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Opportunistic mobile air quality
mapping using sensors on postal
service vehicles: from point clouds
to actionable insights
Jelle Hofman1,2* , Valerio Panzica La Manna2,
Edurne Ibarrola-Ulzurrun3, Jan Peters1, Miguel Escribano Hierro3

and Martine Van Poppel1

1Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium, 2Solutions4IoT
Department, IMEC the Netherlands, Eindhoven, Netherlands, 3Kunak Technologies, Navarra, Spain

This study aimed to examine the validity of a mobile air quality sensor fleet in
improving pollution exposure assessments in urban areas. The scope of this
study involved experimental setup (sensor validation and calibration), evaluation
of spatiotemporal data coverage, and analysis of the representativity of the
collected mobile data. The results showed that indicative sensor data quality can
be achieved after NO2 co-location calibration, although particulate matter
exhibited unsatisfactory performance. An extensive mobile air quality dataset
was collected in Antwerp city between February and September 2021, covering
945 km of road by a total of ∼7.9 million data points, yielding an average
segment coverage of 1,050 measurements per street segment (median = 62).
The collected mobile data were made available in an open data repository. From
the introduced area (%) and street segment (n) coverage, we can conclude that
opportunistic data collection using service fleet vehicles (e.g., postal vans) is an
efficient approach for covering a wide spatial area and collecting many repeated
runs (∼200 measurements/segment/month). Monthly maps showed recurring
pollution gradients with hotspot locations both at the suspected (e.g., busy
traffic arteries) and unexpected locations, with observed increments greatly
exceeding the observed inter-sensor uncertainty. The existing air quality
monitoring network (five air quality monitoring stations) properly reflected the
observed NO2 exposure range (temporal variability), which was documented by
the sensor fleet in Antwerp. The spatial exposure variability was improved
significantly by the sensor fleet with 59% of the total street length covered after
1 month of mobile deployment (February–March). We required ∼45 repeated
passages (31 after post-processing) to derive representative long-term NO2

exposure data from this opportunistic dataset. Our findings suggested that
opportunistic data collection using sensors on service fleet vehicles is a valid
approach for pollution exposure assessments, through proper validation and
calibration strategy. Temporary deployment of mobile sensors was a valuable
approach for cities with a less extensive (or lack) air quality monitoring network
or those who want a more fine-grained air quality mapping.

KEYWORDS

air pollution, mobile, mapping, sensors, exposure, calibration, urban, validation
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvh.2023.1232867&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fenvh.2023.1232867
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenvh.2023.1232867/full
https://www.frontiersin.org/articles/10.3389/fenvh.2023.1232867/full
https://www.frontiersin.org/articles/10.3389/fenvh.2023.1232867/full
https://www.frontiersin.org/articles/10.3389/fenvh.2023.1232867/full
http://orcid.org/0000-0002-3450-6531
https://www.frontiersin.org/journals/environmental-health
https://doi.org/10.3389/fenvh.2023.1232867
https://www.frontiersin.org/journals/environmental-health
https://www.frontiersin.org/


Hofman et al. 10.3389/fenvh.2023.1232867
GRAPHICAL ABSTRACT
1. Introduction

Although urbanization and densification are considered

sustainable solutions to optimize the supply chain of goods and

services to an ever-growing population, they have a negative

impact on the environmental quality and health of citizens.

Major cities often comprise densely populated residential areas

near busy road networks, harbors, and/or industrial sites,

resulting in local hotspots of water, air, and soil pollution, noise,

and heat stress. State and extent mapping is challenging because

existing monitoring networks are sparsely sited and

environmental stressors often consist of local hotspots, exhibiting

steep gradients across space and time.

The recent advances in the Internet of Things (IoT) and sensor

technology have resulted in smaller and more affordable

environmental sensing solutions; hence, regulatory monitoring

networks are complemented with mobile or stationary monitoring

solutions enabling a higher coverage of spatiotemporal monitoring

and more accurate exposure assessments. Although these low-cost

sensing solutions provide a wide range of applications, they

typically have a lower accuracy compared to that of the regulatory

monitoring networks (1, 2). Moreover, they are more sensitive to

meteorological conditions (e.g., temperature and humidity) or

other pollutants and exhibit sensor drift over time (1–7).

Executing proper calibration and validation of the applied sensor

application is, therefore, vital to ensuring reliable and meaningful

results (8–15). Although complementary monitoring through

stationary sensor solutions has been successfully showcased in

dedicated air quality (AQ) applications that are confined in time

and space [e.g., to quantify the impact of traffic interventions

(10)], city-wide and long-term monitoring requires an

unrealistically high amount of sensors and associated maintenance

and calibration efforts. Therefore, recent research has focused on

distant or network-based calibration approaches, not requiring

co-location calibrations next to an air quality monitoring station

(AQMS), while ensuring data quality performance over time

(9, 14, 16–18).

Mobile monitoring applications, where instruments are

mounted on a mobile platform (person, bicycle, car, tram)
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moving around the city to improve the spatiotemporal resolution

of air quality data, provide an alternative solution to dense

stationary sensor networks by generating city-wide pollutant

exposure maps (19–26). This methodology involves a range of

applications, e.g., air quality mapping, personal exposure

assessments, hotspot detection, evaluation of policy measures,

and validation of pollutant dispersion models. Today, the main

focus of mobile sensing applications is on short-term personal

exposure assessments or the derivation of long-term exposure

maps. A wide range of mobile applications has been explored in

the field, from low-cost to high-end instruments, big data to

small-scale field campaigns, and opportunistic to dedicated

monitoring routes. Mobile sensing has been deployed on service

fleet vehicles, e.g., garbage trucks in Cambridge, MA (USA) (20),

and trams and buses in Lausanne and Zurich (Switzerland) (27),

whereas monitoring instruments have been deployed on cars (19,

28), bicycles (26, 29–33), and city wardens (34). The collected

mobile data provide valuable in situ data on exposure levels

experienced by people around the city. Nevertheless, these data

are still confined in time and space, and proper processing is

required to derive representative (location-averaged) exposure

maps (24, 35, 36).

This study aimed to examine the validity of a mobile IoT

sensor fleet in collecting fine-grained air quality data to gain

more insight into urban air pollution exposure. We performed

(1) validation and calibration of a commercial IoT sensor

solution; (2) in situ deployments on top of 17 postal service

vehicles in Antwerp, Belgium; (3) evaluation of this opportunistic

sampling strategy in terms of spatiotemporal coverage and

representativity; and (4) evaluation of the sensor performance

over time.
2. Materials and methods

2.1. Study area

Antwerp, a large (529,417 inhabitants) and densely populated

(2,591 inhabitants/km2) city in northern Belgium (51° 13′ 17″
N, 4° 23′ 49.99″ E) was chosen as the study area. The city

center is surrounded by a busy ring road and bounded by

Europe’s second-largest port (viz., the Port of Antwerp). The

combination of dense population, busy traffic, harbors, and

industrial activities has drawn air quality concerns in the past,

leading to many dedicated air quality studies in both mobile

(30, 32, 37) and fixed (37–42) monitoring or modeling (43–48)

studies.
2.2. Mobile sensor solution

In the 2021 BelAir project, Interuniversity Microelectronics

Centre (IMEC) (BE), IMEC the Netherlands (NL), and the postal

service of Belgium (Bpost) collaborated in testing and deploying

20 mobile IoT sensor systems in Antwerp city. We selected the

Kunak® Air Mobile (Kunak Technologies SL, Spain) sensor
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FIGURE 1

Kunak® Air Mobile sensor systems co-located at the R817 AQMS; three in fixed shields, 17 in mobile enclosure (upper), details of the Kunak® Air Mobile
sensor system (lower left), and rooftop deployment on a postal van in Antwerp (lower right).

TABLE 1 Sensor system specifications of the Kunak® Air Mobile.

KUNAK AIR MOBILE
Dimensions 122 × 202 × 90 (mm)

Weight <1.5 kg

Battery Yes

Power supply 5–17 V DC via car battery

Sensor lifetime >12 months

Operating
conditions

−20°C–50°C temp

Communication GPRS, WiFi, RS232, Ethernet

Data logging/
retrieval

Real-time data are sent wirelessly to Kunak Air Cloud, a web
platform for data storage, processing, analysis, and export

Sampling resolution 10 s to 24 h

Weatherproof Yes

Hofman et al. 10.3389/fenvh.2023.1232867
systems comprising an optical sensor for particulate matter (PM;

OPC-N3, AlphaSense), electrochemical gas sensors for nitrogen

dioxide (NO2; NO2-B43F, AlphaSense) and ozone (O3; OX-B431,

AlphaSense), global positioning system (GPS), and long-term

evolution machine-type (LTE-M) communication and built in a

dedicated LABAQUA housing to avoid turbulence over the

sensors (Figure 1). Although mobile sensing applications can be

employed in various mobile platforms (e.g., pedestrians, bicycles,

dedicated cars, garbage trucks, public transport), we opted for

postal service fleet vehicles because they operate every day (except

for Sunday) between ∼5 and 18 h and deliver at “every doorstep,”

providing good coverage of city spatial monitoring. Further

specifications of the Kunak® Air Mobile are listed in Table 1.
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2.3. Calibration and validation

In January 2021, 20 sensor systems were co-located at an urban

background AQMS in Antwerp (R817; Figure 1) to perform sensor

validation (correlation, accuracy, precision) and an additional local

calibration to further optimize the accuracy (10, 49–51). In

addition to the device property algorithm compensating for

temperature, relative humidity (RH), and other sensor

confounders, a cloud calibration tool was provided in the Kunak

Air Cloud platform (https://www.kunakcloud.com) consisting

of a mass factor (linear slope) calibration tool for PM

(REF = slope × sensor) and baseline (∼0 ppb) and span

(30–40 ppb) calibration tool for NO2. Calibration was performed

sequentially in batches of five sensors (in fixed shields), 1-week

co-location data were used for training (fitting regression slopes/

exhibition of zero/span concentrations), and another 1-week co-

location data were used to evaluate the performance of the

sensors after calibration (2 weeks/sensor batch). After calibration,

the sensor batches were deployed sequentially on the postal vans.

Three sensor boxes (IDs 18, 19, and 20) remained co-located at

the AQMS to evaluate their performance over time, and 17

sensor boxes were deployed on postal vans.

Performance evaluation was based on accuracy [root mean

squared error (RMSE) and mean absolute error (MAE)] and

correlation [coefficient of determination (R2)], statistics between

the sensor data (raw vs. calibrated), and the co-located reference

measurements (52–54). In addition, we evaluated the uncertainty

at the limit or target values using the non-parametric approach

proposed by the Flanders Environmental Agency, that is,

∼50 µg m−3 for PM10, 30 µg m
−3 for PM2.5, and 40 µg m−3 for

NO2. From the actual sensor measurements, this expanded

uncertainty (Uexp; %) was quantified experimentally as the 95%

MAE of measurements within the 10% range of the regulatory

limit/target concentration. According to a color code developed

during the VAQUUMs project (53), the tested sensors

correspond to the supplementary class when the % difference

from the equivalent method (expanded uncertainty) is <50% for

PM and <25% for NO2 (Supplementary Appendix S3). These

values (%) were also within the data quality objectives (DQO) for

indicative measurements as defined in AQ Directive 2008/50/EC

(and corresponding to the DQO required for Class 1 sensor

systems for NO2 in CEN/TS 17660-1:2021); however, these were

not tested following the protocol (test location, test period, and

seasons).

Three sensor systems remained co-located next to the AQMS

to evaluate their performance over time. With this, we calculated

the performance statistics from the beginning (March) to the end

(September) of the monitoring campaign, evaluated the potential

sensor drift expressed as the sensor-to-reference (sensor/REF)

ratio over time, and investigated the potential impacts from

seasonality. The between-sensor uncertainty (BSU) (54) was

calculated to evaluate the comparability between the sensors.

This metric is important and must be considered when a

sensor network is deployed. The low BSU could ensure that all

the devices installed in the field have the same performance

under different conditions. Thus, using the three devices
Frontiers in Environmental Health 04
installed in the AQMS could evaluate the drift of the

remaining devices in the field.
2.4. Mobile deployments

After calibration, the sensor batches (each with five sensors)

were deployed sequentially on the postal vans between January

and March 2021. The sensor units were mounted in front of the

roof, at the opposite side of the car exhaust, to avoid self-

sampling as much as possible (Figure 1). Postal routes can be

considered opportunistic if vans deliver packages to varying

postal addresses. These vans were operational from Monday to

Saturday, between ∼5 and 18 h, and were stationary and parked

outside at the postal depot (51° 14′ 16.75″ N, 4° 24′ 57.97″ E)

overnight on Sunday. This routine can be observed from the

collected driving speeds of the 17 sensor systems as provided in

Supplementary Appendix S1. We configured the monitoring

resolution of the sensors to 10 s during service times (when

mobile) and 5 min overnight (when parked) to avoid battery

drainage of the sensor systems.
2.5. Data processing

2.5.1. Data cleaning and exploration
The collected mobile data consisted of a timestamp; a device

ID; latitude/longitude coordinates (°); measured concentrations of

PM1, PM2.5, PM10 (µg m−3), and NO2 (ppb); external

temperature (°C); RH (%); and driving speed (km h−1). Data

cleaning was performed to exclude data points containing only

pollutant concentrations or geographical data (incomplete data

points) and notable outliers. Subsequently, we selected our study

area (51.18517117° < Latitude < 51.24453950° and 4.36547837° <

Longitude < 4.46162370°), as a bounding box around the city

center of Antwerp, to exclude exceptional postal routes or GPS

flaws and calculate representative summary/coverage statistics

(Supplementary Appendix S2). The collected mobile data before

and after data cleaning were made available in an open data

repository (55).

Mobile measurements (n = 7,883,264) were plotted on an

openly available road segment map (https://portaal-stadantwerpen.

opendata.arcgis.com/) using the Quantum Geographic Information

System (QGIS) software (v3.16), spatially joined in 10-m radius

buffers around each street segment and summary statistics (count,

min, max, mean, median) calculated for all variables, monthly

aggregated data (January–September; Table 4) and monthly

progressive data (January, January + February, January + February

+March).
2.5.2. Spatiotemporal NO2 exposure
To investigate the spatial variation in observed NO2 exposure,

we plotted monthly and long-term (January–September) street

segment exposure maps with mean and median concentrations

(µg m−3) to identify the region of interest, and these maps were
frontiersin.org
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studied in terms of recurrent, expected, and non-expected hotspot

(observations >40 µg/m3) locations.

The temporal variability in NO2 exposure was evaluated by

plotting hourly, daily, and monthly variation graphs [R openair

package (56)] of the collected mobile measurements and

comparing the observed exposure variability with the available

stationary air quality data from the five regulatory AQMS in

Antwerp (R801, R802, R803, R804, and R805) to evaluate the

representativity of the existing AQMS.
2.5.3. Monitoring coverage
To evaluate the monitoring coverage of the mobile sensor fleet

in both space and time, we proposed two coverage metrics: the area

coverage [Covarea(%)], i.e., the percentage of covered road segments

in our study area (Equation 1), and the segment coverage

[Covsegment(%)], i.e., the average number of observations (#) per

covered street segment (Equation 2). We focused on the road

segment length to calculate the area coverage due to the varying

lengths of the considered road segments.

Covarea(%) ¼ SSobs
SSarea

� 100 (1)

where SSobs represents the total road segment length (km) covered

by the sensors (sum of the road segment lengths with ≥1
observation) within our study area and SSarea represents the total

length (km) of all street segments within our study area (6,447).

Covsegment(#) ¼
PSSobs

i¼1 Obssegm
SSobs

(2)

where Obssegm (#) is the number of observations per street segment

and SSObs (#) is the number of covered street segments. The

segment coverage can further be differentiated into measurement

coverage (total number of 10-s measurements) and passage

coverage (total number of van passages). Both coverage statistics

were evaluated on monthly progressive time periods to derive the

required time period and to cover 75% of the urban road

network with >8 observations with our mobile monitoring strategy.
2.5.4. Representativity
To derive the required number of passages and to obtain

representative long-term averaged NO2 exposure values, we

applied a subsampling procedure on a representative urban road

segment with a high monitoring coverage (Obssegm . 1, 000).

For a representative urban road segment with 879 unique

passages, random subsamples with an increasing number of

passages (n = 1–879) were derived to evaluate the convergence of

the subsample averages toward the long-term average (n = 879),

which was calculated as the 95% probability within ±2.5%, 5%,

12.5%, and 25% of the long-term average NO2 concentration.
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3. Results and discussion

3.1. Calibration and validation

Based on the co-location data from the 20 sensor units at the

regulatory AQMS, we examined the comparability with the

reference in terms of linearity (R2), accuracy (MAE, RMSE), and

uncertainty at the limit/target value (Uexp) for NO2, PM1, PM2.5,

and PM10. Performance metrics were calculated for out-of-the-box

(raw) performance and after implementing a local re-calibration

based on a 1-week collocation, as explained in Section 2.3.
3.1.1. Nitrogen dioxide (NO2)
For NO2, the raw sensor data showed a higher correlation

(R2 = 0.87) compared to that of the regulatory data from the

AQMS. Nevertheless, the observed sensor accuracy and precision

(∼30%) were low and further optimized by implementing the

NO2 baseline calibration, resulting in an overall good sensor

performance, e.g., sensor batch 1: R2 = 0.85–0.93, MAE = 3.35–

4.35 µg/m3, and RMSE = 4.27–5.49 µg/m3 as shown in Figure 2.

The normalized mean bias error (MBE) of the calibrated sensor

batch 1 varied between 1.4% and 12.8%. When the calibrated

sensors were mounted in their mobile enclosures, correlations

slightly lowered (R2 = 0.77–0.88; when stationary), but sensor

accuracy was maintained (MAE = 3.29–5.21, RMSE = 4.37–6.24).

An overview of the calibration performance (R2, RMSE, MBE,

Wcm) of each sensor batch is provided in Supplementary

Appendix S4, showing that two out of the four sensor batches

reached the highest DQO, based on the calculated expanded

uncertainties (Uexp).
3.1.2. Particulate matter
ForPM,we observed a low intra-sensor variability (high precision),

but varying comparability with the reference and with correlations in

the order of PM1 (R2 = 0.44–0.85) > PM2.5 (R2 = 0.49–0.67) > PM10

(R2 = 0.39–0.72) and significant underestimations, as provided

in Supplementary Appendix S5. Moreover, the sensor/REF ratio

varied over time, with alternating under- and overestimations

(Supplementary Appendix S5). This might be due to a change in

particle composition (different source contribution) altering the

refractive index and resulting mass concentrations derived by the

sensors. Although the best calibration potential was obtained for

PM1 (best correlation), we tried to optimize for PM10 and applied a

single mass factor (PM10) for all size fractions to prevent calibrated

sensor readings from resulting in higher concentrations for smaller

particle size fractions (PM1 > PM2.5 > PM10). The resulting

calibration performance (Supplementary Appendix S4) was low

with expanded uncertainties (Uexp) ranging from sensitizing to

inadequate (Supplementary Appendix S3). The average values of

the performance statistics (R2, MAE, RMSE, Wcm, and Uexp) of the

20 sensor systems (IMEC1–IMEC20) for each pollutant are listed in

Table 2. A recent study on sensor evaluation also documented a low

performance of the considered PM sensor (10). However, a different

calibration procedure, e.g., a continuous network-based procedure as

the one applied by Wesseling et al. (15, 26), might compensate better
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FIGURE 2

Hourly NO2 co-location measurements of sensor batch 1 (IMEC1, IMEC2, IMEC3, IMEC5, and IMEC8) and regulatory data (42R817; yellow), when
deployed before (27/11–5/12; upper) and after co-location calibration (8/12–17/12; lower).

TABLE 2 Observed average sensor performance for all considered sensor
units (IDs 1–20) after co-location calibration at a background AQMS
(R817).

R2 MAE RMSE Uexp

— µg m−3 µg m−3 %
NO2 0.87 4.70 6.65 24.10

PM1 0.71 7.30 9.23 81.39

PM2.5 0.57 6.46 8.51 73.94

PM10 0.54 10.34 12.98 62.94

The resulting data quality objective classes (Supplementary Appendix S3) include

sensitizing (yellow)/supplementary (green) for NO2 and sensitizing (yellow)/

inadequate (red) for PM.

Hofman et al. 10.3389/fenvh.2023.1232867
for a changing PM and background composition and meteorological

impact on the resulting PM sensor performance, especially when

targeting long-term (i.e., multi-season) monitoring initiatives with

low-cost sensors.
3.1.3. Impact of the sensor housing
In addition to the calibration performance, the impact from the

mobile sensor housing was evaluated by comparing the Kunak

sensors in both conditions: (i) mobile (enclosed housing with

different openings and lamella to avoid turbulence over the

sensors) and (ii) fixed shield (dedicated and more open housing
Frontiers in Environmental Health 06
for stationary conditions) (Figure 1). When the resulting

concentrations were compared, the mobile housing resulted in

lower particle concentrations (when stationary), while gas

concentrations were similar between the fixed shield and mobile

enclosure setup (Supplementary Appendix S6). We

hypothesized that the design of the mobile housing, forcing the

airflow over the internal lamella, favors particle interception

through inertial impaction or electrostatic ionization, lowering

the amount of measurable particles. This effect might be

overruled at higher airflows, when the sensor is mobile or when

the sensor housing is actively ventilated. Nevertheless, due to the

lower sensor performance, observed impacts from the sensor

housing, and the high prevalence (94%) of stationary operation

conditions during mobile deployment (Table 3), we decided to

focus our spatial analysis on NO2, which achieved overall good

sensor performance (R2 = 0.87, MAE = 4.7), both in fixed shield

and mobile enclosure conditions.

3.1.4. Sensor performance throughout the project
During the 7-month mobile campaign, three sensor systems

(IMEC18, IMEC19, and IMEC20) remained co-located at the

R817 AQMS to evaluate their NO2, PM2.5, and PM10 sensor

performance over time. When the sensor performance at the

beginning (February 19, 2021, to March 19, 2021; after co-
frontiersin.org
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TABLE 3 Summary statistics of sensor data when stationary (speed = 0) and mobile (speed > 0).

Date Speed NO2 PM1 PM2.5 PM10 Temp Hum

m/s µg m−3 µg m−3 µg m−3 µg m−3 °C %
Stationary n = 7,386,879 (94%) Min. 18/01/2021 14:42 0 −171.1 0 0 −1,248.0 −8.1 10.7

25% 29/05/2021 21:25 0 0 0.8 1.6 2.1 15.4 42.6

Median 01/07/2021 18:45 0 14.4 1.5 2.9 4.2 19.2 57.7

Mean 06/07/2021 00:29 0 18.6 2.3 4.3 7.6 19.7 57.4

75% 18/08/2021 06:54 0 29.8 2.7 5.2 8.9 24.0 72.7

Max. 30/09/2021 23:59 0 1,101.7 225.1 1,726.8 7,490.7 42.3 99.5

Moving n = 507,854 (6%) Min. 13/02/2021 00:51 0.6 −168.1 0.02 0.02 −13.8 −8.1 14.6

25% 02/06/2021 09:15 11.5 0 1.2 2.6 3.7 15.1 48.5

Median 29/06/2021 09:43 21.7 13.7 2.2 4.5 7.3 18.3 61.2

Mean 05/07/2021 02:19 24.1 19.9 3.3 6.5 13.7 18.4 60.0

75% 12/08/2021 12:29 33.5 31.1 3.9 7.9 14.7 21.6 72.1

Max. 30/09/2021 22:40 299.1 1,028.8 94.7 1,155.2 7,213.4 42.3 99.3

Bold values represent mean values.

Hofman et al. 10.3389/fenvh.2023.1232867
location calibration) and end of the mobile campaign (September1,

2021, to October 1, 2021) was compared, a degrading sensor

performance was observed over time (Figure 3). From the
FIGURE 3

NO2 time series of co-located sensor systems (IMEC18–IMEC20) and refere
monitoring campaign.
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resulting regression plots (Figure 4), the association with

reference NO2 (R2) reduced from 0.87 to 0.73, 0.81 to 0.64, and

0.8 to 0.71 for IMEC18, IMEC19, and IMEC20, respectively. The
nce AQMS during the first (upper) and last (lower) month of the mobile
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FIGURE 4

Scatterplots with associated performance statistics (R2, RMSE MAE, MBE, and Uexp) of the collected sensor and reference data for IMEC18 (left), IMEC19
(middle), and IMEC20 (right) during the first (upper) and last (lower) month of the mobile monitoring campaign.
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MAEs increased from 5.82 to 8.67 µg/m3 (relative: 20%–35%),

12.75 to 14.37 µg/m3 (37%–51%), and 6.87 to 8.71 µg/m3 (22%–

34%) for IMEC18, IMEC19, and IMEC20, respectively. The

expanded uncertainty (Uexp) increases from 17%–61% to 53%–

118%. The BSU reduced from 2.6 to 5.3 µg/m3, which is still

acceptable for the network-based NO2 sensor comparison since

the observed urban spatial NO2 gradients are often higher

(Section 3.4).

For PM2.5 and PM10, the regression plots and associated

performance statistics, as provided in Supplementary Appendix

S7 and S8, did not show clear degradation over time with

similar or sometimes better performance observed at the end of

the campaign. Nevertheless, this was hard to interpret due to the

low performance of the initial sensors.

To investigate whether the degradation in NO2 performance

was related to sensor drift, we plotted the daily sensor/REF

ratio over time (Figure 5). This graph revealed that the

calibration event (19/2) was clearly reflected in better-aligned

sensor/REF ratios. No consistent unidirectional deviation was

observed over time. However, higher sensor/REF ratio

amplitudes were observed between April and mid-August,

possibly resulting from the seasonal variability in sensor

confounders (Temp, RH, O3). Lower calibration performance of

similar NO2 sensor systems during the (warmer and sunnier)

summer season was previously observed from recurrent co-
Frontiers in Environmental Health 08
location campaigns (10), and this was confirmed when the

mean hourly sensor/REF ratio was evaluated, in conjunction

with temperature (°C) and RH (%), between the various seasons

(Supplementary Appendix S9).
3.2. Data exploration

The 17 mobile sensors were collected over 10 million data points

between Januaryand September 2021, and eachdata point consisted of

measured concentrations of NO2, PM1, PM2.5, and PM10 (µg m
−3),

temperature (°C), humidity (%), GPS (Lat/Long), and driving speed

(km h−1). After bounding box selection for the city center of

Antwerp and data cleaning were performed, 76% of the data (∼7.9
million data points) were retained. The monthly data coverage in a

number of data points (#) and incremental area (%) and segment

(#) coverage is provided in Supplementary Appendix S10 and

visualized in Figure 6. Between January and September, 945 km of

road was covered, yielding an average segment coverage of 1,050

measurements per street segment (median = 62). After 1 month of

deployment, more than 50% of the street segments were covered by

the sensor fleet. When all devices were on the road and configured

at a 10-s monitoring resolution (May onward), a linear rise in

segment coverage of ∼200 measurements per segment per month

was observed. We, therefore, conclude that opportunistic data
frontiersin.org
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FIGURE 6

Left: monthly data collection by the 17 mobile sensor units (IMEC1–IMEC17) between January and September 2021. Right: resulting incremental area
coverage (% street length covered) and segment coverage (#data points/segment).

FIGURE 5

Time series of NO2 sensor/REF ratio of AQMS co-located sensors IMEC18, IMEC19, and IMEC20.
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collection using service fleet vehicles (e.g., postal vans) is an efficient

approach for rapidly covering a wide spatial area.

The number of monthly data points reflected the consecutive

batch calibrations at a lower monitoring resolution (5 min)

between January and March (n = 916–53,681), remote

configuration issues increasing the monitoring resolution to 10 s

in April (n = 264,412–341,600), and successful high-resolution

(10 s) monitoring for all devices from May to September (>1

million data points/month).

Similar data distributions were observed when the 17 sensors

(Figure 7) were compared. Pollutant distributions were also

similar when moving (speed >0) to stationary (speed = 0)
Frontiers in Environmental Health 09
conditions were compared. We found that 94% (n = 7,386,879) of

the collected measurements were stationary (speed = 0), while

sensors were only moving for 6% (n = 507,854) of the time,

reflecting the frequent delivery stops of the vans on their service

routes. When summary statistics between stationary and moving

conditions were compared, slightly higher pollutant concentrations

(NO2, PMx) and similar temperature and RH were obtained when

mobile (Table 3). This might be caused by the observed impact of

the enclosure on PM mass concentrations (Supplementary

Appendix S6) and the contribution of evening and nighttime data

(∼18–6 h), when all postal vans are parked at the postal depot

which can be considered as an urban background location.
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FIGURE 7

Log-transformed NO2 data distributions for each mobile sensor unit (left) and during moving and stationary conditions (right).
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3.3. Spatial aggregation

Spatial aggregation of the mobile measurements was required

to derive spatial exposure maps for our study area. We decided

to spatially aggregate the data to an openly available road

segment map (wegenregister Antwerpen; https://portaal-

stadantwerpen.opendata.arcgis.com/; accessed September 2022).

In addition, we selected the road segments located in our study

area (n = 6,447) and mapped the mobile measurements to the

road segments by defining 10-m wide buffer areas for each road

(line) segment in the QGIS software. Mobile measurements were

subsequently clipped to these buffers, and pollutant and data

coverage summary statistics were calculated for each month,

progressive months (January–February, January–March, and so

on) and for the entire dataset (January–September), as shown in

Figure 8. Between January and September, 3,600 street segments

(56%) were sampled, of which 3,369 street segments (52%) had

at least two measurements and 2,729 street segments (42%) had

at least 10 measurements. The highest data coverage was

obtained at the postal depot (n = 1,809,269), followed by the long

road segments that can be considered important traffic arteries of

the city (e.g., Frankrijklei, Mechelsesteenweg, and Italiëlei). The

street segment with the highest segment coverage (n = 16,350)

and average street segment length (313 m) was the Quellinstraat.
3.4. Spatiotemporal pollutant distribution
in Antwerp

From the collected mobile data points, monthly maps were

created to evaluate the spatiotemporal pollutant variability and

stability of the data coverage (#data points/segment) over time

(Figure 9). An associated monthly summary statistics for each

considered pollutant, temperature, and RH is provided in

Table 4. From the resulting monthly point cloud maps,

consecutive sensor batch deployments resulted in an increasing

number of data points between January and April 2021, after

which a fairly stable spatial coverage (May–September) was
Frontiers in Environmental Health 10
obtained over the entire city center (area within ring road),

except for a southeastern district that was only poorly covered by

the service fleet vehicles. Compared to PM, NO2 exhibited a

higher spatial variability over the city, with highest

concentrations found along the ring road and major traffic axes

(e.g., Plantin & Moretuslei, Leien). This was not surprising as

NO2 can be regarded as a typical traffic tracer. When the

monthly maps (Figure 9) were compared, the spatial NO2

variability was quite consistent throughout the mobile

monitoring campaign. Spatial gradients (<10–50 µg/m3) greatly

exceeded the observed BSU for NO2 (2.6–5.3 µg/m3), which is

important for network-based applications, because the observed

spatial variability cannot be attributed to the measurement

uncertainty between the sensors, but rather to local differences in

pollution exposure. In addition to the expected busy traffic

locations, higher NO2 concentrations were also observed at

unexpected locations within residential areas, highlighting local

difficult traffic junctions or constrictions. While some of these

hotspot locations were only sampled sporadically and, therefore,

not representative, some had a proper recurrence and were

consistently observed throughout the considered sampling

months. These unexpected hotspot locations, discovered via this

mobile monitoring approach, were noteworthy as they might

prioritize future locations for targeted policy measures.

When the temporal variability for NO2 and PM at the hourly,

daily, and monthly level (averages calculated based on the entire

dataset) was evaluated, a distinct diurnality was observed for

NO2 with morning and evening rush hour peaks, slightly later

evening peaks on Friday and Saturday, and overall lower

pollutant concentrations throughout the weekend. This typical

diurnality was consistently observed for all different sensor

systems/vehicles (Supplementary Appendix S11) and was not

surprising as NO2 can be regarded as a typical tracer for road

traffic (57–63). Seasonal variability was associated with lower

NO2 (<19.8 µg m−3) and PM (<14.5 µg m−3) concentrations

during the summer months (May–August), while the highest

average concentrations for NO2 (28 µg m−3) and PM10

(17.8 µg m−3) were observed in March.
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TABLE 4 Monthly data coverage (n) and summary statistics (min, 25%, median, mean, 75%, max) of the 17 mobile sensor systems for NO2 (µg m−3), PM1
(µg m−3), PM2.5 (µg m−3), PM10 (µg m−3), temperature (°C), and relative humidity (%).

NO2 PM1 PM2.5 PM10 Temp Hum

µg m−3 µg m−3 µg m−3 µg m−3 °C %
January, n = 916 Min. 6.62 1.04 1.75 4.08 5.09 54.15

25% 19.33 3.29 9.32 14.87 5.45 80.85

Median 23.29 3.74 10.80 19.09 5.54 81.43

Mean 23.86 3.74 10.51 19.30 5.56 81.35

75% 27.86 4.58 12.32 23.52 5.68 82.01

Max. 51.47 6.47 20.50 48.13 10.97 83.94

February, n = 18,570 Min. 0.00 0.15 0.26 0.25 −8.11 21.77

25% 18.09 1.78 3.76 5.37 2.86 54.12

Median 26.12 2.69 6.65 10.49 8.00 64.82

Mean 28.18 3.65 9.57 17.86 7.10 64.70

75% 36.39 4.00 12.16 21.76 11.59 76.22

Max. 248.57 48.52 103.50 793.08 22.89 98.18

March, n = 295,317 Min. 0.00 0.03 0.03 0.03 −3.97 10.69

25% 8.34 1.70 4.14 5.40 6.30 47.18

Median 24.94 2.95 7.43 11.30 8.33 62.53

Mean 29.45 5.16 10.51 17.76 9.47 60.20

75% 43.05 6.30 12.95 22.09 11.75 75.75

Max. 642.47 105.04 320.90 1,695.60 35.95 99.00

April, n = 264,248 Min. 0.00 0.02 0.02 0.02 −1.61 13.10

25% 7.99 1.46 3.11 3.99 5.89 36.66

Median 22.53 2.35 5.28 8.14 9.45 50.59

Mean 26.30 3.49 7.22 13.95 10.27 51.88

75% 38.04 3.84 8.87 16.57 14.11 66.61

Max. 612.98 80.47 1,155.19 7,213.41 34.10 98.99

May, n = 1,461,146 Min. 0.00 0.01 0.01 0.01 1.33 15.93

25% 0.00 0.88 1.93 2.29 11.70 43.53

Median 13.16 1.48 3.38 4.74 14.40 60.56

Mean 17.27 2.00 4.49 8.38 15.27 59.10

75% 26.72 2.43 5.72 9.75 17.89 74.79

Max. 691.77 84.90 592.30 7,490.72 35.36 99.00

June, n = 1,872,154 Min. 0.00 0.01 0.01 0.01 9.60 13.80

25% 0.00 1.27 2.37 2.95 17.99 37.16

Median 16.03 2.37 4.35 6.38 22.60 52.31

Mean 20.39 3.55 6.10 11.19 23.11 53.07

75% 31.35 4.37 7.60 13.18 27.50 68.45

Max. 1,101.70 195.16 1,726.77 5,436.12 42.33 99.00

July, n = 1,393,343 Min. −49.99 0.00 0.00 0.01 12.08 16.37

25% 0.00 0.84 1.58 1.94 17.87 46.34

Median 9.58 1.40 2.60 3.74 20.78 60.89

Mean 14.22 1.87 3.47 6.12 21.67 59.47

75% 24.25 2.31 4.38 7.30 24.28 73.44

Max. 795.28 126.57 307.73 2,768.69 42.02 98.46

August, n = 1,162,542 Min. −49.99 0.01 0.01 0.01 10.19 18.27

25% 0.00 0.55 1.11 1.40 17.33 45.09

Median 10.82 0.85 1.79 2.75 20.17 59.29

Mean 15.46 1.13 2.30 4.40 20.88 59.61

75% 26.47 1.40 2.90 5.45 23.91 73.78

Max. 519.19 40.20 189.97 1,516.20 40.03 99.00

September, n = 1,415,028 Min. −49.99 0.01 0.01 0.01 7.02 14.70

25% 0.00 0.69 1.44 1.87 16.21 46.35

Median 17.82 1.26 2.27 3.48 19.73 59.14

Mean 21.70 1.86 3.05 5.22 20.28 59.06

75% 34.79 2.25 3.58 6.43 23.67 73.36

Max. 1,028.77 134.74 570.20 3,056.83 39.40 99.00

Bold values represent mean values.
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FIGURE 8

Street segment aggregation of mobile data points (left) and resulting street segment data coverage (#data points/segment) map of Antwerp (right). Dark
gray-colored segments in the right panel did not contain any data points. The location of the postal depot is indicated by the parking icon.
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Diurnality for PM is far less pronounced with low

concentration increases (∼2 µg/m3) during morning hours and

elevated concentrations on Sunday (when stationary at the postal

depot). In terms of seasonality, higher concentrations are

observed during the winter/spring period (January–April), when

compared to the summer period (May–August). In September,

concentrations start rising again for both NO2 and PM (Figure 10).

When comparing the temporal variability of the sensor fleet

to the available stationary AQMS at different urban

microenvironments (background, roadside, street canyon and ring

road) in Antwerp, we found that the NO2 dynamics (diurnality

and seasonality) captured by the sensor fleet were also observed at

the stationary AQMS network (Supplementary Appendix S12).

The absolute hourly averaged concentration range of the sensor

fleet (7–27 µg/m3) is slightly lower than the observed concentration

range (15–45 µg/m3) of the regulatory stations (background <>

ring road). Moreover, there was an earlier onset and decline of the

morning rush hour peak in the sensor fleet NO2 data, when

compared to the AQMS. This observation cannot be explained by

an environmental confounder on the sensor performance [e.g.,

temperature effect on sensor/REF ratio (Supplementary Appendix

S9)], but it is believed to be caused by the fleet operation with an

early start of the service rounds (∼5 h in Supplementary

Appendix S1) and impact from remaining postal vans parked at

the postal depot (background location). Nevertheless, the existing

AQMS quite reflected the hourly observed NO2 exposure range

documented by the mobile measurements.

For PM2.5, the sensor fleet followed the same trend (except

between 5 and 7 h; humidity overcompensation?) but

significantly underestimated the actual PM concentrations by

∼50%, as observed in the prior co-location campaign (Section

3.1.2). Moreover, the observed diurnality for PM is low (∼5 µg/
m3), especially when compared to the observed sensor accuracy

(error bars in Figure 11) in the prior co-location campaign
Frontiers in Environmental Health 12
indicating that the temporal PM variability cannot be properly

assessed by the sensor network.
3.5. Spatial exposure representativity

When all NO2 measurements collected by our mobile sensor

fleet (Figure 9) are combined, a map of the street segment

averaged NO2 concentrations can be derived visualizing the

spatial variability in urban NO2 exposure (Figure 12).

To construct a representative map, we should consider the

temporal (diurnal/monthly/seasonal) pollutant variability in our

mobile sampling strategy. If a mobile sensor passes a street during

early morning (<6 h) or around noon (∼12 h), lower

concentrations of traffic-related pollutants will be measured than if

the van passes the same street in rush hour traffic. Our sampling

strategy is opportunistic, and therefore not controlled in terms of

routing and sampling hours. The ways of coping with this

temporal variability in the data analysis can be a background

normalization (limited to an hourly resolution of the AQMS),

modeling of the time variance in either land use regression (LUR)

(64, 65) or machine learning models (35, 66), or considering

enough repeated runs in the sampling strategy (67, 68).

In practice, a balance has to be found between (1) enough repeated

measurements (passages) along each street segment to be

representative of the monthly/long-term pollution exposure and (2)

the effort/budget needed in terms of number of sensors,

maintenance, and calibration. Previous studies applied subsampling

strategies to derive the required number of passages to be

representative (R2/error of the mean) for a certain street, route, and/

or city (19, 69). We performed a similar exercise by extracting all

mobile data points for the densely covered street segment

Quellinstraat (n = 16,349). Because not all 10-s measurements can be

regarded as independent passages, we first sorted the data according
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FIGURE 9

Maps of monthly collected mobile NO2 measurements (µg m−3) in the city of Antwerp (BE) between February and September 2021.
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to timestamp and device, evaluated the timestep difference between

consecutive measurements, and defined new passages for sequential

timestep differences exceeding 15 min (to cope with longer stops/

deliveries). This resulted in879uniquepassages (∼5%of original data).

To derive the required number of repeated measurements for

them to be representative of the long-term average NO2
Frontiers in Environmental Health 13
exposure, we applied the methodology of Van Den Bossche et al.

(67) on the Quellinstraat data. Because no reference data was

available for the long-term average NO2 concentration, we

assumed that the average NO2 based on the 879 passages

(26.6 µg/m3) can be considered representative of the long-term

average NO2 concentration (gray line in the figure).
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FIGURE 10

Hourly, daily, and monthly variability of the NO2 (µg m−3), PM1 (µg m−3), PM2.5 (µg m−3), and PM10 (µg m−3) measurements collected by the mobile sensor
fleet (all sensors).

FIGURE 11

Fleet-averaged diurnal NO2 (upper) and PM (lower) variability compared against fixed AQMS in different microenvironments (background, roadside, street
canyon, and ring road) in Antwerp. The error bars represent the MAE, derived from the co-location calibration (Table 2).
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FIGURE 12

Street segment averaged NO2 exposure map for Antwerp. The location
of the postal depot is indicated by the parking icon.

FIGURE 13

Subsampling analysis of the passage mean NO2 concentrations (n= 879): a
subsample size from 1 to 879 (number of passages) and repeated 100 times
calculated from the 879 passages (26.6 µg/m3), while both red lines represen

Hofman et al. 10.3389/fenvh.2023.1232867
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The passage-averaged NO2 concentrations were randomly

subsampled using sampling with replacement (passage means can

be selected more than once) in R, with incrementing subsample

size, from n = 1 to 879, and average NO2 concentration calculated

for each increasing subsample. This process was subsequently

repeated 100 times (where each repeat is a random combination of

passage means), and the resulting subsample averages were plotted

against their subsample size (Figure 13). This graph revealed that

the subsample means rapidly converge toward the long-term mean

when the number of passages falls within the defined error bounds

(red) after approximately ∼45 passages (Table 5).

The number of required passages to have a 95% probability, to

be within ±2.5%, 5%, 12.5%, and 25% of the long-term average

NO2 concentration (26.6 µg/m3), was subsequently derived from

the 100 repeated subsamples (with n = 1–879), as summarized in

Table 5. Based on the original passage means, 238 and 45

passages, respectively, are needed to have a 95% probability to be

within ±12.5 and ±25% of the long-term mean of the

Quellinstraat. Two post-processing approaches were tested to
verage subsample concentrations are plotted against the incrementing
(colored lines). The gray reference line represents the long-term mean

t the 25% bounds of the mean.
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TABLE 5 Required number of passages (n) to have a 95% probability to be within ±2.5%, 5%, 12.5%, and 25% of the long-term average NO2 concentration
of the Quellinstraat, with associated lower and upper bounds (µg/m3) of the mean (26.6 µg/m3).

Original
data

Trimmed mean
(5%)

Background norm Trimmed mean (5%) + background
norm

Bounds (%) Lower
(µg/m3)

Upper
(µg/m3)

Passages
required (n)

Passages
required (n)

Passages
required (n)

Passages
required (n)

±2.5 25.89 27.22 NA NA NA NA

±5 25.23 27.88 NA NA NA NA

±12.5 23.24 29.87 238 122 185 185

±25 19.92 33.19 45 31 47 31

FIGURE 14

Representative long-term NO2 exposure map, for all street segments
(n= 495) containing more than 837 measurements (>45 passages).
The location of the postal depot is indicated by the parking icon.
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reduce these numbers, namely, the trimmed mean, where ±2.5%

extremes were omitted from the passage means dataset, and

an additive background normalization which was proposed by

Dons et al. (70), where each passage mean (NO2 passage, i) was

corrected for the exhibited hourly background concentration

(NO2 background, i) and normalized to the long-term average

background (NO2 background, long-term), as shown in Equation 3.

NO2 norm ¼ NO2 passage, i �NO2 background, i

þNO2 background, long-term (3)

Both post-processing approaches result in a reduced number of

required passages (Table 5), where the highest impact is

observed for the trimmed mean, with 122 and 31 required

passages to have a 95% probability to be within ±12.5% and

±25% of the long-term mean. Combining both procedures does

not result in additional reductions.

When the Quellinstraat measurement/passage ratio (∼5.4%)
was generalized for all other street segments, the required

number of measurements would be 837 (16,349 measurements/

879 passages × 45 required passages). After the selection of street

segments with more than 837 measurements, 495 street segments

remain, resulting in a representative long-term NO2 exposure

map of Antwerp (Figure 14).

However, the required number of passages will depend on the

characteristics of the street segments as they vary in terms of

length, architecture (height/width ratio, openness), local source

behavior, and resulting pollutant variability. Van Den Bossche

et al. (67) found that the required number of passages for

convergence varied widely when considering measured black

carbon (BC) concentrations in different 50 m street segments

along a cycling route, with 33–141 required passages to obtain

convergence (95% probability and 25% deviation). After applying

trimmed mean and background normalization, we found that

these numbers were further reduced to 24–94 (10 and 90

percentiles of the 50-m segments). Through systematic

subsampling of mobile car measurements in Oakland, Apte et al.

(19) found that 10–20 drive days were sufficient to reproduce key

spatial patterns of BC and NO with good precision and low bias.

They achieved the mean R2 for BC and NO approaching 0.7

after 10 days of driving and 0.9 after 20–25 days of driving.

Several studies looked into the long-term representativity of

short-term measurement campaigns and the impact of monitoring
Frontiers in Environmental Health 16
strategy (locations, times, repeats, duration), indicating a variety of

requirements depending on the pollutants considered, locations,

time of sampling, sampling duration, and data-only vs. model

approach. Messier et al. (24) compared 50 repeated measurements

along a car route in Oakland to a LUR-Kriging model and found

that data-only mapping outperformed the LUR-Kriging model in

terms of cross-validation R2 within four to eight repeated runs per

road segment. In their recent study, Blanco et al. (71) investigated

the impacts of various monitoring strategies in terms of number of

sites (measurement locations), site visits (repeated measurements),

time of sampling (during the day/week), and sampling time

(duration) on the resulting long-term air pollution assessment for

ultrafine particles, BC, NO2, PM, and CO2, based on a 278 sites ×

26 visits dataset. They concluded that mobile monitoring

campaigns wanting to assess long-term exposure should carefully

consider their monitoring designs.

A sensitivity analysis on the required number of passages for

convergence in our dataset will be the subject of a follow-up paper.
4. Conclusions

This study aimed to examine the validity of a mobile IoT

sensor fleet for urban exposure assessments in Antwerp, a
frontiersin.org
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medium-sized and densely populated city in Belgium. The validity

of the approach was evaluated holistically, from the design of the

sensor network, proper validation and calibration procedure,

mobile data processing, and analysis of spatiotemporal data

coverage and representativity. We revealed that sensor calibration

and validation are indispensable when applying low-cost air

quality sensors in mobile settings. Indicative sensor performance

was achieved after co-location calibration for NO2, although PM

exhibited unsatisfactory performance. A different PM sensor,

mobile housing or calibration procedure (e.g., continuous,

network-based calibration), might result in better PM results. We

believe that continuous network-based calibration procedures

should be the main focus of future research, especially when

targeting long-term (i.e., multi-season) monitoring initiatives

with low-cost sensors. In doing so, the availability of a reference

instrument or regulatory monitoring network is indispensable.

Our mobile sensor fleet collected an extensive air quality

dataset in Antwerp between February and September 2021,

covering 945 km of road by a total of ∼7.9 million data points,

yielding an average segment coverage of 1,050 measurements per

street segment (median = 62). From the proposed area (%) and

street segment (n) coverage, we concluded that opportunistic

data collection using service fleet vehicles (e.g., postal vans) is an

efficient approach in rapidly covering a wide spatial area and

collecting many repeated runs (∼200 measurements/segment/

month). The monthly maps showed recurring pollution gradients

with hotspot locations both at the suspected (e.g., traffic arteries)

and unexpected locations, with observed increments greatly

exceeding the observed sensor uncertainty. The NO2 variability

documented by the sensor fleet fell within the range of the

existing air quality monitoring network showing that the five

AQMS well reflected the urban exposure variability in Antwerp.

From the representativity analysis, we showed that ∼45 repeated

passages of the postal vans (31 passages after pre-processing)

were required to achieve the long-term average NO2 exposure.

Our findings suggested that opportunistic data collection using

sensors on service fleet vehicles is a valid approach for pollution

exposure assessments, through proper validation and calibration

strategy. Temporary deployment of mobile sensors was a valuable

approach for cities with a less extensive air quality monitoring

network or those who want a more fine-grained mapping.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article and the

Mendeley Data repository (55).
Ethics statement

Ethical review and approval was not required for this study in

accordance with the national legislation and the institutional

requirements.
Frontiers in Environmental Health 17
Author contributions

JH contributed to the conceptualization, investigation, data

curation, formal analysis, validation, data visualization, and writing.

EI-U and MH contributed to the methodology, software, resources,

and review of the manuscript. JP and MP assisted in the validation

and review. VM contributed to the conceptualization, investigation,

supervision, funding acquisition, and review and editing process. All

authors contributed to the article and approved the submitted version.
Funding

This work was supported by the Flanders Innovation and

Entrepreneurship (VLAIO) City of Things program and the

European Union’s Horizon 2020 Research and Innovation Program

under the project “Research Infrastructures Services Reinforcing Air

Quality Monitoring Capacities in European Urban & Industrial

AreaS (RI-URBANS)” (grant number 101036245).
Acknowledgments

We acknowledge the city of Antwerp, the Belgian postal
service (BPost), Kunak Technologies, and IMEC Belgium
for their support in setting up the mobile sensor network.
Conflict of interest

EI-U and MH were employed by Kunak Technologies. The

authors declare the involvement of Kunak Technologies in this

study. Kunak provided support in setting up the mobile sensor

network but was not involved in the study design, analysis,

interpretation of data, the writing of this article or the decision

to submit it for publication. The authors otherwise declare that

the research was conducted in the absence of any commercial or

financial relationships that could be construed as a potential

conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fenvh.2023.

1232867/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fenvh.2023.1232867/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvh.2023.1232867/full#supplementary-material
https://doi.org/10.3389/fenvh.2023.1232867
https://www.frontiersin.org/journals/environmental-health
https://www.frontiersin.org/


Hofman et al. 10.3389/fenvh.2023.1232867
References
1. Castell N, Dauge FR, Schneider P, Vogt M, Lerner U, Fishbain B, et al. Can
commercial low-cost sensor platforms contribute to air quality monitoring and
exposure estimates? Environ Int. (2017) 99:293–302. doi: 10.1016/j.envint.2016.12.007

2. Karagulian F, Barbiere M, Kotsev A, Spinelle L, Gerboles M, Lagler F, et al. Review
of the performance of low-cost sensors for air quality monitoring. Atmosphere. (2019)
10:506. doi: 10.3390/atmos10090506

3. Badura M, Batog P, Drzeniecka-Osiadacz A, Modzel P. Evaluation of low-cost
sensors for ambient PM2.5 monitoring. J Sens. (2018) 2018:1–16. doi: 10.1155/2018/
5096540

4. Desouza PN. Key concerns and drivers of low-cost air quality sensor use.
Sustainability. (2022) 14:584. doi: 10.3390/su14010584

5. Jayaratne R, Liu X, Thai P, Dunbabin M, Morawska L. The influence of humidity
on the performance of low-cost air particle mass sensors and the effect of atmospheric
fog. Atmos Meas Tech Discuss. (2018) 11(8):4883–90. doi: 10.5194/amt-11-4883-2018

6. Vercauteren J. Performance evaluation of six low-cost particulate matter sensors in
the field. Vaquums (2021). Available at: https://vaquums.eu/sensor-db/tests/life-
vaquums_pmfieldtest.pdf/view

7. Wei P, Ning Z, Ye S, Sun L, Yang F, Wong KC, et al. Impact analysis of
temperature and humidity conditions on electrochemical sensor response in
ambient air quality monitoring. Sensors (Basel). (2018) 18:59. doi: 10.3390/s18020059

8. Clements AL, Griswold WG, Abhijit RS, Johnston JE, Herting MM, Thorson J,
et al. Low-cost air quality monitoring tools: from research to practice (a workshop
summary). Sensors (Basel). (2017) 17(11):2478. doi: 10.3390/s17112478

9. Hofman J, Nikolaou M, Shantharam SP, Stroobants C, Weijs S, La Manna VP.
Distant calibration of low-cost PM and NO2 sensors; evidence from multiple sensor
testbeds. Atmos Pollut Res. (2022b) 13:101246. doi: 10.1016/j.apr.2021.101246

10. Hofman J, Peters J, Stroobants C, Elst E, Baeyens B, Laer JV, et al. Air quality
sensor networks for evidence-based policy making: best practices for actionable
insights. Atmosphere. (2022) 13:944. doi: 10.3390/atmos13060944

11. Munir S, Mayfield M, Coca D, Jubb SA, Osammor O. Analysing the
performance of low-cost air quality sensors, their drivers, relative benefits and
calibration in cities—a case study in Sheffield. Environ Monit Assess. (2019) 191:94.
doi: 10.1007/s10661-019-7231-8

12. Rai AC, Kumar P, Pilla F, Skouloudis AN, Di Sabatino S, Ratti C, et al. End-user
perspective of low-cost sensors for outdoor air pollution monitoring. Sci Total
Environ. (2017) 607–8:691–705. doi: 10.1016/j.scitotenv.2017.06.266

13. Spinelle L, Aleixandre M, Gerboles M. Protocol of evaluation and calibration of
low-cost gas sensors for the monitoring of air pollution. Joint Research Centre (JRC)
(2013). Available at: https://publications.jrc.ec.europa.eu/repository/handle/JRC83791

14. Van Zoest V, Osei FB, Stein A, Hoek G. Calibration of low-cost NO2 sensors in
an urban air quality network. Atmos Environ. (2019) 210:66–75. doi: 10.1016/j.
atmosenv.2019.04.048

15. Wesseling J, de Ruiter H, Blokhuis C, Drukker D, Weijers E, Volten H, et al.
Development and implementation of a platform for public information on air
quality, sensor measurements, and citizen science. Atmosphere. (2019) 10:445.
doi: 10.3390/atmos10080445

16. Cui H, Zhang L, Li W, Yuan Z, Wu M, Wang C, et al. A new calibration system
for low-cost sensor network in air pollution monitoring. Atmos Pollut Res. (2021) 12
(5):101049. doi: 10.1016/j.apr.2021.03.012

17. De Vito S, Di Francia G, Esposito E, Ferlito S, Formisano F, Massera E. Adaptive
machine learning strategies for network calibration of IoT smart air quality
monitoring devices. Pattern Recognit Lett. (2020) 136:264–71. doi: 10.1016/j.patrec.
2020.04.032

18. Drajic DD, Gligoric NR. Reliable low-cost air quality monitoring using off-the-
shelf sensors and statistical calibration. Elektronika ir Elektrotechnika. (2020)
26:32–41. doi: 10.5755/j01.eie.26.2.25734

19. Apte JS, Messier KP, Gani S, Brauer M, Kirchstetter TW, Lunden MM, et al.
High-resolution air pollution mapping with Google Street View cars: exploiting big
data. Environ Sci Technol. (2017) 51:6999–7008. doi: 10.1021/acs.est.7b00891

20. Desouza P, Anjomshoaa A, Duarte F, Kahn R, Kumar P, Ratti C. Air quality
monitoring using mobile low-cost sensors mounted on trash-trucks: methods
development and lessons learned. Sustain Cities Soc. (2020) 60:102239. doi: 10.1016/
j.scs.2020.102239

21. Elen B, Peters J, Poppel MV, Bleux N, Theunis J, Reggente M, et al. The Aeroflex:
a bicycle for mobile air quality measurements. Sensors (Basel). (2013) 13:221–40.
doi: 10.3390/s130100221

22. Hasenfratz D, Saukh O, Walser C, Hueglin C, Fierz M, Arn T, et al. Deriving
high-resolution urban air pollution maps using mobile sensor nodes. Pervasive Mob
Comput. (2015) 16:268–85. doi: 10.1016/j.pmcj.2014.11.008

23. Kaivonen S, Ngai E. Real-time air pollution monitoring with sensors on city bus.
Digit Commun Netw. (2019) 6(1):23–30. doi: 10.1016/j.dcan.2019.03.003
Frontiers in Environmental Health 18
24. Messier KP, Chambliss SE, Gani S, Alvarez R, Brauer M, Choi JJ, et al. Mapping
air pollution with Google Street View cars: efficient approaches with mobile
monitoring and land use regression. Environ Sci Technol. (2018) 52:12563–72.
doi: 10.1021/acs.est.8b03395

25. Schulte N, Li X, Ghosh JK, Fine PM, Epstein SA. Responsive high-resolution air
quality index mapping using model, regulatory monitor, and sensor data in real-time.
Environ Res Lett. (2020) 15:1040a7. doi: 10.1088/1748-9326/abb62b

26. Wesseling J, Hendricx W, De Ruiter H, Van Ratingen S, Drukker D, Huitema M,
et al. Assessment of PM2.5 exposure during cycle trips in the Netherlands using low-
cost sensors. Int J Environ Res Public Health. (2021) 18(11):6007. doi: 10.3390/
ijerph18116007

27. Mueller MD, Hasenfratz D, Saukh O, Fierz M, Hueglin C. Statistical modelling
of particle number concentration in Zurich at high spatio-temporal resolution utilizing
data from a mobile sensor network. Atmos Environ. (2016) 126:171–81. doi: 10.1016/j.
atmosenv.2015.11.033

28. Chen Y, Gu P, Schulte N, Zhou X, Mara S, Croes BE, et al. A new mobile
monitoring approach to characterize community-scale air pollution patterns and
identify local high pollution zones. Atmos Environ. (2022) 272:118936. doi: 10.1016/
j.atmosenv.2022.118936

29. Franco JF, Segura JF, Mura I. Air pollution alongside bike-paths in Bogotá-
Colombia. Front Environ Sci. (2016) 4:77. doi: 10.3389/fenvs.2016.00077

30. Hofman J, Samson R, Joosen S, Blust R, Lenaerts S. Cyclist exposure to black
carbon, ultrafine particles and heavy metals: an experimental study along two
commuting routes near Antwerp, Belgium. Environ Res. (2018) 164:530–8. doi: 10.
1016/j.envres.2018.03.004

31. Genikomsakis KN, Galatoulas N-F, Dallas PI, Candanedo Ibarra LM, Margaritis
D, Ioakimidis CS. Development and on-field testing of low-cost portable system for
monitoring PM2.5 concentrations. Sensors (Basel). (2018) 18(4):1056. doi: 10.3390/
s18041056

32. Peters J, Van Den Bossche J, Reggente M, Van Poppel M, De Baets B, Theunis J.
Cyclist exposure to UFP and BC on urban routes in Antwerp, Belgium. Atmos
Environ. (2014) 92:31–43. doi: 10.1016/j.atmosenv.2014.03.039

33. Qiu Z, Wang W, Zheng J, Lv H. Exposure assessment of cyclists to UFP and PM
on urban routes in Xi’an, China. Environ Pollut. (2019) 250:241–50. doi: 10.1016/j.
envpol.2019.03.129

34. Van Den Bossche J, Theunis J, Elen B, Peters J, Botteldooren D, De Baets B.
Opportunistic mobile air pollution monitoring: a case study with city wardens in
Antwerp. Atmos Environ. (2016) 141:408–21. doi: 10.1016/j.atmosenv.2016.06.063

35. Hofman J, Do TH, Qin X, Bonet ER, Philips W, Deligiannis N, et al.
Spatiotemporal air quality inference of low-cost sensor data: evidence from multiple
sensor testbeds. Environ Model Softw. (2022) 149:105306. doi: 10.1016/j.envsoft.
2022.105306

36. Yuan Z, Kerckhoffs J, Hoek G, Vermeulen R. A knowledge transfer approach to
map long-term concentrations of hyperlocal air pollution from short-term mobile
measurements. Environ Sci Technol. (2022) 56:13820–8. doi: 10.1021/acs.est.2c05036

37. Jacobs L, Nawrot TS, De Geus B, Meeusen R, Degraeuwe B, Bernard A, et al.
Subclinical responses in healthy cyclists briefly exposed to traffic-related air
pollution: an intervention study. Environ Health. (2010) 9:64. doi: 10.1186/1476-
069X-9-64

38. De Craemer S, Vercauteren J, Fierens F, Lefebvre W, Meysman F. Using large-
scale NO2 data from citizen science for air quality compliance and policy support.
Environ Sci Technol. (2020) 54(18):11070–8. doi: 10.1021/acs.est.0c02436

39. VMM. Intra-urban variability of ultrafine particles in Antwerp (February and
October 2013), D/2014/6871/065. (2014). Available at: https://publicaties.vlaanderen.
be/view-file/15471

40. Hofman J, Castanheiro A, Nuyts G, Joosen S, Spassov S, Blust R, et al. Impact of
urban street canyon architecture on local atmospheric pollutant levels and magneto-
chemical PM10 composition: an experimental study in Antwerp, Belgium. Sci Total
Environ. (2019) 712:135534. doi: 10.1016/j.scitotenv.2019.135534

41. Hofman J, Staelens J, Cordell R, Stroobants C, Zikova N, Hama SML, et al.
Ultrafine particles in four European urban environments: results from a new
continuous long-term monitoring network. Atmos Environ. (2016) 136:68–81.
doi: 10.1016/j.atmosenv.2016.04.010

42. Mishra VK, Kumar P, Van Poppel M, Bleux N, Frijns E, Reggente M, et al.
Wintertime spatio-temporal variation of ultrafine particles in a Belgian city. Sci
Total Environ. (2012) 431:307–13. doi: 10.1016/j.scitotenv.2012.05.054

43. Degraeuwe B, Thunis P, Clappier A, Weiss M, Lefebvre W, Janssen S, et al.
Impact of passenger car NOx emissions and NO2 fractions on urban NO2 pollution
—scenario analysis for the city of Antwerp, Belgium. Atmos Environ. (2015)
126:218–24. doi: 10.1016/j.atmosenv.2015.11.042

44. Hofman J, Bartholomeus H, Janssen S, Calders K, Wuyts K, Van Wittenberghe
S, et al. Influence of tree crown characteristics on the local PM10 distribution inside an
frontiersin.org

https://doi.org/10.1016/j.envint.2016.12.007
https://doi.org/10.3390/atmos10090506
https://doi.org/10.1155/2018/5096540
https://doi.org/10.1155/2018/5096540
https://doi.org/10.3390/su14010584
https://doi.org/10.5194/amt-11-4883-2018
https://vaquums.eu/sensor-db/tests/life-vaquums_pmfieldtest.pdf/view
https://vaquums.eu/sensor-db/tests/life-vaquums_pmfieldtest.pdf/view
https://doi.org/10.3390/s18020059
https://doi.org/10.3390/s17112478
https://doi.org/10.1016/j.apr.2021.101246
https://doi.org/10.3390/atmos13060944
https://doi.org/10.1007/s10661-019-7231-8
https://doi.org/10.1016/j.scitotenv.2017.06.266
https://publications.jrc.ec.europa.eu/repository/handle/JRC83791
https://doi.org/10.1016/j.atmosenv.2019.04.048
https://doi.org/10.1016/j.atmosenv.2019.04.048
https://doi.org/10.3390/atmos10080445
https://doi.org/10.1016/j.apr.2021.03.012
https://doi.org/10.1016/j.patrec.2020.04.032
https://doi.org/10.1016/j.patrec.2020.04.032
https://doi.org/10.5755/j01.eie.26.2.25734
https://doi.org/10.1021/acs.est.7b00891
https://doi.org/10.1016/j.scs.2020.102239
https://doi.org/10.1016/j.scs.2020.102239
https://doi.org/10.3390/s130100221
https://doi.org/10.1016/j.pmcj.2014.11.008
https://doi.org/10.1016/j.dcan.2019.03.003
https://doi.org/10.1021/acs.est.8b03395
https://doi.org/10.1088/1748-9326/abb62b
https://doi.org/10.3390/ijerph18116007
https://doi.org/10.3390/ijerph18116007
https://doi.org/10.1016/j.atmosenv.2015.11.033
https://doi.org/10.1016/j.atmosenv.2015.11.033
https://doi.org/10.1016/j.atmosenv.2022.118936
https://doi.org/10.1016/j.atmosenv.2022.118936
https://doi.org/10.3389/fenvs.2016.00077
https://doi.org/10.1016/j.envres.2018.03.004
https://doi.org/10.1016/j.envres.2018.03.004
https://doi.org/10.3390/s18041056
https://doi.org/10.3390/s18041056
https://doi.org/10.1016/j.atmosenv.2014.03.039
https://doi.org/10.1016/j.envpol.2019.03.129
https://doi.org/10.1016/j.envpol.2019.03.129
https://doi.org/10.1016/j.atmosenv.2016.06.063
https://doi.org/10.1016/j.envsoft.2022.105306
https://doi.org/10.1016/j.envsoft.2022.105306
https://doi.org/10.1021/acs.est.2c05036
https://doi.org/10.1186/1476-069X-9-64
https://doi.org/10.1186/1476-069X-9-64
https://doi.org/10.1021/acs.est.0c02436
https://publicaties.vlaanderen.be/view-file/15471
https://publicaties.vlaanderen.be/view-file/15471
https://doi.org/10.1016/j.scitotenv.2019.135534
https://doi.org/10.1016/j.atmosenv.2016.04.010
https://doi.org/10.1016/j.scitotenv.2012.05.054
https://doi.org/10.1016/j.atmosenv.2015.11.042
https://doi.org/10.3389/fenvh.2023.1232867
https://www.frontiersin.org/journals/environmental-health
https://www.frontiersin.org/


Hofman et al. 10.3389/fenvh.2023.1232867
urban street canyon in Antwerp (Belgium): a model and experimental approach.
Urban For Urban Green. (2016) 20:265–76. doi: 10.1016/j.ufug.2016.09.013

45. Hofman J, Lefebvre W, Janssen S, Nackaerts R, Nuyts S, Mattheyses L, et al.
Increasing the spatial resolution of air quality assessments in urban areas: a
comparison of biomagnetic monitoring and urban scale modelling. Atmos Environ.
(2014) 92:130–40. doi: 10.1016/j.atmosenv.2014.04.013

46. Lefebvre W, Van Poppel M, Maiheu B, Janssen S, Dons E. Evaluation of the
RIO-IFDM-street canyon model chain. Atmos Environ. (2013) 77:325–37. doi: 10.
1016/j.atmosenv.2013.05.026

47. Nikolova I, Janssen S, Vos P, Vrancken K, Mishra V, Berghmans P. Dispersion
modelling of traffic induced ultrafine particles in a street canyon in Antwerp, Belgium
and comparison with observations. Sci Total Environ. (2011) 412–3:336–43. doi: 10.
1016/j.scitotenv.2011.09.081

48. Van BrusseleN D, Arrazola De Oñate W, Maiheu B, Vranckx S, Lefebvre W,
Janssen S, et al. Health impact assessment of a predicted air quality change by
moving traffic from an urban ring road into a tunnel. The case of Antwerp,
Belgium. PLoS One. (2016) 11:e0154052. doi: 10.1371/journal.pone.0154052

49. Crilley LR, Singh A, Kramer LJ, Shaw MD, Alam MS, Apte JS, et al. Effect of
aerosol composition on the performance of low-cost optical particle counter correction
factors. Atmos Meas Tech. (2020) 13:1181–93. doi: 10.5194/amt-13-1181-2020

50. Mijling B, Jiang Q, De Jonge D, Bocconi S. Field calibration of electrochemical
NO2 sensors in a citizen science context. Atmos Meas Tech. (2018) 11:1297–312.
doi: 10.5194/amt-11-1297-2018

51. Vikram S, Collier-Oxandale A, Ostertag MH, Menarini M, Chermak C,
Dasgupta S, et al. Evaluating and improving the reliability of gas-phase sensor
system calibrations across new locations for ambient measurements and personal
exposure monitoring. Atmos Meas Tech. (2022) 12:4211–39. doi: 10.5194/amt-12-
4211-2019

52. Polidori A. AQ-SPEC field setup and testing evaluation protocol. AQ-SPEC
(2017). Available at: http://www.aqmd.gov/docs/default-source/aq-spec/protocols/
sensors-field-testing-protocol.pdf?sfvrsn=0

53. Weijers E, Vercauteren J, Van Dinther D. Performance evaluation of low-cost
air quality sensors in the laboratory and in the field. VAQUUMS (2021). Available
at: https://vaquums.eu/sensor-db/tests/protocols/life-vaquums_testprotocol_final.pdf/
view

54. Yatkin S, Gerboles M, Borowiak A, Davila S, Spinelle L, Bartonova A, et al.
Modified target diagram to check compliance of low-cost sensors with the data
quality objectives of the European air quality directive. Atmos Environ. (2022)
273:118967. doi: 10.1016/j.atmosenv.2022.118967

55. Hofman J, Panzica La Manna V, Ibarrola-Ulzurrun E, Escribano M. Mobile PM
and NO2 data collected by mobile sensors on postal vans in Antwerp, Belgium.
Mendeley Dat, V1. (2023). doi: 10.17632/89vgprbzv3.1

56. Carslaw DC, Ropkins K. Openair: open-source tools for the analysis of air
pollution data. R package version 1.1-5 ed. London: Natural Environment Research
Council (2015).

57. De Craemer S, Vercauteren J, Fierens F, Lefebvre W, Meysman FJR. Using large-
scale NO2 data from citizen science for air-quality compliance and policy support.
Environ Sci Technol. (2020) 54:11070–8. doi: 10.1021/acs.est.0c02436

58. Domínguez-López D, Adame JA, Hernández-Ceballos MA, Vaca F, De La
Morena BA, Bolívar JP. Spatial and temporal variation of surface ozone, NO and
Frontiers in Environmental Health 19
NO2 at urban, suburban, rural and industrial sites in the southwest of the Iberian
Peninsula. Environ Monit Assess. (2014) 186:5337–51. doi: 10.1007/s10661-014-
3783-9

59. Munir S, Mayfield M, Coca D. Understanding spatial variability of NO2 in urban
areas using spatial modelling and data fusion approaches. Atmosphere. (2021) 12:179.
doi: 10.3390/atmos12020179

60. Hewitt CN. Spatial variations in nitrogen dioxide concentrations in an urban
area. Atmos Environ Part B Urban Atmos. (1991) 25:429–34. doi: 10.1016/0957-
1272(91)90014-6

61. Niepsch D, Clarke LJ, Tzoulas K, Cavan G. Spatiotemporal variability of nitrogen
dioxide (NO2) pollution in Manchester (UK) city centre (2017–2018) using a fine
spatial scale single-NOx diffusion tube network. Environ Geochem Health. (2022)
44:3907–27. doi: 10.1007/s10653-021-01149-w

62. Pirjola L, Lähde T, Niemi JV, Kousa A, Rönkkö T, Karjalainen P, et al. Spatial
and temporal characterization of traffic emissions in urban microenvironments with
a mobile laboratory. Atmos Environ. (2012) 63:156–67. doi: 10.1016/j.atmosenv.
2012.09.022

63. Solomon PA, Vallano D, Lunden M, Lafranchi B, Blanchard CL, Shaw SL.
Mobile-platform measurement of air pollutant concentrations in California:
performance assessment, statistical methods for evaluating spatial variations, and
spatial representativeness. Atmos Meas Tech. (2020) 13:3277–301. doi: 10.5194/amt-
13-3277-2020

64. Kerckhoffs J, Khan J, Hoek G, Yuan Z, Ellermann T, Hertel O, et al. Mixed-
effects modeling framework for Amsterdam and Copenhagen for outdoor NO2

concentrations using measurements sampled with Google Street View cars. Environ
Sci Technol. (2022) 56(11):7174–84. doi: 10.1021/acs.est.1c05806

65. Van Den Bossche J, De Baets B, Botteldooren D, Theunis J. A spatio-temporal
land use regression model to assess street-level exposure to black carbon. Environ
Model Softw. (2020) 133:104837. doi: 10.1016/j.envsoft.2020.104837

66. Do TH, Tsiligianni E, Qin X, Hofman J, La Manna VP, Philips W, et al. Graph-
deep-learning-based inference of fine-grained air quality from mobile IoT sensors.
IEEE Internet Things J. (2020) 7(9):8943–55. doi: 10.1109/JIOT.2020.2999446

67. Van Den Bossche J, Peters J, Verwaeren J, Botteldooren D, Theunis J, De Baets
B. Mobile monitoring for mapping spatial variation in urban air quality: development
and validation of a methodology based on an extensive dataset. Atmos Environ. (2015)
105:148–61. doi: 10.1016/j.atmosenv.2015.01.017

68. Van Poppel M, Peters J, Bleux N. Methodology for setup and data processing of
mobile air quality measurements to assess the spatial variability of concentrations in
urban environments. Environ Pollut. (2013) 183:224–33. doi: 10.1016/j.envpol.2013.02.020

69. Van Den Bossche J. Towards high spatial resolution air quality mapping: a
methodology to assess street-level exposure based on mobile monitoring. [doctoral
thesis]. Ghent University (2016).

70. Vandeninden B, Vanpoucke C, Peeters O, Hofman J, Stroobants C, De Craemer
S, et al. Uncovering spatio-temporal air pollution exposure patterns during commutes
to create an open-data endpoint for routing purposes. In: Krevs M, editor. Hidden
geographies. Key Challenges in Geography. Cham: Springer International Publishing
(2021). doi: 10.1007/978-3-030-74590-5

71. Blanco MN, Bi J, Austin E, Larson TV, Marshall JD, Sheppard L. Impact of
mobile monitoring network design on air pollution exposure assessment models.
Environ Sci Technol. (2023) 57:440–50. doi: 10.1021/acs.est.2c05338
frontiersin.org

https://doi.org/10.1016/j.ufug.2016.09.013
https://doi.org/10.1016/j.atmosenv.2014.04.013
https://doi.org/10.1016/j.atmosenv.2013.05.026
https://doi.org/10.1016/j.atmosenv.2013.05.026
https://doi.org/10.1016/j.scitotenv.2011.09.081
https://doi.org/10.1016/j.scitotenv.2011.09.081
https://doi.org/10.1371/journal.pone.0154052
https://doi.org/10.5194/amt-13-1181-2020
https://doi.org/10.5194/amt-11-1297-2018
https://doi.org/10.5194/amt-12-4211-2019
https://doi.org/10.5194/amt-12-4211-2019
http://www.aqmd.gov/docs/default-source/aq-spec/protocols/sensors-field-testing-protocol.pdf?sfvrsn=0
http://www.aqmd.gov/docs/default-source/aq-spec/protocols/sensors-field-testing-protocol.pdf?sfvrsn=0
https://vaquums.eu/sensor-db/tests/protocols/life-vaquums_testprotocol_final.pdf/view
https://vaquums.eu/sensor-db/tests/protocols/life-vaquums_testprotocol_final.pdf/view
https://doi.org/10.1016/j.atmosenv.2022.118967
https://doi.org/10.17632/89vgprbzv3.1
https://doi.org/10.1021/acs.est.0c02436
https://doi.org/10.1007/s10661-014-3783-9
https://doi.org/10.1007/s10661-014-3783-9
https://doi.org/10.3390/atmos12020179
https://doi.org/10.1016/0957-1272(91)90014-6
https://doi.org/10.1016/0957-1272(91)90014-6
https://doi.org/10.1007/s10653-021-01149-w
https://doi.org/10.1016/j.atmosenv.2012.09.022
https://doi.org/10.1016/j.atmosenv.2012.09.022
https://doi.org/10.5194/amt-13-3277-2020
https://doi.org/10.5194/amt-13-3277-2020
https://doi.org/10.1021/acs.est.1c05806
https://doi.org/10.1016/j.envsoft.2020.104837
https://doi.org/10.1109/JIOT.2020.2999446
https://doi.org/10.1016/j.atmosenv.2015.01.017
https://doi.org/10.1016/j.envpol.2013.02.020
https://doi.org/10.1007/978-3-030-74590-5
https://doi.org/10.1021/acs.est.2c05338
https://doi.org/10.3389/fenvh.2023.1232867
https://www.frontiersin.org/journals/environmental-health
https://www.frontiersin.org/

	Opportunistic mobile air quality mapping using sensors on postal service vehicles: from point clouds to actionable insights
	Introduction
	Materials and methods
	Study area
	Mobile sensor solution
	Calibration and validation
	Mobile deployments
	Data processing
	Data cleaning and exploration
	Spatiotemporal NO2 exposure
	Monitoring coverage
	Representativity


	Results and discussion
	Calibration and validation
	Nitrogen dioxide (NO2)
	Particulate matter
	Impact of the sensor housing
	Sensor performance throughout the project

	Data exploration
	Spatial aggregation
	Spatiotemporal pollutant distribution in Antwerp
	Spatial exposure representativity

	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


