests that O3 in southernOntario is impacted by both
anthropogenic emissions and meteorology. Reductions in O3 precursor
emissions have effectively lowered summertime O3 across southern Ontario,
partially offsetting the meteorological-driven increase in O3. This MDA8 O3

dataset offers a valuable resource for further research in environmental health,
air quality policy, and O3 impact on agriculture.
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1 Introduction

Ground-level ozone (O3) is a major air pollutant with well-documented adverse effects
on human health, ecosystems and agriculture (Fleming et al., 2018; Mills et al., 2018).
Although O3 concentrations in Canada are generally low (WHO, 2023), hourly O3

concentrations in Ontario (Figure 1), the most populated and urbanized province in
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Canada, still can be higher than 80 ppb, which is the Ambient Air
Quality Criterion (AAQC), particularly in warmer seasons over
southern Ontario (Ministry of the Environment and Climate
Change, 2022). Continuous monitoring of ground-level O3 is,
therefore, important to supporting air quality management,
especially in the populated areas like southern Ontario. The
National Air Pollution Surveillance Program (NAPS) has
collected hourly ground-level O3 measurements under a
consistent standard protocol since 1969 (https://www.canada.ca/
en/environment-climate-change/services/air-pollution/monitoring-
networks-data/national-air-pollution-program.html). Based on
39 air monitoring stations in the NAPS program, the Air Quality
in Ontario Report show that O3 pollution during the warm seasons
is still an important environmental issue in southwestern Ontario
(Ministry of the Environment and Climate Change, 2018a; Ministry
of the Environment and Climate Change, 2018b; Ministry of the
Environment and Climate Change, 2018c; Ministry of the
Environment and Climate Change, 2019; Ministry of the
Environment and Climate Change, 2020; Ministry of the
Environment and Climate Change, 2021; Ministry of the
Environment and Climate Change, 2022). However, the limited
numbers and sparsely distribution of monitoring stations across
Ontario can introduce substantial geographical bias, restricting the
ability to analyze detailed spatial and temporal patterns of ozone
(Schultz et al., 2017). As a result, comprehensive assessments of O3

variability and long-term trends across the province remain limited.
In addition, data from sparsely distributed monitoring stations
cannot satisfy requirements for studying impact of O3 pollution
on crop yields and O3-health implications, because spatially explicit
and seamless data over large areas are generally needed for
these studies.

To address this research gap, it is highly desirable to construct a
spatially explicit and long-term dataset of ground-level O3.
However, existing ground-level O3 datasets for Ontario are
confined by their large uncertainties, limited spatial resolution or
temporal coverage. While satellite remote sensing has been widely
used for air quality monitoring, current retrieval techniques typically
provide the total column ozone, tropospheric ozone, or vertical
ozone profiles at different vertical ranges (Liu et al., 2010), which do
not directly correspond to the ground-level concentrations (Bai
et al., 2016). Because ground-level O3 represents only a small
fraction of total column ozone, retrievals based on ultraviolet
measurements often have large uncertainties due to limited
sensitivity near the ground (Bhartia, 2002). Moreover, satellite
records are often short in duration and vary across instruments,
and merging these datasets can introduce additional uncertainties
(Rahpoe et al., 2015). Chemical transport models (CTMs) can
simulate long-term and spatially explicit O3 fields, but they are
also subject to limitations. Notably, large uncertainties remain in
simulating O3 responses to nitrogen oxides (NOx) emissions, leading

FIGURE 1
Study area and stations used in this study. The solid black line encloses Ontario province. The gray dashed outline defines the surrounding area of
Ontario for the two-stepmodel, which is the dissolved 500 kmbuffers of each station in Ontario. The star signs indicate the stations for validation, and red
dots the stations for training within Ontario. The blue dots indicate the stations surrounding Ontario (within the dashed outline), the data from which are
used for the first estimation of O3 in Ontario by the two-step model.
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to mismatches in magnitude and trends when compared to
observations (Miyazaki et al., 2020). Additionally, the spatial
resolutions of most CTMs are comparatively coarse
(typically >0.5°), which limits their utility for exposure
assessments on local and regional scales, especially for health and
agriculture applications. To improve the accuracy and
spatiotemporal continuity of O3, statistical models are also widely
applied based on the relationship between O3 and the environmental
factors as well as the sources of the precursor emissions. However, to
date, a long-term O3 dataset with fine spatiotemporal resolutions
based on statistical models are still unavailable for Ontario. Several
studies have provided the global estimations which covers Ontario
(Delang et al., 2021; Liu et al., 2023; Wang et al., 2025). However,
these datasets are either covering too short periods (<5 years) or with
too coarse temporal resolutions (monthly or yearly).

In recent years, machine learning techniques have become
preferred statistical algorithms for capturing the nonlinear
relationship between O3 and various factors at regional and
global scales (Zang et al., 2021; Chen et al., 2023; Yan et al.,
2023). However, machine learning models rely heavily on the
density and distributions of in-situ observation stations. In
regions distant from any in-situ stations, model predictions could
exhibit large modelling errors (Li et al., 2021; Wang et al., 2021). To
address this issue, some models, such as linear mixed model (Lee
et al., 2011) and geographically weighted regression (Ma et al., 2014),
have been used to account for spatial heterogeneity in modelling
relationships. However, these models usually assume a linear
relationship, limiting their ability at capturing the nonlinear
relationships. To overcome this, Li et al. (2021) proposed a
locally weighted neural network constrained by global training.
However, this approach may face challenges when only short-
term in-situ measurements are available, as building a robust
global model is difficult. They suggested leveraging data from
other regions or time periods to enhance the model robustness.
Similar to this idea, Yan et al. (2024) used latent information in grid
cells without corresponding in-situ stations to improve the
modelling performance over regions with sparse in-situ stations.
Despite being effective, the computational cost for those statistical
models can become unaffordable when the models are applied at
fine resolutions. Liu et al. (2022) incorporated the co-located PM10

stations to enhance the spatiotemporal representativeness and
accuracy of PM2.5 estimations, compromising between leveraging
additional information and maintaining computational efficiency.

Here to enable investigation of spatiotemporal variations of O3

across Ontario, in the first step, we construct a ground-level O3

dataset over Ontario for two decades (2004–2023) with high
accuracy. We select the “maximum daily 8-h average O3

(MDA8 O3)” for this dataset because this is one of the metrics
that the World Health Organization (WHO) defines to assess air
quality impact on health. To this end, we develop a new statistical
model for MDA8 O3 estimation using machine learning techniques.
Technically, we use the in-situ stations inside and surrounding
Ontario, as well as the data of adjacent grids and time windows
from gridded data in our statistical model to fully exploit the
information. We validate this dataset with in-situ measurements
and compare this dataset with the one from traditional modelling, as
well as the existing MDA8 O3 datasets over Ontario. In the second
step, based on the constructed MDA8 O3 dataset, we analyze the

spatial and temporal variations of MDA8 O3 concentrations across
Ontario, showing the trends in response to the meteorological
conditions and emission controls over the past two decades. We
also assess the O3 pollution in Ontario following the WHO air
quality guidelines. We expect to reveal the spatially explicit
seasonality and trend in MDA8 O3 across Ontario with more
details than station data. The developed two-step model provides
a novel approach for air pollution modelling, and the MDA8 O3

dataset can support investigating health and agricultural
implications of air quality in the future.

In proximity of the United States of America (USA), air quality
in Ontario has been found to be largely influenced by transboundary
transport of PM, O3, and other pollutants from USA (Brook et al.,
2002; Johnson et al., 2007; Liu and Cui, 2014; Ministry of the
Environment and Climate Change, 2018b). Inspired by previous
studies on air quality in Ontario and statistical model development,
we make a hypothesis that employing the O3 data from stations
surrounding Ontario in eastern USA, the transboundary influences
from eastern USA on surface O3 in Ontario can be considered and
the modelling accuracy can be enhanced. Specifically, we take
advantage of the dense O3 in-situ monitoring stations in Ontario
and surrounding areas in the USA to construct a surface MDA8 O3

dataset over Ontario at daily temporal resolution and 0.1° horizontal
resolution.

2 Materials and methods

2.1 Input data

Table 1 shows the input data for constructing the MDA8 O3

dataset. The in-situ measurements are processed into daily
MDA8 O3 concentrations, in unit of ppb. To unify the
spatiotemporal resolution, all the gridded input data are
resampled into the spatial resolution of 0.1° (~10 km), and all the
hourly data are averaged into the daily mean.

2.1.1 In-situ measurement
The in-situO3measurements over Canada and USA are used for

the model development and evaluation. For Canada, hourly in-situ
O3 measurements during 2004–2023 are acquired from the
Environment and Climate Change Canada Data (ECCC)
Catalogue, provided by the NAPS Program (https://data-donnees.
az.ec.gc.ca/data/air/monitor/national-air-pollution-surveillance-
naps-program/Data-Donnees/). In addition, 8-h average in-situ
ozone data during 2004–2023 are acquired from United States
Environmental Protection Agency (EPA) (https://aqs.epa.gov/
aqsweb/airdata/download_files.html). The in-situ ozone data are
processed into MDA8 O3 concentrations for every station,
according to the Ozone National Ambient Air Quality Standards
(NAAQS, https://www.epa.gov/criteria-air-pollutants/naaqs-table).

2.1.2 Reanalysis ozone and precursor data
Reanalysis data benefit the ozone modelling because they

combine both model- and observation-based information to
provide physically consistent data with continuous spatial and
temporal coverage. Here, the surface ozone concentrations from
three reanalysis datasets are evaluated: the European Centre for
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Medium-Range Weather Forecasts (ECMWF) reanalysis version 5
(ERA5), the Modern-Era Retrospective analysis for Research and
Applications, Version 2 (MERRA-2), and ECMWF Atmospheric
Composition Reanalysis 4 (EAC4). All three reanalysis datasets are
processed into the daily mean with 0.1° spatial resolution to compare
with in-situ ozone measurements. Figure 2 shows that EAC4 O3 has
the best agreement with in-situ data, with a coefficient of
determination (R2) of 0.53 and a root-mean-square error (RMSE)
of 29.54 ppb. MERRA-2 performs secondarily (R2 = 0.23, RMSE =
34.77 ppb), while ERA5 is with the lowest accuracy (R2 = 0.02,
RMSE = 44.50 ppb). This is because only EAC4 data include a
chemical transport model and consider chemical production and
loss of tropospheric O3 (Vieira et al., 2023), which better captures
tropospheric chemistry and ozone dynamics. Therefore, the most
accurate EAC4 O3 data are employed in this study. In addition, O3

precursors, including HCHO, hydroxyl radical, nitrogen dioxide
and nitrogen monoxide from EAC4 are also used to improve the
modelling accuracy.

2.1.3 Meteorological data
The formation and life span of surface O3 are closely related to

meteorological variables such as solar radiation, temperature,
humidity, surface pressure, wind speed and boundary layer
height (Agudelo-Castaneda et al., 2014; Khiem et al., 2010; Shen
and Mickley, 2017; Hanes et al., 2019). Therefore, these six
meteorological variables from ERA5-land are used to enhance the
modelling accuracy (Table 1). The high spatial (0.1°) resolution of

ERA5 land data also help constrain the spatial resolution of O3

estimations (Muñoz-Sabater et al., 2021).

2.1.4 Ancillary data
Vegetation and land cover are effective for improving the

modelling accuracy, due to their significant association with the
spatial distribution of O3 (Wei et al., 2021; Zang et al., 2021). Here,
ancillary inputs are considered including the normalized differential
vegetation index (NDVI) and land use from the moderate resolution
imaging spectroradiometer (MODIS), and population density from
the Gridded Population of World Version 4 (GPWv4).

2.2 The two-step modelling

To fully take advantage of the in-situ measurements
surrounding Ontario, a two-step model is developed to build the
spatiotemporal relationship between in-situ MDA8 O3 and multi-
source predictors. In step 1, the in-situ measurements surrounding
Ontario is used to provide an initial estimation for Ontario
MDA8 O3. In step 2, the initial estimation is combined with in-
situ measurements within Ontario to provide a final estimation of
spatial-resolved MDA8 O3 data across Ontario. In addition, the data
from the adjacent grid points (8 grids) and time windows (±1 day)
for each grid are used in both steps of modelling to fully exploit the
information from gridded data. Only the most adjacent grid and
time windows are selected here to ensure an acceptable

TABLE 1 Data used for constructing the MDA8 O3 dataset in this study.

Dataset
name

Variable Unit Temporal
resolution

Spatial
resolution

Data source

Hourly ozone
monitoring

O3 ppb 1-h — NAPS

8-Hour Average
Data

O3 ppm 1-h — USA EPA

ERA5 Land 2m air temperature (T) K 1-h 0.1° × 0.1° Muñoz-Sabater et al. (2021)

Surface air pressure (Ps) Pa

2m dew point temperature K

10m wind speed (WS) m/s

Mean surface downward short-
wave radiation flux (Fdir)

W/m2

ERA5 single Boundary layer height (BLH) m 1-h 0.25° × 0.25° Hersbach et al. (2020)

EAC4 Ozone mass mixing ratio
(O3EAC4)

kg/kg 3-h 0.75° × 0.75° Inness et al. (2019)

Hydroxyl radical (OH)

Nitrogen dioxide (NO2)

Nitrogen monoxide (NO)

Formaldehyde (HCHO)

MODIS MCD12C1 land use type (LUT) — 1-year 0.05° × 0.05° Friedl and Sulla-Menashe (2022)

MCD13C1 NDVI — 16-day 0.05° × 0.05° Didan (2021)

GPWv4 Population density (POP) Persons/
km2

5-year 0.008° × 0.008° Center For International Earth Science Information
Network-CIESIN-Columbia University (2017)
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computational time. Both steps use Light Gradient-Boosting
Machine (LightGBM) algorithm to build the model, owing to its
faster computation speed, lower memory consumption and
capability of handling big data (Wei et al., 2021).

Figure 3a shows a detailed framework of this two-step modelling.
In step 1, the data from the stations surrounding Ontario (blue stations
in Figure 1) are used to provide a reliable estimated Ontario MDA8 O3

as a new predictor for step 2. To define the surrounding stations, a
buffer of 500 km is generated for each station in Ontario (the gray
dashed circle in Figure 1). Here, the 500 km buffer is determined by the
most conservative ozone correlation length (500–1,000 km) in the
troposphere, within which ozone concentrations are considered being
significantly correlated (Liu et al., 2009). Therefore, for each station in
Ontario, the stations within the radius of 500 kmoutsideOntario can be

FIGURE 2
(a) Comparisons of the daily mean surface O3 between EAC4 and in-situ observations. The black dashed line is the 1:1 line, and the red line is the
linear fitting line (with the intercept set to 0). The number of matched samples (N), linear fitting line formula, coefficient of determination (R2), root-mean-
square error (RMSE, in ppb) and relative difference [RD, RD = 100 × (estimatedO3 - observed O3)/(observed O3), in %] are shown. The color bar represents
the density of scatters. (b) same as (a) but for ERA5 O3. (c) same as (a) but for MERRA-2 O3. (d) The R2 between the daily mean EAC4 O3 and daily
mean in-situ observed O3 at each station in Ontario. (e) same as (d) but for ERA5 O3. (f) same as (d) but for MERRA-2 O3.

FIGURE 3
Flowchart of the two-step modelling developed in this study (a) and traditional modelling (b) Note that LightGBM1 and LightGBM2 indicate two
different models are trained based on LightGBM algorithm.
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determined as its surrounding stations. By merging all the radius of
500 km for each station in Ontario, the stations outside Ontario but
within this buffer are considered as the surrounding stations. Step 2 is
similar to traditional modelling (Figure 3b), yet with an additional
predictor from the estimated MDA8 O3 from step 1. In this way, the
uncertainty of the modelling is further reduced and the final estimation
ofMDA8O3 is achieved. Compared to traditional models, the two-step
model is trained not only withOntario data but also with data in nearby
regions, which captures broader regional patterns and long-range
transport that influence O3 in Ontario, especially in border areas.

Specifically, step 1 is formulated as Equation 1:

O3 surrouding � f1 T, Ps, RH,WS, Fdir, BLH,O3EAC4,OH,NO2,(
NO,HCHO, LUT,NDVI, POP) (1)

where O3 surrouding represents the MDA8 O3 estimation from
stations surrounding Ontario, and f1 denotes the
LighGBM1 model illustrated in Figure 2a. All predictor variables
are listed in Table 1. Using the trained f1, theMDA8O3 is estimated
at each station and grid in Ontario, i.e., O3f1.

Step 2 integrates this initial estimate (O3f1) to predict the final O3

in Ontario as Equation 2:

O3 ontario � f2 O3f1, T, Ps, RH,WS, Fdir, BLH,O3EAC4,OH,NO2,(
NO,HCHO, LUT,NDVI, POP) (2)

where O3 ontario represents the MDA8 O3 measurements from
stations surrounding Ontario, and f2 represents the LighGBM2
(Figure 2a). Except for including O3f1, the remaining variables used
in step 2 are the same as (1) and listed in Table 1.

2.3 Validation and comparison

To validate the modelling accuracy, different training and
validation datasets are selected. For step 1, the surface MDA8 O3

from the surrounding stations and the data from Ontario stations
are used for model training and validation, respectively. For step 2,
the data are randomly divided into 10 groups based on the stations,
i.e., data samples from the same station will not be split. This way of
data split is considered the most reliable for validating spatial
extrapolation (Li et al., 2020). Eight groups of data are used for
model training, and the rest two groups for validation. Figure 1
shows the stations selected for model training (red points) and
validation (star signs) in step 2.

In addition, the estimated MDA8 O3 by the two-step model is
also compared with two published datasets on the global scale, as no
gridded MDA8 O3 datasets specifically for Ontario. These two
datasets include the daily MDA8 O3 data from 2019 to
2021 produced by Wang et al. (2025) and the annual O3 from
2004 to 2017 produced by Delang et al. (2021). The comparisons of
MDA8 O3 estimations are based on their agreements with all the in-
situ MDA8 O3 measurements in Ontario.

2.4 Removing meteorological impacts

To quantify the non-meteorological impacts on O3 trends,
primarily those associated with anthropogenic activities,

meteorological-adjusted O3 trends are derived. Meteorological
impacts are removed using a multiple linear regression model, as
Equation 3 following previous studies (Tai et al., 2010; Yang
et al., 2019):

C t( ) � ∑
n

i�1
aiVi(t) + b + r(t) (3)

where C(t) represents the daily MDA8 O3 from 2004 to
2023 obtained by two-step model; n is the number of
meteorological variables, including all the inputs for the two-step
model (Fdir, T, RH, WS and Ps,); i is an index for the meteorological
variables. Vi(t) is the daily meteorological variable i from 2004 to
2023; ai and b are the regression coefficient for meteorological
variable i and the intercept of regression; r(t) is the residual term,
which represents the MDA8 O3 after removing the meteorological
impact (i.e., met-adjusted MDA8 O3).

3 Results

3.1 Accuracy of the estimated surface O3
concentrations

Figure 4a shows the validation of the estimated MDA8 O3 by the
two-step model against the in-situ measured MDA8 O3. By station-
based validation, the overall agreement is well, with R2 of 0.83 and
RMSE of 4.99 ppb. For each step in the modelling, the initial
estimation of MDA8 O3 using surrounding stations achieves an
accuracy of R2 being 0.74 and RMSE being 6.05 ppb, and the final
estimation further increases the R2 by 12% and decreases the RMSE
by 21%. Compared to traditional modelling (Figure 4b), on average,
the two-step modelling increases R2 by 10% and decreases RMSE by
16%, indicating the advantages of considering surrounding stations
and incorporating spatial and temporal dependencies. In addition,
the two-step modelling has improved the R and RMSE from the
traditional modelling, quantified as [100 × (two-step modelling -
traditional modelling)/traditional modelling] for both R2 and RMSE.
Spatially, Figures 4c,d show that R2 is increased to >15% and RMSE
is decreased to <25%. The improvement is the higher in the south
than in the north, likely because most of the surrounding stations are
located around southern Ontario.

The improved accuracy is especially important for better
capturing O3 concentrations on polluted days. Figure 5 shows the
MDA8 O3 concentrations over southern Ontario on 20 July 2021,
when high levels of air pollution were reported due to the wildfire
smoke (https://ottawa.citynews.ca/2021/07/20/special-air-quality-
advisory-issued-for-southern-ontario-due-to-wildfire-smoke-3969377/
?utm_source=chatgpt.com). Figures 5a,b show the extremely high O3

concentrations from both models estimated (the base map) and in-
situ observed (circles) results. However, traditional modelling
underestimates the high MDA8 O3 concentrations over
southeastern Ontario, as well as over the coastal area of
southwestern Ontario. Figures 5b,c quantify that traditional
modelling underestimates the MDA8 O3 concentrations by a
relative difference (RD) of 7%, while the two-step modelling has
a good agreement with observation, indicated by an improved RD
of 0.3%.
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Figure 6 compares the estimated MDA8 O3 using the two-
step model with two published MDA8 O3 datasets. Note that
these two datasets are aimed at offering MDA8 O3 concentrations
globally, rather than specifically for Ontario. All the data from in-
situ MDA8 O3 monitoring stations over Ontario are used to
compare the accuracy of the three MDA8 O3 datasets. Compared
to the daily MDA8 O3 dataset over 2019–2021 from Wang et al.
(2025) (Figure 6b), the two-step model (Figure 6a) enhances the
R2 by 11% and reduces RMSE by 24% and RD by 58%. In a longer
period over 2004–2017, the estimated yearly MDA8 O3

concentrations (Figure 6c) are compared with those from
Delang et al. (2021) (Figure 6d). The two-step model
estimated MDA8 O3 shows a better agreement with the in-situ
O3, with R2 higher by 0.3 and RMSE lower by 5.5 ppb. Also, a
clear overestimation of MDA8 O3 is apparent in Delang et al.
(2021) with RD of 17%, while the RD in our dataset is
only about 0.2%.

3.2 Spatial variations of surface O3
concentrations over Ontario

Based on the daily MDA8 O3 concentrations estimated by the two-
stepmodel, the spatial variations ofO3 overOntario from2004 to 2023 are
studied. Figure 7 shows the 20-year mean daily MDA8 O3 over Ontario,
capturing the high values over southern Ontario. In general, Table 2a
shows that the mean concentrations of daily MDA8 O3 over southern
Ontario (36.83 ± 9.82 ppb) is about 4 ppb higher than over Ontario
(32.94 ± 8.21 ppb). Compared to the north, southern Ontario is more
densely populated and urbanized, with the western edge close to themajor
populated industrial cities such as Detroit and Windsor (Figure 7b).
Therefore, the high MDA8 O3 concentrations over southern Ontario are
largely attributed to industrial emissions of O3 precursors such as nitrogen
oxides and sulfur oxides (McGuire et al., 2011;Halla et al., 2011). Owing to
the high spatial resolution (10 km) of this dataset, the regional difference is
also observed among southern Ontario. In Toronto city, due to the higher

FIGURE 4
(a) Comparisons of the two-step model estimated daily MDA8 O3 against daily in-situ observed MDA8 O3. The black line is the 1:1 line, and the red
line is the linear fitting line (with the intercept set to 0). The number of matched samples (N), linear fitting line formula, coefficient of determination (R2),
root-mean-square error (RMSE, in ppb) and relative difference [RD, RD = 100 × (estimatedMDA8O3 - observed MDA8O3)/(observedMDA8O3), in %] are
shown. The color bar represents the density of scatters. (b) same as (a) but for traditional model estimated daily MDA8O3. (c) The improvement of R2

between the two-step modelling and traditional modelling (in %), calculated as 100 × (R2 of two-step modelling - R2 of traditional modelling)/R2 of
traditional modelling. (d) same as (c) but for RMSE.
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rate of ozone depletion by traffic-emitted NOx (Geddes et al., 2009; Huryn
and Gough, 2014), the O3 concentrations (30–32 ppb) are lower than the
concentrations (>35 ppb) over southwestern Ontario (Figure 7b). In
addition, the transported O3 and precursor by southwesterly airflows
from USA contribute to the higher O3 concentrations over southwestern
Ontario than Toronto city as well (Makar et al., 2010; Ministry of the
Environment and Climate Change, 2018c). At regions near lakeshore over
southern Ontario, Figure 6a shows lower MDA8 O3 concentrations than
inland, indicating the influence of land-lake breeze that dilutes the O3

concentrations near lake and results in an O3 gradient at the lake edge
(Huang and Donaldson, 2024).

3.3 Temporal variations of surface O3
concentrations over Ontario

3.3.1 Seasonal variation
Seasonality greatly modulates the magnitude of daily MDA8 O3

concentrations in Ontario (Leung et al., 2021). For both Ontario and

southern Ontario (Table 2a), MDA8 O3 concentrations during
warm seasons (spring and summer) are higher than the ones
during cold seasons (autumn and winter), due to the more active
photochemical O3 formation under higher temperature and solar
radiation (Crutzen, 1974), as well as the strongest stratospheric
intrusions in spring (Monks, 2000). Figures 8a–d show the spatial
distributions of MDA8 O3 over southern Ontario in each season.
High MDA8 O3 concentrations are more homogeneously in spring
than in summer when MDA8 O3 hotspots are concentrated over the
western region (Figure 8a vs; Figure 8b), which is also reflected in the
overall higher MDA8 O3 concentrations in spring than in summer
(Table 2a). Such spatial inhomogeneity in summer continues in
autumn but subsides in winter when MDA8 O3 concentrations
become homogeneously low over entire southern Ontario (Figure 8c
vs; Figure 8d).

Figure 8f further shows the 20-year mean MDA8 O3 in each
month over four subregions of southern Ontario: the west, central
west, central east and east regions (Figure 8e). Among the four
subregions, O3 concentrations in the west is the highest throughout

FIGURE 5
(a) TheMDA8O3 spatial distribution from the two-stepmodelling estimation (the basemap) and in-situ observation (the circles) on 20 July 2021. (b)
same as (a) but from the traditional modelling estimation. (c) Comparisons of daily MDA8 O3 between the two-step model estimations and in-situ
observations on 20 July 2021. The black line is the 1:1 line, and the red line is the linear fitting line (with the intercept set to 0). The number of matched
samples (N), linear fitting line formula, coefficient of determination (R2), root-mean-square error (RMSE, in ppb) and relative difference [RD, RD =
100 × (estimated MDA8 O3 - observed MDA8 O3)/(observed MDA8 O3), in %] are shown. (d) same as (c) but for traditional model estimation.
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the year with a clear peak (47.06 ppb) in June. In contrast, the east
shows the lowest MDA8 O3 concentrations during April-October
among all the subregions, with a peak (43.66 ppb) in April. Both
central west (45.28 ppb) and central east (45.16 ppb) show a peak in
May, with intermediate MDA8 O3 concentrations between the west
and east. The spring O3 maximum is widely found over the
midlatitudes of Northern Hemisphere (Monks, 2000; Gaudel
et al., 2018), which are attributed to the enhanced
photochemistry in spring after the accumulation of O3 precursor
in winter (Penkett and Brice, 1986), as well as stratospheric
intrusions (Monks, 2000). However, in summer, high MDA8 O3

concentrations still prevail over southwestern Ontario, with much
higher values than in the other seasons. The summer O3 maximum
is typical for regions dominated by anthropogenic photochemical
ozone production and long-range transport (Singh et al., 1967;
Logan, 1985). Due to being closer to industrial regions and being
influenced by O3 transported by southwesterly wind, southwestern

Ontario shows a summer peak in O3. The different seasonal peaks
between southeastern and southwestern Ontario indicate different
sources of O3 over southern Ontario.

3.3.2 Long-term trend
The constructed dataset covers 20 years from 2004 to 2023,

enabling investigation of the MDA8 O3 trend during the 20 years
over Ontario, especially over southern Ontario where O3 pollution is
severest in the province. Table 2b summarizes the MDA8 O3 trends
during 2004–2023 for the entire Ontario and southern Ontario,
respectively. Over the entire Ontario, a significant (p < 0.05)
increase of 0.05 ± 0.04 ppb/year is observed. In contrast,
southern Ontario exhibits a non-significant (p > 0.05) trend
of −0.01 ± 0.05 ppb/year, which agrees with the no clear O3

trends in the recent 10 years documented the Air Quality in
Ontario Report (Ministry of the Environment and Climate
Change, 2018a; Ministry of the Environment and Climate

FIGURE 6
(a) Comparisons of in-situ daily MDA8 O3 observations during 2019–2021 against the two-step model estimations. (b) same as (a) but against the
MDA8 O3 estimation by Wang et al. (2025). (c) Comparisons of the in-situ annual mean MDA8 O3 observation during 2004–2017 against the two-step
model estimations. (d) same as (c) but against the MDA8 O3 estimation by Delang et al. (2021). The black line is the 1:1 line, and the red line is the linear
fitting line (with the intercept set to 0). The number of matched samples (N), linear fitting line formula, coefficient of determination (R2), root-mean-
square error (RMSE, in ppb) and relative difference [RD, RD = 100 × (estimated MDA8O3 - observed MDA8 O3)/(observed MDA8O3), in %] are shown. The
color bar represents the density of scatters.
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Change, 2018b; Ministry of the Environment and Climate
Change, 2018c; Ministry of the Environment and Climate
Change, 2019; Ministry of the Environment and Climate
Change, 2020; Ministry of the Environment and Climate
Change, 2021; Ministry of the Environment and Climate
Change, 2022). Because most of the O3 monitoring stations
are located in southern Ontario (Figure 1), the regional
discrepancy suggests an increase in MDA8 O3 in northern
Ontario, where monitoring coverage is limited. Despite the
overall non-significant trend over southern Ontario, spatial
heterogeneity is clear. Figure 9a shows the distributions of the
MDA8 O3 trend for southern Ontario, which reveals a significant
(p < 0.05) decreasing trend over southwestern Ontario at a rate
about −0.1 ppb/year. However, over southeastern Ontario, the

MDA8 O3 concentrations increase significantly at a rate about
0.1 ppb/year.

Given the significant influence of meteorological conditions on
long-term MDA8 O3 trends, the meteorological-impact-removed,
namely, met-adjusted, MDA8 O3 trend (see Section 2.4) during
2004–2023 is further analyzed. Table 2b shows that for the entire
Ontario, the magnitude of met-adjusted MDA8 O3 trend remains
the same as the original trend (0.05 ± 0.04 ppb/year), indicating
that the general trend in Ontario is dominated by non-
meteorological drivers. For southern Ontario, compared to the
original trend, met-adjusted MDA8 O3 exhibits a slightly stronger
decline (−0.02 ppb/year), and a greater magnitude and a broader
area of decrease in southwestern Ontario (Figure 9b). This
indicates that non-meteorological drivers, primarily emission

FIGURE 7
(a) The spatial distribution of the mean MDA8 O3 (in ppb) over Ontario during 2004–2023. (b) Same as (a) but for southern Ontario (up to 46°N). The
mean MDA8 O3 concentrations over Ontario and southern Ontario are shown in Table 2a. The two dots indicate the locations of Toronto and Windsor.
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reductions, is greater than what is observed from the real
MDA8 O3 trend and the meteorological impact on MDA8 O3

trend is positive, which partially offsets the impact of the reduction
of precursor emissions.

Seasonally, over 2004–2023, distinct difference also shows in
trends over the entire Ontario and southern Ontario. For the entire
Ontario, both original and met-adjusted MDA8 O3 trends show
significant increases only in autumn with similar magnitudes (about
0.10 ± 0.09 ppb/year), while trends in other seasons are not
statistically significant (Table 2b). For southern Ontario,
MDA8 O3 decreases in warm seasons (spring and summer),
especially in summer, which is in contrast to its increases in cold
seasons (autumn and winter), especially in winter (Figures 10a,b vs;
Figures 10c,d). There are larger areas with significant trends in cold
seasons than in the warm seasons, with largest areas with increasing
trends in winter across southern Ontario. In comparison, warm
seasons show the significant decreasing trends only over
southwestern Ontario. Correspondingly, in the sub-regions over
southern Ontario (Figure 9b), wintertime MDA8 O3 increases
significantly in all the four sub-regions, while summertime
MDA8 O3 decreases significantly only the west (Table 3). The
decrease of MDA8 O3 in spring and increase of MDA8 O3 in
autumn are both not significant in all the four sub-regions (Table 3).

Similar to the annual mean (Figure 9), after removing the
meteorological impact, the met-adjusted MDA8 O3 trend in warm
seasons shows a greater decrease with broader areas, particularly in
southeastern Ontario (Figures 10e,f). Particularly, the central west and
central east regions show significantly decrease in met-adjusted O3

trend in summer, in contrast to the non-significant actual O3 trends in
those regions (Table 3). The significant decrease in summertime O3

over southern Ontario is mainly due to the progressive controls of NOx

emissions in Ontario and the USA, which decrease local ozone
formation and transboundary influences (Ministry of the
Environment and Climate Change, 2018). Despite being offset by
meteorological-driven increases in O3, the actual trend remains
negative, significantly with a magnitude larger than 0.2 ppb/year in
southeastern Ontario (Figure 10b). In summer, a comparison of the
MDA8O3 trend in southernOntario andwith that in the entireOntario
(Table 2b) suggests an increasing O3 trend in northern Ontario.

During cold seasons, MDA8 O3 increases non-significantly in
autumn, but significantly in winter over southern Ontario, especially
in southeastern Ontario (Figures 10d,h, Table 2b). The wintertime
MDA8 O3 trends in the four sub-regions of southeastern Ontario all
turn from significant increase to non-significant after removing
meteorological impacts (Table 3). The increased O3 during cold
seasons is likely to mainly attribute to an increase in the global
background O3 concentrations (Reid et al., 2008; Parrish et al.,
2012), which is positively overlaid by the impact of meteorological
variability over 2004–2023. In contrast to the non-significant
MDA8 O3 trends in autumn over southern Ontario, the significant
increase over the entire Ontario in autumn implies a pronounced
increase over northern Ontario (Table 2b). The increasing MDA8 O3

over northern Ontario during summer and autumn could be driven
by wildfire emissions, as it coincides with the wildfire season as well as
the increasing wildfire activities, e.g., area burned and number of large
fires in Ontario (Hanes et al., 2019; Jain et al., 2024).

TABLE 2 (a) The annual and seasonal mean MDA8O3 concentrations ± standard deviations averaged over Ontario and southern Ontario during 2004–2023
(in ppb). (b) The annual and seasonal MDA8 O3 trends ±95% confidence interval for Ontario and southern Ontario during 2004–2023 (in ppb/year)a.

(a) MDA8 O3 concentrations (ppb)

Ontario Southern Ontario (<46°N)

Annual mean 32.94 ± 8.21 36.83 ± 9.82

Spring (MAM) 40.42 ± 6.28 43.60 ± 7.53

Summer (JJA) 31.69 ± 9.32 39.63 ± 11.12

Autumn (SON) 27.80 ± 6.33 31.26 ± 8.39

Winter (DJF) 31.75 ± 4.12 32.71 ± 5.70

(b) Trends (ppb/year) for original and met-adjusted MDA8 O3

Ontario Southern Ontario (<46°N)

Original Met-adjusted Original Met-adjusted

Annual mean 0.05 ± 0.04** 0.05 ± 0.04** −0.01 ± 0.05 −0.02 ± 0.05

Spring (MAM) −0.01 ± 0.14 0.01 ± 0.14 −0.06 ± 0.17 −0.06 ± 0.08

Summer (JJA) 0.08 ± 0.14 0.04 ± 0.11 −0.15 ± 0.17 −0.16 ± 0.07**

Autumn (SON) 0.11 ± 0.09** 0.10 ± 0.09** 0.08 ± 0.15 0.07 ± 0.07

Winter (DJF) 0.04 ± 0.05 0.07 ± 0.09 0.09 ± 0.07** 0.07 ± 0.04**

aThe annual trend is calculated from the time series of the deseasonalized monthly mean MDA8 O3, and the seasonal trend is calculated from the time series of the seasonal mean MDA8 O3 in

each year. Two asterisks indicate the trend is significant with a p-value<0.05. In the table, MAM indicatesMarch-April-May, JJA June-July-August, SON September-October-November, andDJF

December-January-February.
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3.4 O3 exceedance days

The 2021 WHO air quality guidelines recommend that the
health level of MDA8 O3 concentrations should be lower than a
threshold of 100 μg/m3 or 50 ppb. Thus, a day with MDA8 O3

concentrations larger than this threshold is referred as the O3

exceedance day. Based on the constructed daily O3 dataset,
Figure 11a shows the mean exceedance days per year during

2004–2023 at each of the 10-km grids. The number of
exceedance days is largest around the most southwestern region,
reaching ~80 days per year. The number decreases gradually
northward, with ~10 days per year in the northern region. Such
a spatial pattern resembles O3 concentrations (Figure 7b), indicating
concurrent higher O3 concentrations and more O3 exceedance days.

Figure 11b shows a significant decreasing trend in the number of
O3 exceedance days, particularly in southwestern Ontario by up to

FIGURE 8
(a–d) The spatial distribution of the mean MDA8 O3 (in ppb) over southern Ontario (42–46°N) during 2004–2023 by season: MAM (March-April-
May), JJA (June-July-August), SON (September-October-November) and DJF (December-January-February). The mean MDA8 O3 concentrations over
southern Ontario are shown in Table 2a. (e) The sub-regions (the west, central west, central east and east) in southern Ontario indicated by colors and (f)
the corresponding seasonal variations in MDA8 O3 for the four regions, based on the 20-year monthly mean.
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4 days/year (equivalent to about 15%/year). Differently from the
slight increasing trend in O3 concentrations over southeastern
Ontario (Figure 9a), the frequency of high O3 concentrations is
decreasing over the entire southern Ontario. This improvement
shows the effective controls of O3 pollution in Ontario.

4 Discussion and conclusion

To study the long-term and spatially explicit O3 concentrations
and trends over Ontario, we constructed a dataset of daily MDA8O3

concentrations with a spatial resolution of 10 km for Ontario. This
dataset is constructed based on surface O3 observations at individual

stations from NAPS program and USA EPA (Table 1), using a two-
step statistical model built by LightGBM algorithm. The two-step
model integrates MDA8 O3 measurements from neighboring
stations within 500 km, along with data from adjacent grid
points (8 surrounding grids) and time windows (±1 day), to
improve modelling accuracy. Multi-sources input data, including
meteorological, satellite and emission data, are used as the
predictors (Table 1).

Themodelling performance is validated using station-based data
to represent spatial predictability. Across validation stations, the
two-step model achieves high accuracy, with an R2 of 0.82 and a
RMSE of 4.99 ppb (Figure 4). Our results are compared with two
global MDA8 O3 datasets fromWang et al. (2025) at daily time step

FIGURE 9
(a) The spatial distribution of MDA8 O3 trend over southern Ontario during 2004–2023 (in ppb/year). Note that the trend is calculated from the time
series of the deseasonalized monthly mean MDA8 O3. Dotted area indicates trends are significant at the 95% level. (b) same as (a) but for the spatial
distribution of met-adjusted trend.

Frontiers in Environmental Engineering frontiersin.org13

Zang et al. 10.3389/fenve.2025.1601213

https://www.frontiersin.org/journals/environmental-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fenve.2025.1601213


FIGURE 10
(a–d) The spatial distribution of MDA8 O3 trend over southern Ontario in each season during 2004–2023 (in ppb/year). Note that the trend is
calculated from the time series of the seasonal mean MDA8 O3 in each year. Dotted area indicates the trends being significant at the 95% level. The mean
trend ±95% confidence interval during 2004–2023 is given in Table 2b, calculated by the seasonal mean MDA8 O3 time series averaged over southern
Ontario. (e–h) same as (a–d) but for met-adjusted trend.
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(2019–2021) and from Delang et al. (2021) at annual time step
(2004–2017) (Figure 6). Our dataset shows a better agreement with
in-situ measurements than both MDA8 O3 datasets. To test the
hypothesis suggested in Introduction, the two-step model is also
compared with the traditional model that uses O3 measurements
from stations in Ontario only (Figure 3b). The two-step model
improves R2 by 10% and reduces RMSE by 16% (Figures 4a,b), with
greater improvements in southern Ontario (Figures 4c,d) because of
inclusion of O3 data from the high density of surrounding stations.

The two-step model also better captures MDA8 O3 distributions
than the traditional model under heavy pollution
conditions (Figure 5).

Based on this long-term and high spatiotemporal-resolution
MDA8 O3 dataset, the spatiotemporal variations of MDA8 O3 over
Ontario are further studied. The spatial distribution captures the
higher MDA8 O3 concentrations over densely populated and
urbanized southern Ontario, particularly the southwestern areas
that are mostly industrialized and also influenced by the

TABLE 3 The MDA8O3 trends ±95% confidence interval by season for the four regions (see Figure 8c) in southern Ontario during 2004–2023 (in ppb/year)a.

Season Region Trend (ppb/year) Met-adjusted trend (ppb/year)

Spring (MAM) West −0.09 ± 0.16 0.01 ± 0.14

East −0.03 ± 0.14 0.01 ± 0.14

Central West −0.04 ± 0.16 0.03 ± 0.15

Central East 0.01 ± 0.16 0.06 ± 0.16

Summer (JJA) West −0.23 ± 0.15** −0.26 ± 0.21**

East −0.07 ± 0.14 −0.13 ± 0.16

Central West −0.15 ± 0.15 −0.20 ± 0.17**

Central East −0.15 ± 0.21 −0.21 ± 0.17**

Autumn (SON) West 0.12 ± 0.15 0.10 ± 0.16

East 0.14 ± 0.13 0.11 ± 0.16

Central West 0.14 ± 0.15 0.11 ± 0.17

Central East 0.16 ± 0.15 0.17 ± 0.17

Winter (DJF) West 0.16 ± 0.08** 0.12 ± 0.18

East 0.09 ± 0.06** 0.12 ± 0.11

Central West 0.14 ± 0.07** 0.11 ± 0.14

Central East 0.15 ± 0.07** 0.15 ± 0.16

aBoth the actual O3 trends and the trend after removing meteorological impact (met-adjusted) are shown. Two asterisks indicate the trend is significant with a p-value<0.05.

FIGURE 11
(a) The spatial distribution of themeanO3 exceedance days per year over southern Ontario during 2004–2023. (b) The trend inO3 exceedance days
per year over southern Ontario during 2004–2023 (in days/year). Note that only the grids with trends that are significant at the 95% level are shown.
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southwesterly transported air pollutants (Figure 7). The seasonal
variations reveal the elevated O3 concentrations during warm
seasons compared to cold seasons (Figures 8a–d; Table 2a). Due
to the accumulation of O3 precursors during winter and frequent
stratospheric intrusions, southern Ontario exhibits the highest
ozone concentrations in spring. During summer, high O3 levels
persist over southwestern Ontario (Figures 8e,f), with peak values in
June (Figure 8f), showing largest spatial heterogeneity among all
seasons. This summertime O3 maximum is typical for regions
influenced by intense anthropogenic photochemical ozone
production and long-range transport (Singh et al., 1967; Logan,
1985). Southwestern Ontario is greatly impacted by both local and
transboundary anthropogenic emissions, including those from the
industrialized “Chemical Valley” region and its surroundings
(MacDonald and Rang, 2007). The ozone precursors such as
VOCs in southwestern Ontario (e.g., Hamilton downtown) can
reach 39 μg/m3 but only 36 μg/m3 in Toronto (Bari and
Kindzierski, 2018). In addition, transport from southwestern
Michigan contributes substantially to ozone levels in this region
(AQA, 2023).

During 2004–2023, MDA8 O3 trends show a distinct difference
over entire Ontario and southern Ontario. For southern Ontario,
there is a non-significant (p > 0.05) decrease of 0.01 ppb/year
(Table 2b), consistent with the report by Air Quality in Ontario
(Ministry of the Environment and Climate Change, 2016–2022).
However, the spatial distribution of MDA8 O3 trends is
heterogeneous, revealing a significant decrease in southwestern
Ontario (~0.1 ppb/year) and an increase in southeastern Ontario
(~0.1 ppb/year) during 2004–2023 (Figure 9a). After removing the
meteorological impact, the O3 trend over southern Ontario shifts
to a stronger decrease of −0.02 ppb/year (Table 2b, Figure 9c),
suggesting that a meteorological-driven increase in O3 has partially
offset by a decrease in O3 due to precursor emission reductions.
For entire Ontario, both original and met-adjusted MDA8 O3

increases significantly at a rate about 0.05 ppb/year (Table 2b),
indicating that the general trend in Ontario is dominated by non-
meteorological drivers.

By season, a significant increase trend occurs during winter
across southern Ontario (Figure 10d), likely due to the increase in
global background O3 to some degree (Reid et al., 2008; Parrish
et al., 2012). Previous studies have reported increases in the
continental or hemispheric background O3 from measurements
at remote stations or through meteorological adjustments
(Vingarzan, 2004; Oltmans et al., 2006; Chan, 2009; Chan and
Vet, 2010). After removing meteorological influences, the
wintertime O3 trend from 2004 to 2023 becomes statistically
non-significant over southern Ontario (Figure 10h; Table 2).
This suggests that the positive O3 trend in winter is largely
meteorological-driven. In contrast, O3 in summer decreases
significantly, particularly over southwestern Ontario
(Figure 10b). The meteorological-impact-remove trends in
summer are more negative in a larger area than the actual
trends (Figure 10f; Table 2b), which can be largely attributed to
the effectiveness of controlling of precursor emissions (Ministry of
the Environment and Climate Change, 2018a). Since its
implementation in 1991, the Canada-U.S. Air Quality
Agreement (Ozone Annex) has controlled and reduced
emissions of NOx and VOCs, which are key precursors to

ground-level O3, resulting in clear decreases in O3 during
2000–2020 (AQA, 2023). There results underscore the long-
term benefits of emission control in mitigating summertime
ozone pollution across southern Ontario. For the entire
Ontario, particularly northern Ontario, MDA8 O3 increase
significantly during autumn (Table 2b), coinciding with the
wildfire season and trends (Hanes et al., 2019; Jain et al., 2024).
This suggests that wildfire activities could be an important driver
for MDA8 O3 trends in Ontario.

The O3 exceedance days under the 2021 WHO air quality
guidelines are also assessed to reveal the frequency of high O3

days (Figure 11). Southwestern Ontario experiences more
frequent exceedances (50–90 days) than southeastern
Ontario (10–50 days). However, the days of exceedances
decreases significantly during 2004–2023, particularly in
southwestern Ontario (up to 4 days/year, equivalent to 15%/
year). This clear reduction highlights a decline in short-term
O3 exposure across southern Ontario owing to the air
pollution control.

While the two-step model benefits from incorporating both
NAPS and EPAmonitoring stations, the two datasets are not strictly
harmonized prior to integration. Both networks rely on UV-based
ozone measurements and have been jointly used in previous
evaluations of the Canada-U.S. Air Quality Agreement (AQA,
2023), suggesting a reasonable degree of consistency of the two
datasets. However, this represents a limitation of the current study.
For broader-scale applications, particularly those involving
transboundary ozone pollution or regulatory and health exposure
assessments, it would be advantageous to adopt harmonized in-situ
observations, such as those provided by the Tropospheric Ozone
Assessment Report (TOAR) database (Schultz et al., 2017), to ensure
greater consistency and comparability across regions.

In summary, the constructed long-term and high-resolution
MDA8 O3 dataset enables a comprehensive analysis of the
spatiotemporal variations of O3 concentrations and frequencies
over the past two decades in Ontario, which cannot be fully
resolved from measurements at individual monitoring stations.
The two-step model can serve as a novel approach for air
pollution mapping on regional scale, overcoming the limitations
posed by sparse and unevenly distributed monitoring stations. In
future, this validated two-decade MDA8 O3 dataset is expected to be
a reliable data for assessing human and crop exposures in
environmental health and agricultural research. For example, it
can be aligned with high-resolution data of population, hospital
admission, or mortality to quantify health burdens, or combined
with high-resolution data of crop maps and phenology to assess
cumulative O3 exposure and potential yield loss. These applications
highlight the broader value of this O3 dataset not only for
understanding ozone variability, bur for supporting data-based
decision-making in public health, environmental management,
and food security.
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data/air/monitor/national-air-pollution-surveillance-naps-program/
Data-Donnees/) and EPA (https://aqs.epa.gov/aqsweb/airdata/
download_files.html). The reanalysis data can be accessed from
ERA5 (https://climate.copernicus.eu/climate-reanalysis), MERRA-
2 (https://disc.gsfc.nasa.gov/) and EAC4 (https://ads.atmosphere.
copernicus.eu/datasets/cams-global-reanalysis-eac4). The MODIS
land use and NDVI are from https://modis.gsfc.nasa.gov/data/.
The population density data can be obtained from GPWv4
(https://www.earthdata.nasa.gov/data/projects/gpw). The Ontario
MDA8 O3 dataset from this study can be accessed from https://
geisee-dlsph-utoronto.ca/.
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