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Background: Environmental stressors such as temperature (Temp), relative 

humidity (RHumid), and fine particulate matter (PM2.5) may influence the 

incidence of COVID-19. While many studies have examined these associations in 

Europe and Asia, research in Brazil—a country with diverse climatic zones and a 

high burden of COVID-19—remains limited.

Objective: This study aimed to assess the associations between environmental 

stressors and COVID-19 incidence at the municipality level across Brazil over a 

three-year period, differentiating between climate zones and pre-Omicron/ 

Omicron periods.

Methods: We utilized a generalized additive model (GAM) framework to analyze 

monthly COVID-19 incidence while adjusting for population size, spatial 

structure, and temporal trends. Distributed lag nonlinear models (DLNM) were 

used to evaluate lagged exposure-response associations. Separate models 

were fitted for five climate zones to assess regional variations.

Results: In the overall analysis, Temp was positively associated with COVID-19 

incidence [relative risk RR 2.47, 95% confidence interval (2.04, 2.91)], while PM2.5 

[RR 1.03 (0.95, 1.11)] and RHumid [RR 1.02 (0.91, 1.13)] did not demonstrate clear 

effects. Climate zone-specific analyses revealed diverse effects: Temp had a 

positive association with COVID-19 in Temperado (TE) [RR 17.9 (15.26, 22.19)] 

and Tropical Brazil Central [RR 1.87 (1.57, 2.10)], but a negative association in 

Tropical Nordeste Oriental [RR 0.008 (0.004, 0.012)] and Tropical Zona 

Equatorial (TZE) [RR 0.12 (0.08, 0.15)] climate zones. RHumid showed varying 

positive and negative associations depending on the climate zone, while high 

levels of PM2.5 are positive associated with COVID-19 incidence in zones TE 

[RR 2.10 (1.93, 2.28)] and TZE [RR 1.87 (1.54, 2.31)]. DLNM results revealed 

parabolic lag response curves, with extreme values of Temp and RHumid 

raising risks in certain zones.
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Significance: Our study provides a comprehensive, long-term analysis of 

environmental stressors and COVID-19 incidence across diverse climate zones in 

Brazil. The results reveal considerably spatial and temporal variations in how Temp, 

RHumid, and PM2.5 influence COVID-19 incidence. These findings emphasize the 

importance of considering regional climatic conditions when assessing 

environmental risk factors for COVID-19. Understanding these associations can 

inform targeted public health interventions and preparedness strategies for future 

respiratory disease outbreaks.

KEYWORDS

COVID-19, temperature, PM2.5, relative humidity, DLNM, Brazil

1 Introduction

The SARS-CoV-2 virus and the associated COVID-19 disease 

have had a deep impact on global health and society. Even years 

after the initial outbreak, continued analysis of the pandemic 

remains important to deepen our understanding of the virus 

and to inform strategies for managing potential future pandemics.

Various studies have shown an association between 

environmental stressors and new COVID-19 cases, consistently 

demonstrating a link across different timeframes and geographical 

areas (1–3). Air pollution as well as meteorological factors like 

temperature and relative humidity, significantly impacts on human 

health. Especially particulate matter which originates from natural 

and anthropogenic sources is known to be associated with 

respiratory diseases (4), including COVID-19 (5–7). In addition to 

the in0uence of environmental stressors, several studies have also 

shown the combined effects with socio-economic and demographic 

parameters like income, government health expenditure or 

population density on COVID-19 (8–10). A study in China 

highlighted the importance of considering socio-economic factors, 

such as population density, when analyzing particulate matter 

concentrations and their potential impacts (11).

Research has further demonstrated that the associations 

between environmental stressors and health outcomes differ 

considerably between tropical and non-tropical regions (12, 13). 

Brazil’s extensive and diverse landscape encompasses a wide 

range of climatic zones and meteorological conditions, making it 

a particularly suitable setting for examining differential effects of 

the COVID-19 pandemic across varying ecological contexts.

On February 26, 2020, Brazil reported the first case of a SARS- 

CoV-2 infection in South America. Following the World Health 

Organization’s declaration of SARS-CoV-2 as a pandemic on 

March 11, 2020, Brazil’s government implemented various 

measures to curb the spread of the virus. These measures included 

social isolation, school closures, mandatory mask use, and event 

cancellations. Despite these interventions, travel between Brazilian 

federal states remained largely unrestricted (14). Like many 

countries, Brazil experienced various virus mutations called 

variants of concern. The Gamma variant was the dominant strain 

from March 2021 until the Delta variant replaced it in October 

2021. As of January 2022, the Omicron variant became the 

dominant strain (15). Vaccinations in Brazil began on January 17, 

2021, with a limited supply of doses. Several factors contributed to 

delays in vaccinating the Brazilian population, including the lack of 

a consistent national vaccination campaign, hesitancy among the 

population to receive the vaccine, distrust in the healthcare system, 

and political rivalries (16). In January 2022, the vaccination rate 

for the first dose was 75.6%, while the rate for the second dose was 

67.4% (17).

Previous studies investigating exposure-response effects in 

Brazil primarily focused on the early stages of the pandemic and 

were mostly limited to urban areas (12, 13, 18). These studies 

utilized various methods, including generalized additive models 

(12), principal component analysis (13), and linear regression 

models (18). Another study analyzed the indirect response of 

temperature, humidity, and rainfall on the spread of COVID-19 

across five cities in the Indian Monsoon region between April 

26 and December 5, 2020, emphasizing humidity and 

temperature as key factors in0uencing the transmission of the 

virus (19). Sarkodie and Owusu (10) conducted a global 

assessment of the in0uence of air pollution, climatic variables, 

and socio-economic factors on the spread of the COVID-19 

pandemic for 615 cities, but confined to the early period from 

Janurary 1 to June 11, 2020. A study of Turkey and all 12 

NUTS level 1 regions highlighted the importance of considering 

environmental factors in pandemic management and 

investigated the relationship between air pollution (PM10 and 

SO2) and the number of COVID-19 cases during the early 

pandemic phase (June – November 2020) (20).

However, to achieve a more comprehensive understanding, it 

is essential to analyze data over a longer period and across a 

broader geographic scope. Our study provides a long-term 

(three-year), countrywide, municipality-level analysis of the 

association between environmental stressors and COVID-19 

incidence in Brazil from 2020 to 2022. By systematically 

analyzing data from all municipalities, rather than from selected 

single cities, we gained a better understanding of how 

environmental factors link to COVID-19 incidence, including 
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the effects of virus mutations. Our research utilizes monthly 

aggregated data and combines generalized additive models 

(GAM) and distributed lag nonlinear models (DLNM), 

providing a robust analysis of longer-term trends, lagged 

associations, and regional variability.

The specific research questions of this study are as follows: 

1. How are meteorological factors (temperature and relative 

humidity) and air pollutants (PM2.5) associated with 

COVID-19 incidence across Brazilian municipalities and 

climate zones?

2. Do these associations differ between pre-Omicron and 

Omicron periods?

3. How do the lagged effects of environmental stressors 

contribute to trends in COVID-19 incidence?

This article is organized as follows: Section 2 describes the 

Materials and Methods, including health and environmental 

data, data processing and the statistical modeling framework. 

Section 3 presents the results of the analyses, divided into 

descriptive results, generalized additive model (GAM) findings 

and distributed lag nonlinear model (DLNM) results. Section 4

gives a short summary of the results, discusses the findings in 

relation to existing literature, addresses political implications 

and points out limitations. Finally, Section 5 concludes with the 

main contributions of the study.

2 Materials and methods

2.1 Health data

Notification records for COVID-19 cases for all Brazilian 

municipalities (from March 2020 to December 2022), as 

reported by State and Municipal Health Departments, were 

obtained at https://covid.saude.gov.br (last access March 2025). 

The Brazilian Ministry of Health provides an interactive 

dashboard with the number of new confirmed cases and deaths 

by epidemiological week of notification. For this study, we 

aggregated data by month.

2.2 Environmental data

To analyze the monthly mean concentration of particulate matter 

with a diameter of 2.5 µm or smaller (PM2.5, in µg/m3) over the three- 

year period, we utilized regional estimates from the Atmospheric 

Composition Analysis Group at the University of Wahington (21) 

and van Donkelaar (22). This high-resolution dataset 

(0.01° × 0.01°) is well-established in the literature for Brazilian data 

(23–25), and incorporates information from satellite, simulation, 

and monitor-based sources. The air temperature variable at two 

meters above ground level (Temp, in °C) was obtained from the 

ERA5-Land global reanalysis dataset provided by the Copernicus 

Climate Change Service of the European Centre of Medium-Range 

Weather Forecasts (26). The same data source was utilized to 

calculate relative humidity (RHumid, in %) using the Magnus 

equation (27), which incorporated dew point temperature and air 

temperature at two meters above ground level. The data was 

accessed through Google Earth Engine (28).

2.3 Data processing

All data processing was done in Python (29). The health dataset 

contained infection cases within month-municipality aggregates, and 

we added zero counts for those aggregate windows without cases to 

ensure completeness for subsequent analysis. In order to ensure 

compatibility between the health and environmental datasets, 

municipality codes were converted from 6-digit format to 7-digit 

format. For this matching, the official matching table provided by 

the Brazilian Statistics Institute was used, and code mismatches and 

exceptional cases were corrected manually (30). Three very small 

and sparsely populated municipalities were excluded due to 

missing environmental data; their omission is unlikely to affect the 

overall analysis because of their small population sizes and 

geographic isolation. Details on code conversions and exclusions 

are provided in Supplementary Material S1. To ensure precise 

alignment, the merging of the datasets was based on three key 

variables: the seven-digit municipality code, month, and year. The 

municipality shapefile based on 2020 and the national climate zone 

information are sourced from the Brazilian Institute of Geography 

and Statistics (30). The climate zone data showed three small 

climate zones near the coast, which we relabeled them according to 

their neighboring climate zones, resulting in five main climate 

zones: Equatorial (EQ), Tropical Zona Equatorial (TZE), Tropical 

Brasil Central (TBC), Tropical Nordeste Oriental (TNO), and 

Temperado (TE). In municipalities with multiple climate zones, we 

identified the largest and set it as the dominant climate zone. We 

converted the temperature from Kelvin to degrees Celsius.

Plausibility checks on the health dataset were conducted, 

revealing an anomalous high number of infections in June 2020. 

We decided that this particular month significantly deviated from 

expected trends and exceeded other records by an unrealistic 

margin. Therefore, given the lack of corroborating evidence and the 

high likelihood of a data entry error, we removed this record from 

the analysis to maintain data integrity.

2.4 Statistical methods

Statistical analysis was carried out using R version 4.4.2 (31). 

To examine the distribution of average Temp, RHumid, and 

PM2.5 concentrations across all municipalities, choropleth maps 

were created with the ggplot2 package in R as a prerequisite for 

the further statistical analyses. In addition, climate zones and 

population density were mapped as choropleth maps to provide 

a better context for understanding spatial patterns and regional 

variations. We created line plots for the temporal descriptive 

analysis with months on the x-axis and incidence, RHumid, 

Temp, and PM2.5 levels on the y-axis. The years 2020–2022 

were color-coded. Descriptive metrics for the environmental 
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stressors were summarized by means with standard deviations and 

median with ranges.

We used two different statistical methods to investigate the 

research question about the association between environmental 

stressors and COVID-19 incidence: A Generalized Additive 

Model (GAM) and a Distributed Lag Non-linear Model 

(DLNM). The GAM was mainly applied to determine the effect 

of the three aforementioned environmental stressors; the DLNM 

was additionally applied to determine a possible (non-linear) 

lagged functional association.

The GAM model was implemented with the “bam()” function 

from the mgcv package in R (32). We used the number of new 

COVID-19 cases per municipality as the dependent variable and 

applied the log-transformed population as an offset to express cases 

per 100,000 people. The exposure of interest included mean Temp, 

PM2.5, and RHumid per municipality. For each exposure we 

specified natural cubic splines with 3 degrees of freedom to capture 

potential nonlinear links. Additionally, we incorporated categorical 

variables for both month and year to adjust for temporal variations. 

To adjust for spatial dependencies between municipalities, we 

utilized a Markov Random Field based on geographic identifiers 

specific to each municipality (33). A stratified subgroup analysis 

was performed for the five climate zones. We fitted the models 

assuming a negative binomial distribution for the dependent 

variable, given substantial overdispersion in the outcome (variance- 

to-mean ratio > 10,000) and applied Restricted Maximum 

Likelihood for unbiased estimation of variance components, 

enhancing the model’s reliability. The GAM model assumptions 

were confirmed using gam.check() plots of the mgvc package in R 

(32). We used the R’s “predict()” function with the fitted GAM to 

make predictions and calculate confidence intervals based on 

standard error. Additionally, we stratified for the pre-Omicron and 

Omicron periods for each climate zone and the overall area to 

assess differences in environmental stressors. While the model 

structure remained the same, we reduced the number of kernels 

in the Markov Random Field from 100 to 75 for the stratified 

analysis of the climate zones over different periods. To enhance 

interpretation, we expressed predicted cases as incidence per 

100,000 people per year. The GAM model for each analysis— 

stratified by climate zone, pre-Omicron and Omicron periods, and 

overall—can be expressed as:

log (E[YitjXit]) ¼ aþ nsTemp(Tempit) þ nsPM2:5 (PM2:5it)

þ nsHumid(Humidit) þ ui þ b1 Yeart

þ b2 Montht þ log (PopTotalit) 

Where Yit denotes the COVID-19 incidence cases in month t 

for municipality i, Xit denotes the set of independent variables, 

ns() are natural cubic splines, ui is the Markov Random Field 

term, b1Yeart þ b2Montht represents temporal effects, and 

log (PopTotalit) is an offset for population size.

As a sensitivity analysis, the overall model was extended by 

including interaction terms between the period (Omicron/pre- 

Omicron) and the environmental stressors to formally assess 

potential differences in exposure–response relationships between 

the two periods.

As previously (4), we calculated relative risks (RR) for each 

environmental factor, defined as the ratio of predicted cases at the 

95th percentile to those at the 5th percentile of the environmental 

variable. The percentile bootstrap method was applied with 1,000 

repetitions to calculate 95% confidence intervals (CI) for the RR 

values, stratified by year and municipality (34).

We used a DLNM time series approach to analyze the lagged 

associations between environmental stressors and COVID-19 

incidence. The model was implemented with the “crossbasis()” 

and “crosspred()” functions from the dlnm package in R (35) 

considering lag effects for up to 12 months. We applied natural 

splines to the exposure-response associations for temperature 

(knots at the 10th, 25th, 75th, and 90th percentiles), PM2.5 

(10th, 50th, and 90th percentiles), and RHumid (50th and 90th 

percentiles). Lag response associations used natural splines with 

knots placed at equally-spaced values on the log scale. The 

crosspred function elements were optimized using the Akaike 

Information Criterion. We fitted the model utilizing the “bam()” 

function, similar to the GAM model, with the three 

aforementioned stressors considered as the crossbasis function 

elements. Separate models were fitted for each climate zone to 

capture region-specific associations between environmental 

stressors and COVID-19 incidence, as well as an overall model. 

The models can be expressed as:

log (E[YitjXit]) ¼ aþ cbTemp(Tempit, lag) þ cbPM2:5 (PM2:5it , lag)

þ cbHumid(Humidit, lag) þ ui þ b1Yeart

þ b2Montht þ log (PopTotalit) 

Where Yit is the COVID-19 incidence in month t for 

municipality i, E[YitjXit] denotes the expected number 

of cases given the independent variables, α is the intercept, 

cbTemp(), cbPM2:5 (), cbHumid() are c ross-basis functions modeling 

nonlinear and lagged effects, ui is the Markov Random Field 

term, b1Yeart þ b2Montht represents temporal effects, and 

log (PopTotalit) is an offset for population size.

3 Results

3.1 Descriptive analysis

The descriptive analysis examined both spatial and temporal 

aspects. Figure 1 illustrates the spatial distribution of Brazilian 

data averaged over all years. Temp (Figure 1A) were lowest in 

the south, around 25°C in the north and west, and highest in 

the country’s interior with a maximum of 28.55°C. The RHumid 

distribution (Figure 1B) indicated that northern Brazil and the 

east and southeast coast experienced an increased average 

monthly relative humidity, peaking at 88.59%. In contrast, 

RHumid was minimal in the central region with a minimum of 

53.33%. The PM2.5 distribution (Figure 1C) indicated lower 

concentrations in the east and south of the country. 
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FIGURE 1 

Spatial descriptive analysis maps of Brazil. The spatial distribution of the environmental stressors across all years is displayed for Temp (A), RHumid (B), 

and PM2.5 (C) The population density map is calculated by the number of inhabitants per square kilometer (D) Additionally, the five dominant climate 

zones Equatorial (EQ), Tropical Zona Equatorial (TZE), Tropical Brazil Central (TBC), Tropical Nordeste Oriental (TNO) and Temperado (TE) are color- 

coded by municipality in Brazil (E).
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A remarkably high concentration was recorded in the southwest, with 

a maximum level of 42.61 µg/m3. The population density map 

(Figure 1D) showed that the northwest of Brazil had the lowest 

population density. In contrast, population densities were higher in 

the eastern region, peaking in the southeast. Brazil was divided into 

five dominant climate zones (Figure 1E): EQ (433 municipalities), 

TZE (870), TBC (2,688), TNO (564), and TE (1,012). Population 

density varies across climate zones. The lowest population 

density was observed in EQ with 4.7 inhabitant/km2 (total 

population 19,662,557), followed by TZE with 31.3 inhabitant/km2 

(total population 22,896,582), TBC with 40.3 inhabitant/km2 (total 

population 117,654,874), TE with 53.6 inhabitant/km2 (total 

population 26,498,324), and TNO with the highest population 

density with 151.7 inhabitant/km2 (total population 24,996,485). 

All population figures refer to the year 2020.

The temporal descriptive analysis for Brazil (Figure 2) illustrates 

the incidence of COVID-19 cases over the months (Figure 2A). The 

incidence rose until June 2021, then declined towards December 

2021. In January 2022, it increased again, peaking in February. 

After a decrease, there was a spike in July 2022, followed by 

another low in October, with a slight increase in the last two 

months of the year. The incidence by climate zone (Figure 2B) was 

similar to the general trend (Figure 2A). TNO tended to have lower 

incidence rates, whereas TE generally showed higher rates than the 

average. The monthly average RHumid (Figure 2C) revealed that 

the EQ, TBC, and TZE climate zones reached lower RHumid levels 

in the first and fourth quarter (Q1 and Q4) and higher levels in the 

second and third quarter (Q2 and Q3). In contrast, the TNO and 

TE zones exhibited relatively consistent RHumid throughout the 

year, with only slight increases observed in Q2 and Q3. Average 

FIGURE 2 

Temporal descriptive analysis of COVID-19 incidence and environmental stressors in Brazil. (A) Temporal distribution of COVID-19 incidence by year 

and month, defined as the number of cases per 100,000 people per year; (B) Incidence distribution stratified by climate zone; (C–E) Monthly 

averages of environmental stressors over the three-year study period: relative humidity (RHumid) (C), temperature (Temp) (D), and particulate 

matter (PM₂.₅) (E), with climate zones represented by distinct colors.
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monthly Temp (Figure 2D) varied most in climate zone TE, followed 

by TBC and TNO, with the coldest temperatures typically in 

mid-year. In contrast, TZE and EQ had consistently high 

temperatures year-round, peaking in September and October across 

all years. Average monthly PM2.5 concentrations (Figure 2E) were 

highest in the EQ climate zone, particularly at the year’s start and 

end, with a dip in the middle. Other climate zones were more 

stable: TBC and TNO showed slight increases from August to 

October, while TE had a minor peak in June. Meanwhile, TZE 

experienced higher levels in Q1, lower levels in Q2 and Q3, and an 

increase in the Q4.

PM2.5 exhibited the highest mean concentration and 

considerable variation throughout the observation period, with 

an average of 24.4 µg/m3 in climate zone EQ (Table 1). The 

other climate zones had mean concentrations ranging from 

10.6 to 12.9 µg/m3. The average Temp in the EQ, TNO, and 

TZE zones exceeded 24 °C, while TE recorded the lowest mean 

Temp at 18.9 °C. Regarding RHumid, TZE had the lowest 

average at 64.2%, followed by TBC at 66.3%, TE at 74.2%, TNO 

at 75.3%, and EQ at 78.1%. Although the mean temperatures in 

EQ (26.2 °C) and TZE (26.7 °C) were similar, the relative 

humidity in TZE (64.2%) was significantly lower than in EQ 

(78.1%). Conversely, while the relative humidity was comparable 

between TE (74.2%) and TNO (75.3%), TE had a lower mean 

temperature (18.9 °C) compared to TNO (24.8 °C).

3.2 GAM

The exposure-response curves between environmental stressors 

and COVID-19 incidence (Figure 3) and the related relative risk 

(RR) values (Table 2) varied by climate zone. Temp showed a 

strong positive association with estimated COVID-19 incidence in 

the TBC [RR 1.87, 95% confidence interval (1.57, 2.10)] and TE 

[RR 17.9 (15.26, 22.19)] zones, a strong negative association in the 

TNO [RR 0.008 (0.004, 0.012)] and TZE [RR 0.12 (0.08, 0.15)] 

zones, and no cut-off association in EQ zone. For PM2.5 levels, 

there was a positive trend in association with estimated COVID-19 

incidence in the TE [RR 2.10 (1.93, 2.28)] and TZE [RR 1.87 (1.54, 

2.31)] zones, while the EQ, TBC, and TNO zones did not show a 

clear association. Regarding RHumid, the estimated incidence of 

COVID-19 showed a negative association with the TZE [RR 0.01 

(0.006, 0.014)], TBC [RR 0.66 (0.57, 0.73)] and TNO [RR 0.05 

(0.03, 0.06)] zones, a positive relation with the TE [RR 3.69 (3.38, 

4.12)] zone, and no significant association in the EQ zone. The 

overall model showed a positive link between COVID-19 incidence 

and Temp [RR 2.47 (2.04, 2.91)], but no statistically significant 

association with RHumid [RR 1.02 (0.91, 1.13)] and PM2.5 

[RR 1.03 (0.95, 1.11)].

The stratified models for the pre-Omicron (2020–2021) and 

Omicron periods (2022) showed some differences in the 

exposure-response curves (Supplementary Figure S1) and the RR 

values (Supplementary Table S1). During the Omicron period, 

the exposure-response curves for all stressors were higher than 

in the pre-Omicron period across all climate zones, while the 

trend in TZE was reversed. Most associations seen in the overall 

period were also present in the pre-Omicron period, except for 

the PM2.5 effect in TZE, which was minimal in that period 

[RR 0.84 (0.83, 0.85)]. Additionally, strong new associations 

identified in the pre-Omicron period include a negative 

correlation between COVID-19 incidence and PM2.5 levels in 

TNO [RR 0.27 (0.26, 0.27)] as well as with Temp [RR 0.64 

(0.62, 0.65)] and RHumid [RR 0.47 (0.46, 0.47)] in EQ zone. 

During the pre-Omicron period, Temp showed in the overall 

model a positive association [RR 1.79 (1.65, 1.92)], while PM2.5 

[RR 0.72 (0.69, 0.76)] and RHumid [RR 0.84 (0.80, 0.89)] 

had no specific links. In contrast, the RR values in the overall 

model showed no statistically significant threshold effect for all 

environmental stressors. TE showed no statistically significant 

link with the three environmental stressors during the Omicron 

period. The only consistent associations observed between the 

two periods were a negative association between COVID-19 

incidence and RHumid in the EQ climate zone [pre-Omicron 

period RR 0.47 (0.46, 0.47), Omicron period RR 0.67 (0.66, 

0.68)] and a positive association with Temp in the TBC climate 

zone [pre-Omicron period RR 1.42 (1.33, 1.54), Omicron period 

RR 2.21 (1.37, 2.89)]. New positive associations emerged during 

the Omicron period, specifically between Temp and the 

incidence of COVID-19 in the TZE [RR 2.73 (2.66, 2.79)], 

between RHumid and COVID-19 in the TZE [RR 2.26 (2.24, 

2.27)] and TBC [RR 2.24 (1.35, 2.95)] zones, and between PM2.5 

and COVID-19 in the TNO zone [RR 1.33 (1.29, 1.36)]. 

Supplementary Figure S2 displayed the exposure-response curves 

for all climate zones in one graph, with separate plots for the 

TABLE 1 Descriptive statistics [mean, standard deviation (SD), median, minimum (Min), and maximum (Max)] of the environmental stressors PM2.5, Temp, 
and RHumid across the five Brazilian climate zones.

PM2.5 (µg/m3) Temp (°C) RHumid (%)

Equatorial (EQ) Mean (SD) 24.4 (14.1) 26.2 (1.23) 78.1 (12.6)

Median [Min, Max] 22.5 [2.12., 103] 25.9 [21.5, 30.7] 83.0 [32.5, 95.2]

Tropical Zona Equatorial (TZE) Mean (SD) 11.1 (5.30) 26.7 (1.71) 64.2 (13.9)

Median [Min, Max] 9.80 [1.70, 37.4] 26.6 [20.9, 32.2] 65.0 [20.9, 32.2]

Tropical Brasil Central (TBC) Mean (SD) 12.9 (6.16) 22.7 (2.99) 66.3 (13.1)

Median [Min, Max] 12.0 [1.86, 113] 23.0 [11.4, 32.1] 69.2 [26.7, 91.2]

Tropical Nordeste Oriental (TNO) Mean (SD) 10.6 (3.17) 24.8 (1.81) 75.3 (6.88)

Median [Min, Max] 10.4 [2.76, 23.4] 25.0 [18.9, 29.6] 76.0 [48.5, 90.0]

Temperado (TE) Mean (SD) 11.1 (3.98) 18.9 (3.91) 74.2 (7.99)

Median [Min, Max] 10.1 [4.14, 39.6] 19.0 [8.49, 29.9] 75.4 [45.4, 90.1]
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FIGURE 3 

Estimated COVID-19 incidence per 100,000 people per year in response to each environmental stressor and climate zone. The five climate zones 

are: Equatorial (EQ), Tropical Zona Equatorial (TZE), Tropical Brasil Central (TBC), Tropical Nordeste Oriental (TNO), and Temperado (TE). All other 

parameters were kept constant, and were set to the following values: municipality code: 1100114 (EQ, ALL), 2107803 (TZE), 3500600 (TBC), 

2610202 (TNO), 4122206 (TE), month: February, year: 2021 and environmental stressors: median. Estimates were obtained using the R function 

predict for Temp, RHumid, and PM2·5, including their 5th and 95th percentiles.
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Omicron and pre-Omicron periods. The x-scaling and range of 

environmental stressors differed considerably by climate zone, 

making direct comparisons between these zones challenging.

In the sensitivity analysis based on the overall model, the 

interaction terms suggested that both the magnitude and shape 

of the associations differed between the pre-Omicron and 

Omicron periods, broadly consistent with the trends observed in 

the stratified analyses.

3.3 DLNM

Figure 4 shows distinct lag-response curves for Temp, PM2.5 

and RHumid at the 1% and 99% quantiles within each climate 

zone. In TZE and TNO, relative risk (RR) was higher for 

extreme cold and below 1 for extreme heat compared to the 

median (for TZE 26.62°C, for TNO 25.05°C), peaking at lags 0 

and 12 for hot temperatures and reaching the lowest values at 

the same lags for cold temperatures. In TE, the RR for hot 

temperatures peaked at 2.41 [95% confidence interval: 

(2.15,2.71)] at lag 0, while cold temperatures had an RR of 0.66 

(0.59, 0.73). In TBC, RR was 1.10 (1.01, 1.19)) for hot and 0.91 

(0.86, 0.98)) for cold temperatures, whereas in EQ, RR remained 

above 1, initially higher for cold than hot temperatures, 

reversing by lag 3.

For RHumid, 1% quantile values in EQ, TZE, and TNO 

started with an RR above 1 at lag 0, dipping at lags 5–7 and 

following a parabolic curve. At the 99% quantile, extremely high 

RHumid resulted in RR <1 in EQ, TZE, and TNO, with minor 

0uctuations. In TBC, RR at lag 0 was >1 for extremely low and 

<1 for extremely high RHumid, with both curves converged at 1 

by lag 6 and remained stable. In contrast, RR was >1 for high 

and <1 for low RHumid in TE.

Concering PM2.5, RR values were calculated relative to the 

minimum concentration in each zone. In TE, TZE, TBC, and 

EQ, RR at lag 0 was >1 and decreased over time. The 99% 

quantile curves exceeded the 15 µg/m3 threshold in TZE and 

EQ, with EQ reaching the highest value (80 µg/m3) and TNO 

the lowest (19 µg/m3). In TBC and TE, RR values were nearly 

identical at both levels. Unlike other zones, TNO had RR <1 at 

lag 0, approached 1 over time, and its 19-curve remained 

above 15 µg/m3.

The overall model indicated low Temp (12.71°C) below 1 and 

high Temp (29.65°C) above 1, both following parabolic curves. For 

RHumid, the low value (34.70%) is above the high value (89.07%). 

In PM2.5, the curves are nearly aligned with 1. At lag 0, the 

threshold (15 µg/m3) exceeds the 99th percentile (40 µg/m3), 

while an inverted structure appears at lag 12.

4 Discussion

4.1 Summary

Our analysis aimed to investigate the association between 

environmental stressors and COVID-19 incidence over a three- 

year period, using monthly data at municipality level across 

Brazil. The GAM modeling approach provides a robust 

framework for assessing the association between environmental 

factors and COVID-19 incidence, effectively accounting for 

population size, spatial structure, and temporal trends. To 

address regional variability, we developed an overall model and 

further adjusted for climatic differences by fitting separate 

models for each climate zone while maintaining consistent 

model parameters. We further disentangled two distinct periods, 

pre-Omicron and Omicron, to assess how environmental 

stressors link to COVID-19 incidences. In addition, we 

examined lag effects in the exposure-response association using 

DLNM. Our findings revealed a positive association between 

COVID-19 incidence and Temp in the overall model, while no 

statistically significant associations could be observed with PM2.5 

or RHumid. In climate zone-specific models, only TE and TZE 

showed a positive association with PM2.5. RHumid effects 

varied: negative in TZE, TBC and TNO; positive in TE; and 

TABLE 2 Estimated COVID-19 incidence and associations with environmental stressors by climate zone.

Output EQ TZE TBC TNO TE ALL

PM2·5 Prediction 

5-Percentile

10,388.39 

(10,279.31, 10,457.69)

6,190.40 

(5,165.46, 8,215.02)

1,902.07 

(1,238.85, 2,624.00)

1,186.25 

(917.61, 1,502.26)

1,088.02 

(938.47, 1,252.74)

3,359.68 

(2,885.94, 3,982.01)

Prediction 

95-Percentile

10,428.85 

(10,391.85, 10,457.69)

11,603.62 

(9,531.89, 15,662.22)

2,160.37 

(1,428.25, 2,935.60)

1,502.59 

(1,193.12, 1,960.26)

2,283.93 

(1,980.77, 2,600.35)

3,472.08 

(2,924.59, 4,134.17)

Relative Risk 1.00 (0.99, 1.02) 1.87 (1.54, 2.31) 1.14 (1.07, 1.21) 1.27 (1.07, 1.55) 2.10 (1.93, 2.28) 1.03 (0.95, 1.11)

Temp Prediction 

5-Percentile

10,164.41 

(10,107.74, 10,226.26)

20,340.52 

(16,078.16, 32,799.20)

1,501.46 

(979.12, 2,078.02)

23,391.29 

(19,045.96, 35,526.53)

480.11 

(389.47, 574.84)

2,075.08 

(1,685.75, 2,602.67)

Prediction 

95-Percentile

9,460.34 

(9,359.05, 9,579.74)

2,402.54 

(2,008.08, 3,005.25)

2,803.41 

(1,772.19, 3,768.15)

392.84 (113.95, 255.81) 8,605.50 

(7,537.20, 9,853.36)

5,124.08 

(4,484.77, 5,814.32)

Relative Risk 0.93 (0.92, 0.94) 0.12 (0.08, 0.15) 1.87 (1.57, 2.10) 0.008 (0.004, 0.012) 17.9 (15.26, 22.19) 2.47 (2.04, 2.91)

RHumid Prediction 

5-Percentile

7,953.63 

(7,924.05, 7,986.63)

55,340.72 

(43,371.65, 89,964.79)

2,766.24 

(1,833.89, 3,930.14)

8,527.89 

(7,048.94, 12,404.80)

581.42 

(482.86, 691.91)

3,295.67 

(2,745.15, 4,080.95)

Prediction 

95-Percentile

6,835.95 

(6,804.29, 6,869.81)

570.66 (468.96, 742.94) 1,831.50 

(1,191.17, 2,477.41)

438.13 (323.65, 560.73) 2,144.80 

(1,874.23, 2,448.49)

3,377.40 

(2,989.51, 3,930.18)

Relative Risk 0.86 (0.85, 0.86) 0.01 (0.006, 0.014) 0.66 (0.57, 0.73) 0.05 (0.03, 0.06) 3.69 (3.38, 4.12) 1.02 (0.91, 1.13)

This table shows the estimated cases per 100,000 people per year for the 5th and 95th percentiles of environmental stressors. Confidence intervals are in brackets. Green cells indicate a strong 

positive association (RR > 1.3), yellow cells indicate a strong negative association (RR < 0.7), and unshaded cells represent a weak or no association (0.7 ≤ RR ≤ 1.3).

All relative risk values are written in bold for clarity.
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FIGURE 4 

Lag-response plots of the distributed Lag nonlinear model (DLNM) for temp, PM2.5, and RHumid across different climate zones. Each plot displays the 

lagged effects (in months) of the 1% and 99% quantiles for Temp and RHumid, as well as the threshold of 15 µg/m3 and the 99% quantile for PM2.5. 

These effects are presented as relative risks (RR), which indicate the incidence risk in comparison to the median exposure for Temp and RHumid, and 

the minimum exposure for PM2.5 across the time lags. Exposure-response associations were modeled with natural splines (Temp knots: 10th, 25th, 

75th, 90th percentiles; PM2.5: 10th, 50th, 90th percentiles; RHumid: 50th, 90th percentiles), and lag-response associations used natural splines with 

knots equally spaced on the log scale.
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neutral in TBC. Temperature associations were positive in TE and 

TBC, negative in TNO and TZE, and neutral in EQ. The analysis 

revealed no consistent concentration-response pattern between 

the pre-Omicron and Omicron periods. The lag effects were 

modeled using a DLNM time series approach. In the TZE and 

TNO zones, high Temp and RHumid levels (99th percentiles) 

were linked to increased risk of COVID-19 incidence, while low 

values (1st percentile) were associated with decreased risk of 

incidence, with parabolic lag response curves. In the TE zone, 

the associations were reversed. The TBC and EQ zones showed 

minimal and consistent effects over lag periods for Temp and 

RHumid, except low RHumid in EQ reaching up to 1.5 at lag 

0. For PM2.5, extreme exposures and the threshold 15 µg/m3 at 

lag 0 in the TE, TZE, TBC, and EQ zones were associated with 

higher incidence, decreasing with subsequent lags, while TNO 

showed the opposite trend.

4.2 Discussion of the results

The incidence of COVID-19 cases in Brazil was consistent 

with data from other sources (36). Many studies have explored 

the impact of environmental stressors on COVID-19 infections, 

primarily in Europe and Asia. However, Brazil, a large country 

with various climate types, was significantly impacted by the 

pandemic and has been less studied. To the best of our 

knowledge, our research is unique in both the duration of the 

observation period and the level of spatial resolution. We are 

not aware of other studies that have conducted similar analyses 

at municipality level over a three-year period in Brazil. While 

some studies have explored the association between COVID-19 

cases and factors such as PM2.5 and Temp concentrations 

in Brazil, they often faced limitations regarding spatial and/or 

temporal scale. These studies typically analyzed shorter 

observation periods, focused on specific cities, or smaller 

geographic areas. Nevertheless, we will discuss the similarities 

and differences between the findings of these studies and our 

analysis, which examined Brazil as a whole, split into five 

climate zones.

Köppen’s climate classification maps for Brazil indicate 

comparable patterns for high and low temperatures (37). 

However, our analysis revealed that highest temperatures were 

concentrated in central Brazil, specifically, between the 

northeastern and southwestern region. This discrepancy may be 

attributed to differences in data periods, as the literature-based 

climate data ended in 2013, while our study data began in 2020 

(38). Two previous studies investigated the association between 

temperature and COVID-19 incidence in Brazilian state capitals, 

with one study including Brasília, focusing on the initial phase 

of the pandemic. These studies found an inverse association 

between the number of COVID-19 cases and mean temperatures 

below 25.8°C. However, this association was not observed in 

cities where the mean temperature was equal to or greater than 

25.8°C (39, 40). In our climate zone-specific analysis, EQ and 

TZE, which had mean temperatures exceeding 25.8°C, showed 

no significant association with estimated COVID-19 cases. In 

contrast, TE and TBC, where mean temperatures were below 

25.8°C, demonstrated a positive association with COVID-19 

incidence. These findings are consistent with the results reported 

in the previously mentioned studies. The TNO climate zone, 

with a mean temperature of 24.7°C, is an exception, as it 

showed a negative exposure-response association. The literature 

indicated a difference between tropical and non-tropical regions 

in relation to temperature and COVID-19 associations. In 

tropical areas, high temperatures and relative humidity were 

risk factors, while in subtropical regions, both high and low 

temperatures were risk factors (13, 41). Other early pandemic 

research of capital cities showed a positive correlation between 

mean temperature and COVID-19 cases in tropical regions but 

an inverse link in subtropical areas (12). Köppen’s climate 

classification indicates that northern and central Brazil are 

primarily tropical, while the south is subtropical (37). We found 

a positive association between temperature and COVID-19 cases 

in the TE (subtropical) region, a negative association in the 

TNO (tropical) region, and no statistically significant association 

in the EQ (tropical) region, which contrasts with previous 

findings. Research conducted from April 2022 to July 2023 in 

a temperate subtropical region supported our results, finding a 

positive correlation between temperature and SARS-CoV-2 (42). 

It is essential to examine the temperature range in different 

areas. The TZE, TNO, and EQ regions had a slight temperature 

range and predominantly high temperatures, while the TBC and 

TE zones exhibited both high temperatures and a wider range. 

Our results suggested that consistently high temperatures may 

not correlate positively with COVID-19 incidence, whereas high 

temperatures in areas with lower temperatures were positively 

associated with COVID-19 cases.

The study on the initial phase of the Covid-19 pandemic in 

Brasília found additionally that lower mean relative humidity 

was associated with lower case numbers, especially when relative 

humidity was 65% or lower (39). In the TZE climate zone, our 

GAM indicated that lower relative humidity was linked to 

increased COVID-19 incidence, which contradicts the findings 

for the same humidity range reported in the Brasília study. Our 

analysis of the TBC climate zone (including Brasília) revealed 

similar results. Additionally, our DLNM showed that extreme 

RHumid levels below 65% raised infection risk across most 

climate zones, which contradicted the papers results with focus 

on Brasília. A study conducted in 2020, focusing on the 

municipalities of Mato Grosso (in TBC and EQ) and Cuiaba 

Varzea (in TBC), found that RHumid had a significant negative 

correlation with the number of confirmed daily COVID-19 cases 

(43). We also observed a negative association in TBC and no 

consistent pattern across the range of relative humidity in EQ.

PM2.5 concentrations in Brazil were highest in the western and 

northern regions (Figure 1C), which aligns with existing research 

(44). This pollution was in general caused by human activities 

such as traffic, industry, and agriculture, along with wildfires. 

The central-western region of Brazil experienced the highest 

annual average of PM2.5 related to wildfires (44).

A study using DLNM found that COVID-19 morbidity is 

nearly twice as high among individuals exposed to high levels of 
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wildfire-generated PM2.5 (45). Our DLNM model aligned with 

that finding and showed a higher incidence risk for high PM2.5 

levels across all climate zones except TNO. This Research over 

two years in five Brazilian states—Acre (AC), Rondônia (RO), 

Mato Grosso (MT), Pará (PA), and Amazonas (AM)—found 

that AC and PR had a higher risk of COVID-19 morbidity 

linked to PM2.5 concentrations, while MT, RO, and PA showed 

a decreasing trend (45). AC, PA, and RO were classified in the 

EQ climate zone, PR in the TE zone, and MT was both EQ and 

TBC zones. Our GAM indicated a positive exposure-response 

association between PM2.5 and COVID-19 incidence for TE, 

aligning with the literature, while showing a weak or unclear 

association for EQ and TBC. A study examined the link 

between COVID-19 and PM2.5 levels in the cities Curitiba and 

Araucaria using sensor data. From March to November 2021, a 

positive correlation was observed between PM2.5 and COVID-19 

incidence (46). The areas studied are in climate zone TE, where 

our GAM aligned with the literature and showed a RR of 2.03.

Brazil’s climatic conditions differed considerably from those in 

Europe, affecting the in0uence of environmental stressors on 

COVID-19 incidence. A study in Germany showed a strong 

negative association between temperature and COVID-19 incidence: 

as temperatures dropped, COVID-19 incidence rose (6). A global 

multi-city study found that the risk of COVID-19 infection was 1.22 

times higher at 5°C compared to 17°C (47). In contrast, for 

temperatures above 25.8°C, a strong positive correlation was 

observed, indicating that higher temperatures lead to increased 

COVID-19 incidence (39, 40). Our models found these patterns in 

the TE, TZE, and TBC climate zones and the overall data. For TNO, 

the association began negatively, but weakened at higher 

temperatures, unlike the consistent positive correlation seen in other 

zones. The EQ zone showed no statistically significant temperature 

effect, differing from other climate zones.

These findings suggest that both low and high temperatures 

may boost COVID-19 infections. While this may appear 

counterintuitive, there are plausible pathophysiological 

explanations. Exposure to both cold and hot ambient 

temperatures can cause physiological stress (48, 49), and the 

negative impact of chronic stress on immune function is well- 

documented (50). Additionally, behavioral adaptations, such as 

increased indoor time and the use of heating or air 

conditioning, may alter exposure to indoor air pollution, further 

in0uencing infection resk. The delayed effects observed in the 

DLNM lag-response curves likely re0ect a combination of direct 

environmental exposures, stress-mediated immune responses, 

and behavioral patterns. Future research should continue to 

investigate the underlying mechanisms to gain a better 

understanding of the causal implications of these findings.

4.3 Policy implications

The findings of this study have implications for public 

health and environmental policy, particularly in tropical and 

subtropical regions like Brazil. First, the dual role of high and 

low temperatures in exacerbating infection risk supports 

the need for temperature-sensitive public health strategies and 

risk communication. Second, the findings reinforce the need of 

regional environmental surveillance systems that monitor 

pollution and weather in real-time, allowing for adaptive 

response measures during high-risk periods.

Moreover, policymakers should consider integrating 

environmental data into epidemic and pandemic preparedness 

frameworks. For instance, incorporating temperature and air quality 

thresholds into early warning systems may improve the timing and 

targeting of public health interventions. In urban planning and 

housing policies, strategies to reduce indoor air pollution exposure— 

such as promoting natural ventilation, regulating air conditioning 

use, and improving insulation—could mitigate the compounding 

effects of environmental stressors on health.

Finally, public health policies must acknowledge the regional 

variability in environmental risks and avoid one-size-fits-all 

approaches. Tailored interventions considering local climatic 

realities, particularly in vulnerable populations and under- 

resourced regions, are critical for achieving equitable health 

outcomes in the face of both infectious disease threats and 

ongoing climate change.

4.4 Limitations

The availability of PCR tests 0uctuated significantly over the 

weeks, peaking during the second wave (2021), followed by the first 

(2020) and third (2022) waves (51). This inconsistency and the lack 

of tests have led to a substantial number of unreported COVID-19 

infections, causing a significant underestimation of incidence rates 

(16). Moreover, socioeconomic inequality among Brazilian 

municipalities impacted COVID-19 detection and the occurrence of 

negative outcomes. In poorer areas, access to health services is often 

precarious and fewer COVID-19 tests are performed, so there might 

be a detection bias that could reduce the number of cases in poorer 

areas (52). Some limitations of the PM2.5 dataset include 

uncertainties in Aerosol Optical Depth (AOD) measurements, 

limited validation due to sparse ground monitoring in Brazil, and a 

reduced temporal resolution that affects short-term analyses (18, 22, 

53). On the other hand, the van Donkelaar PM2.5 dataset offers high 

resolution, effectively filling gaps in PM2.5 coverage when ground 

stations cannot ensure continuous reporting (22, 54). Well- 

documented in Brazilian studies (23–25), it combines satellite- 

derived AOD data with chemical transport models, providing 

reliable coverage even in areas without monitoring infrastructure 

(21). The reanalysis data from the ERA5-land products serve as a 

reliable source for climate data (55). Our analysis used a monthly 

aggregation level due to the availability of our PM2.5 dataset. While 

imposing some temporal limitations, this approach is meaningful 

for examining the longer-term health impacts of PM2.5, Temp, and 

RHumid on COVID-19 incidence rates. Monthly data helps to 

reduce short-term 0uctuations caused by reporting delays, allowing 

for a more robust analysis of these associations. The month June 

2020 has been excluded from the data due to plausibility checks 

revealing an unrealistically high number of infections. We focused 

on environmental stressors without considering age group and 
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gender information, which is a limitation of our work. Literature 

showed that from March 2020 to September 2021 in Brazil, the 

disease was more common in men (55.6%), with the highest 

prevalence in the 50–59 age group (20.2%) (56). A study from 

February to November 2020 examined Brazil’s 27 state capitals and 

discovered that meteorological conditions in0uenced COVID-19 in 

periodic ways, with a positive effect from March to May and a 

negative effect from June to August (57). A possible extension and 

future work of our analysis would be to examine interaction terms 

between months and environmental stressors to reach similar analysis.

5 Conclusion

Our study provides a comprehensive and systematic analysis of the 

association between selected environmental stressors and COVID-19 

incidence in Brazil from 2020 to 2022. The findings reinforce 

existing evidence that air pollution, particularly particulate matter, as 

well as meteorological factors such as temperature and relative 

humidity, play a significant role in in0uencing respiratory health 

and the spread of COVID-19. By examining data across Brazil’s 

diverse climatic regions, we observe that the impact of these 

environmental variables differs between climate zones, in particular, 

tropical and non-tropical areas, highlighting the importance of 

considering regional differences in epidemiological assessments. 

Furthermore, our study underscores the necessity of long-term 

analyses beyond the early stages of the pandemic to fully capture the 

evolving relationships between environmental exposures and 

COVID-19 outcomes. The in0uence of virus mutations, shifting 

public health measures, and vaccination efforts further emphasize 

the complex interplay between environmental and epidemiological 

factors. These insights contribute to a broader understanding of the 

environmental determinants of infectious diseases and can inform 

future public health policies aimed at mitigating the effects of 

pandemics in varying ecological contexts. Specifically, the findings 

emphasize the importance of implementing continuous 

environmental surveillance systems, which guide interventions in 

areas with high pollution or extreme climate conditions. 

Additionally, integrating environmental data into pandemic 

preparedness strategies is essential to reducing health risks.
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