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Deglaciation at the end of the Pleistocene initiated major changes in ocean circulation and
distribution. Within a brief geological time, large areas of land were inundated by sea-level
rise and today global sea level is 120 m above its minimum stand during the last glacial
maximum. This was the era of modern sea shelf formation; climate change caused coastal
plain flooding and created broad continental shelves with innumerable consequences
to marine and terrestrial ecosystems and human populations. In Alaska, the Bering Sea
nearly doubled in size and stretches of coastline to the south were flooded, with regional
variability in the timing and extent of submergence. Here we suggest how past climate
change and coastal flooding are linked to mercury bioaccumulation that could have had
profound impacts on past human populations and that, under conditions of continued
climate warming, may have future impacts. Biogeochemical analysis of total mercury
(tHg) and δ13C/δ15N ratios in the bone collagen of archeologically recovered Pacific Cod
(Gadus macrocephalus) bone shows high levels of tHg during early/mid-Holocene. This
pattern cannot be linked to anthropogenic activity or to food web trophic changes, but
may result from natural phenomena such as increases in productivity, carbon supply
and coastal flooding driven by glacial melting and sea-level rise. The coastal flooding
could have led to increased methylation of Hg in newly submerged terrestrial land and
vegetation. Methylmercury is bioaccumulated through aquatic food webs with attendant
consequences for the health of fish and their consumers, including people. This is the first
study of tHg levels in a marine species from the Gulf of Alaska to provide a time series
spanning nearly the entire Holocene and we propose that past coastal flooding resulting
from climate change had the potential to input significant quantities of Hg into marine food
webs and subsequently to human consumers.
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INTRODUCTION
The Gulf of Alaska is bordered on the west by Kodiak Island
and the Alaska Peninsula and on the southeast by the Alexander
Archipelago. Natural and human systems have intersected here
for over 7500 years, with interactions accessible through arche-
ological, geological and biogeochemical methods (Jordan, 2001;
Gehrels, 2010; Hu et al., 2010). Faunal remains from coastal
archeological sites indicate that people were focused on procur-
ing marine resources from the time of initial settlement in
the region (Yesner, 1998). Many sites display long sequences
of archaeofauna, including Pacific Cod (Gadus macrocephalus).
Today a commercially valuable species, Pacific Cod are signifi-
cant as a component of the ecosystem and because of their broad
distribution on the shelf in the North Pacific (Beamish, 2008).

Their skeletal remains, preserved in archeological deposits, offer,
through biogeochemical analyses, the potential to reflect past
ecosystem changes and a window into climate-related impacts on
marine food webs.

Stable carbon and nitrogen isotope ratios (δ13C/δ15N) in the
bone collagen and other hard tissues of marine species serve as
proxies for primary productivity and food web interactions. The
δ13C values are linked to primary productivity by fractionation
due to the photosynthetic rate in phytoplankton (Laws et al.,
1995) and differing ocean productivity regimes (Bidigare et al.,
1997). Temporal changes in the δ13C in whale baleen from the
Bering Sea and the bone collagen of pinnipeds from the North
Pacific appear to track changes in marine productivity (Schell,
2000; Hirons et al., 2001), and the former possibly indicate
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changes in sea-ice cover (McRoy et al., 2004). Changes in the
length of the food web are reflected in the δ15N values in tissues of
marine vertebrates (Minagawa and Wada, 1984), including bone
collagen. Periods of very high or low productivity may alter the
length of food webs by increasing or decreasing available food,
and may alter the trophic level of marine organisms as mea-
sured by δ15N (Fry and Sherr, 1984; Hobson and Welch, 1992).
Depending upon the trophic position of a consumer within a
marine food web, exposure to Hg varies (Selvaraj et al., 1997; Hsu
et al., 2006). The comparison of Hg exposure risk over time and
space is an important environmental health issue for both wildlife
and people (Dehn et al., 2006). In humans there is a correlation
between exposure to Hg and behavioral changes, including cen-
tral nervous system deficit affecting fetal development and growth
of young (Walker, 2014). Mercury is readily absorbed through the
respiratory and gastrointestinal tracts; it bioaccumulates and is
subject to biomagnification by trophic transport from lower to
higher levels (Atwell et al., 1998; Dorea, 2008; Dunlap et al., 2011;
Stern et al., 2012).

Besides being emitted from various locations in temperate lat-
itudes and via industrial enterprise, Hg is naturally present in
Alaskan and Siberian mountainous formations and sediments
(Sunderland et al., 2009). Mercury ores occur in orogenic belts

around relatively young mountains, hot springs or volcanic
regions (Rytuba, 2003). Mercury has a crustal abundance of
approximately 40–80 ppb but ore deposits can exceed 0.1% mer-
cury. Mercury may become bioavailable in the marine environ-
ment through a number of natural processes including flood-
ing leading to microorganism methylation of biologically bound
inorganic Hg (Stokes and Wren, 1987) and water-column methy-
lation of inorganic Hg in polar waters (Lehnherr et al., 2011).

MATERIALS AND METHODS
Mercury concentrations can be determined in archeological spec-
imens of bone, hair, fur, and teeth (Gerlach et al., 2006; Outridge
et al., 2009). We sampled angular bones from individual ancient
Pacific Cod recovered from archeological deposits at the XMK-
030 site, located on a small island in Shelikof Strait, Gulf of Alaska
(Figure 1), for Hg. Twenty of these bones were analyzed for both
Hg and δ13C/δ15N. An additional 25 were analyzed for just Hg
and additional 8 for just ratios of δ13C/δ15N. We also analyzed Hg
concentrations in muscle tissue of 63 modern Pacific Cod from
the same region.

The archeologically recovered bones sampled were associ-
ated with radiometrically-dated strata in the XMK-030 deposits
(Table 1). The lower section of the site which is a compact

FIGURE 1 | Figure shows the extent of the shelf area formed after

deglaciation and the location of the study area. XMK-030 is a small
island located in the Shelikof Strait of the Gulf of Alaska. It was home to
human inhabitants for nearly 7000 years. Archeological samples discussed

here were recovered from XMK-030 by archeologists from the US National
Park Service. Bathymetric map courtesy of NOAA Pacific Marine
Envirnmental Laboratory, inset map showing the project area drafted by M.
Hilton.
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Table 1 | Pacific Cod archeological bone samples: provenience, biogeochemical data and associated radiocarbon samples.

Bone

Sample

Prov. Hg ng/g d15N d13C N

Signal

C

Signal

Conc

N

Conc

C

Associated 14C

Sample

Conv. Age rcy

BP 1 Sigma

Cal. rcy BP

1 Sigma

Cal. rcy BP

2 Sigma

4761 L2 5S 14E 36.7 Beta 149293
standard grass

520 ± 80 573 586

4761 L2 5S 14E 35.3 Beta 149293
standard grass

520 ± 80 573 586

4094 L2 6S 13E 25.6 15.55 -15.08 1.06 2.03 12.55 39.34 Beta 149293
standard grass

520 ± 80 573 586

4095 L2 7S 14E 17.4 16.49 -11.91 1.09 1.93 12.22 35.6 Beta 149293
standard grass

520 ± 80 573 586

4761 L2 7S 14E 34 Beta 149293
standard grass

520 ± 80 573 586

4274 L3 6S 14E 29.2 Beta 149293
standard grass

520 ± 80 573 586

4093 L3 7S 13E 47.4 16.62 -13.91 2.16 3.94 15.77 47.04 Beta 149293
standard grass

520 ± 80 573 586

4092 L3 7S13E 26.3 16.10 -12.69 2.08 3.72 16.2 47.35 Beta 149293
standard grass

520 ± 80 573 586

4762 L2 6S 14E 44.4 Beta 149293
standard grass

520 ± 80 573 586

4274 L3c 6S14E 39.6 Beta 149293
standard grass

520 ± 80 573 586

4102 L4 6S 14E 39.2 16.34 -15.22 1.79 3.31 13.42 40.43 Beta 149293
standard grass

520 ± 80 573 586

4170 L4 6S 14E 19.9 Beta 149293
standard grass

520 ± 80 573 586

4099 L5 7S 13E 50 17.19 -13.43 1.85 3.41 14.84 44.68 Beta 149293
standard grass

520 ± 80 573 586

4100 L5 7S 13E 16.78 -12.67 2.10 3.65 16.45 46.68 Beta 149293
standard grass

520 ± 80 573 586

4089 L6 5S 13E 83.9 17.40 -15.12 1.12 2.32 13.65 46.25 Beta 149293
standard grass

520 ± 80 573 586

4090 L6 5S 13E 32.1 16.76 -12.78 0.91 1.73 12.07 37.16 Beta 149293
standard grass

520 ± 80 573 586

4760 L6 5S 13E 42.8 Beta 149293
standard grass

520 ± 80 573 586

4760 L6 5S 13E 39.7 Beta 149293
standard grass

520 ± 80 573 586

4112 L5 6S 13E 41.3 15.95 -16.00 1.72 3.91 12.24 40.39 Beta 149293
standard grass

520 ± 80 573 586

4171 L3a 1N0E 78.6 Beta 109926 ext
count charcoal

540 ± 60 576 578

4162 L3a 1S 0E 49.5 Beta 109926 ext
count charcoal

540 ± 60 576 578

4162 L3a 1S 0E 49.8 Beta 109926 ext
count charcoal

540 ± 60 576 578

4108 L3a U1 1N 1E 17.18 -15.63 1.19 2.49 13.18 44.98 Beta 109926 ext
count charcoal

540 ± 60 576 578

4101 L3a U1 17.49 -14.70 1.27 2.37 16.81 51.1 Beta 109926 ext
count charcoal

540 ± 60 576 578

4105 L3a U13 1S 1W 45.6 17.03 -16.98 1.09 2.45 11.56 42.39 Beta 109926 ext
count charcoal

540 ± 60 576 578

4091 L4a U6 1N 0E 17.19 -14.84 1.09 2.53 8.16 27.6 Beta 109927
standard charcoal

860 ± 50 775 818

4230 L4a U7 0N 0E 58.7 Beta 109927
standard charcoal

860 ± 50 775 818

(Continued)

www.frontiersin.org February 2015 | Volume 3 | Article 8 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Interdisciplinary_Climate_Studies/archive


Murray et al. Mercury in early Holocene Pacific Cod

Table 1 | Continued

Bone

Sample

Prov. Hg ng/g d15N d13C N

Signal

C

Signal

Conc

N

Conc

C

Associated 14C

Sample

Conv. Age rcy

BP 1 Sigma

Cal. rcy BP

1 Sigma

Cal. rcy BP

2 Sigma

4686 L4d 0N1E 59.8 Beta 109929 ext
count charcoal

850 ± 60 814 816

4262 L6 U5 65.6 Beta 114542 AMS
charcoal

970 ± 50 873 865

4103 L6 U8 46.6 16.24 -14.88 1.03 2.29 10.03 32.41 Beta 114542 AMS
charcoal

970 ± 50 873 865

4104 L6 U8 48 18.15 -14.25 1.71 3.27 14.77 45.99 Beta 114542 AMS
charcoal

970 ± 50 873 865

4106 L5a U5 170 16.47 -13.66 1.19 2.72 9.73 32.25 Beta 114541
standard charcoal

950 ± 60 876 848

4224 L5a U8 1S 0E 48.7 Beta 114541
standard charcoal

950 ± 60 876 848

4210 L5d U6 91.3 Beta 114541
standard charcoal

950 ± 60 876 848

4017 L5 U5 103 16.65 -14.31 0.77 1.59 10.33 34.74 Beta114541
standard charcoal

950 ± 60 876 848

4096 L8 U4 16.33 -13.68 1.44 2.84 10.79 34.61 Beta 114544 ext
count charcoal

1510 ± 90 1431 1531

4109 L8 Unit 4 2S 1E 17.74 -14.63 1.56 3.11 14.04 45.71 Beta 114544 ext
count charcoal

1510 ± 90 1431 1531

4097 L7 0N 0E 15.72 -15.94 0.43 1.04 10.6 41.71 Beta 147721 AMS
charcoal

1590 ± 40 1473 1473

4678 L7 0N 0E 54.5 Beta 147721 AMS
charcoal

1590 ± 40 1473 1473

4098 L9 2S 2E 125 16.95 -14.86 1.55 3.11 14.33 47.03 Beta 109931
standard charcoal

1620 ± 60 1488 1588

4689 L9 2S 2E 94.7 Beta 109931
standard charcoal

1620 ± 60 1488 1588

4617 L12 U9 204 Beta 130086 ext
count charcoal

2010 ± 60 1980 1914

4667 L12 U9 59.7 Beta 130086 ext
count charcoal

2010 ± 60 1980 1914

4142 L2 0LN 1LE 489 Beta 130099 AMS
wood charcoal

4420 ± 30 5005 5131

4113 L2 0LN1LE 439 16.77 -19.89 0.55 2.07 6.94 37.93 Beta 130099 AMS
wood charcoal

4420 ± 30 5005 5131

4116 L3 0LN 1LE 707 18.21 -18.33 0.96 2.54 10.72 46.46 Beta 130100 AMS
wood charcoal

4450 ± 50 5119 5059

4114 L5 0LN 1LW 472 16.49 -18.81 1.42 3.8 10.36 45.28 Beta 130103 AMS
wood charcoal

4480 ± 40 5134 5080

4115 L9 0LN 1LW 436 16.15 -16.52 1.32 3 12.71 47.03 Beta 130109 AMS
wood charcoal

4560 ± 40 5177 5272

4132 L9 0LN 1LW 482 Beta 130109 AMS
wood charcoal

4560 ± 40 5177 5272

4110 L9 2LS 1LW 153 15.94 -13.93 1.52 2.99 10.8 34.72 Beta 130109 AMS
wood charcoal

4560 ± 40 5177 5272

4126 L4 0LN 0LE 368 Beta 130101 AMS
wood charcoal

4510 ± 40 5214 5174

4178 L15 0LN 1LE 161 Beta 124956 AMS
bone collage

5730 ± 70 6558 6482

4111 L2 0S0E 16.25 -15.55 1.12 2.29 13.59 45.48 Estimated date
based on
provenience

<545 ± 60
>AD 1916
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sediment matrix has many stratigraphically distinct human occu-
pation floors, some attached to shell and bone middens, with an
age range from 7600 to 4100 rcy BP. These deposits are overlain by
a meter of sterile Aeolian sand, in turn, capped by a three-meter-
thick loose shell and bone midden deposited between 2010 and
370 rcy BP.

STABLE ISOTOPE ANALYSIS
We measured ratios of δ13C/δ15N and Hg concentrations in an
effort to identify change, if any, in marine production, food web
and Hg accumulation, from the early Holocene to the present.
Methods for δ13C/δ15N analysis and Hg analysis are also described
elsewhere (Hirons, 2001; Rothschild and Duffy, 2005; Dunlap
et al., 2011).

Bone samples were well preserved and free of humus and tis-
sues, collagen was extracted following the procedure described in
detail in Hirons (2001). Approximately 0.5 g of bone was soni-
cated and the lipids were removed with a methanol/chloroform
procedure before being demineralized. The bone samples were
allowed to demineralize in 1N HCl for approximately 4 days at
5◦C; fresh acid was added to the samples every day. The remaining
collagen matrix was then rinsed in deionized water until a neu-
tral pH was reached. Each sample was heated in deionized water
below boiling temperature to dissolve the collagen and precipitate
the peptides. The solution was passed through a 0.45 μ filter and
filtrate was dried in a lypholizer for 24 h, until the collagen had
thoroughly dried.

MASS SPECTROMETRY
Subsamples of each tissue (0.2–0.4 mg) were combusted and ana-
lyzed for stable isotope rations with a Thermo-Finnigan Delta
Plus isotope ratio mass spectrometer. Replicability of standards
and samples was ≤ 0.20/00 for both δ13C and δ15N. Stable isotope

ratios were expressed in the following standard notation:

8X(
◦
/00) = Rsample/Rstandard − 1) × 1000

Where X is 13C or 15 N and Rsampleis the 13C/12C or 15N/14N
respectively. Rstandard for 13C is Pee Dee Belemnite; for 15N it is
atmospheric N2(air).

All sample processing was conducted at the University of
Alaska Fairbanks and the mass spectrometric analysis of the
samples was done at the Alaska Stable Isotope Facility.

MERCURY ANALYSIS
Bones were washed with detergent free of Hg and trace met-
als, rinsed with r.o. water, dried in a drying oven. Samples were
shipped to Frontier Geosciences, Inc. for Hg analysis. Samples
were analyzed by standard Cold Vapor Atomic Fluorescence
Spectroscopy after standard digestion in 70% nitric acid followed
by dilution with 10% bromine chloride and reduction with tin
chloride (Gerlach et al., 2006).

Muscle tissue dry weight was determined in samples which
were collected, dried, and placed in 40 mL certified; pre-cleaned
quartz glass sample vials. These were stored a −20◦C until anal-
ysis. Samples were digested with 70% HNO3/30% H2SO4 in the
vial and heated until all soft tissue was dissolved. After cooling, the
digests were diluted with 10% 0.2 N BrCl. Fort, aliquots of digests
were reduced with SnCl2, followed by Cold Vapor Automatic
Fluorescence (CVAF) detection (Rothschild and Duffy, 2005).
Calibration curves were constructed to assess the accuracy of
tHg determination; certified dogfish tissue (DORM-2) form the
National Research Council of Canada was analyzed. A check
standard and a blank were run after every 10 samples.

FIGURE 2 | δ13C/δ15N values for Pacific cod. Figure shows δ values plotted vs. time with little to no change in δ15N and a trend to heavier δ13C values from
the early Holocene (7000 rcy BP) to the more recent (ca 0.578 rcy BP). Total number of samples = 28.
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RESULTS
The results of the δ15N isotope analysis indicate that the archeo-
logically recovered cod showed little to no change in trophic posi-
tion over time. This position is consistent with data from modern
cod which feed epibenthically and/or demersally (Hobson and
Welch, 1992; Yang, 2004). By contrast, carbon isotopes signatures
become heavier over time, a likely result of flooding of the shelf
and a transfer from an oceanic productivity regime to a shelf sys-
tem (Figure 2). The increase in δ13C of organic carbon may have
resulted from an increase in phytoplankton growth rates (Laws
et al., 1995) or a change from pelagic to a more benthic forag-
ing regime as sea level changed throughout the Holocene (France,
1995). For example, in the Bering Sea the productivity of the shelf
sea is 20–40 times higher than the adjacent oceanic basin waters
(Springer et al., 1996). The shelf sea was entirely formed by sea
level rise over the early Holocene and sea level in the study area
continued rising until about 4000 years ago (Mann et al., 1998),
leading to an increse in coastal margin productivity (Day et al.,
2007).

The δ13C records of planktonic and benthic foraminifera
from southern Bering Sea sediment cores indicated a change
in ocean temperature and salinity consistent with intermediate

water formation resulting from deglaciation (Gorbarenko, 1996).
Carbon enriched sediment, resulting from C3 and possibly also
C4 plants growing in the steppe-tundra region of the emergent
shelf during glaciation, were transported across the continental
shelf and Bering Sea basin, and settled to the benthos throughout
the Holocene, thereby further enriching the organic carbon of the
shelf community. The extent of C4 plant distribution in Beringia
is unclear although there are several species present today, and
there is debate as to whether they may have been more common
prior to deglaciation (Wooller et al., 2007).

The results of the Hg analysis (Figure 3) show an unexpected
trend from high concentrations in the early/mid Holocene (ca.
52–4600 rcy BP) to low concentrations of approximately cur-
rent crustal levels after about 1000 ybp. By this time sea level
has long since stabilized but this is still prior to modern global
anthropogenic contamination (Outridge et al., 2009). According
to Nechaev et al. (1994), northeastern Bering Sea sediments also
have a heavy mineral composition predominantly from volcanic
sources within the region.

Hg concentrations in the muscle of modern cod
from the Shelikof Strait region show tissue values in the
range of 0.25–0.5 ppm, in agreement with other studies

FIGURE 3 | Trend in tHg concentrations in bone of Pacific cod.

There is a decline in mean tHg concentrations from pre 5000 rcy BP.
Total number of specimens = 45 archaeological, 63 modern. Crust
values and modern cod muscle values are included as baseline
references for the archeological cod values, while acknowleging that

values across tissue types and over time may not be directly
correlated. Cod predating 1437 rcy BP exhibit Hg concentrations that
are higher than the crust values (dashed line) for the study area
(Boehm, 2001). Bars indicate ng/g for total mercury ranging from
700 to 40 ng/g.
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(Burger and Gochfeld, 2007). While Pacific cod muscle tissue
is not directly comparable to the cod bone, average Hg con-
centrations in the soft tissue of waterfowl may be up two times
higher than in bone (Rothschild and Duffy, 2005) while other
studies indicate that there is a correlation between hard tissue
(teeth) and soft-tissue Hg concentrations in some mammals
(Eide and Wesenberg, 1993; Outridge et al., 2000). The inclusion
of the cod muscle Hg data here is intended to provide some
comparative modern baseline for the archeological materials.
No Hg values are available for modern cod bone and as of yet
there are no comparative tissue studies for fish that include bone
but, Hg mercury levels in Pacific cod are reported elsewhere in
concentrations appropriate to the cod’s trophic level (Burger and
Gochfeld, 2007).

DISCUSSION
We suggest that concentrations of Hg in Pacific Cod have fluctu-
ated through the Holocene in concert with major paleoclimatic
events, and more recently with increased anthropogenic inputs of
Hg into the environment (Outridge et al., 2009). The main driver
of Hg bioaccumulation in the early Holocene is proposed to be
the methylation of Hg caused by the innundation of vegetation
and soils across vast tracts of land at the end of the Pleistocene
and through the early Holocene as a result of sea level rise due to
deglaciation. A smaller-scale example of this process occurs when
rivers are dammed to form hydroelectric reservoirs (Dmytriw
et al., 1995). The large freshwater impoundments flood the land
and lead to high levels of Hg in fish and other species (Brinkmann
and Rasmussen, 2010). In this instance, we find high levels in an
important subsistence species, Pacific Cod, suggesting a poten-
tial Hg exposure to prehistoric human populations not previously
recognized.

Our data show Hg in the oldest cod bones occurs in concen-
trations approximating those in the flesh of modern cod. This is a
previously unrecognized source of Hg to human consumers dur-
ing the early Holocene. The concentrations in our samples fall
to approximately the crustal level of Hg after about 1000 rcy BP
(Figure 3). By this time sea level has long since stabilized to a still
stand. This is still prior to modern global anthropogenic contam-
ination (Outridge et al., 2009). These high concentrations early
in the Holocene cannot be linked to any anthropogenic source
of Hg. Elsewhere in the new world impacts from anthropogenic
Hg associated with mining appear as early as 2400 years ago,
but were localized until probably the fifteenth century (Cooke
et al., 2011). Methlyation of biologically bound inorganic Hg and
water-column methylation of inorganic Hg are the likely causes,
driven in large part by sea level rise (Stokes and Wren, 1987;
Boehm, 2001).

Mercury continues to be a health issue, and with industrial
sources coupled with atmospheric transport and climate change,
the potential to impact global food webs and the concomitant risk
to human consumers in the coming decades are not insignificant.
Based on variable projections of sea level rise under continued
conditions of climate change (Grinsted et al., 2010) we suggest
that Hg methylation from currently terrestrially bound sources
should be factored into future projections of Hg bioavailability
and impact to human and marine ecosystem health.
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