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EPR spectroscopy and its use in planta—a promising
technique to disentangle the origin of specific ROS
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Goran G. Bačić, University of
Belgrade, Serbia

*Correspondence:

Bianka Steffens, Plant Physiology,
Philipps-Universität Marburg,
Karl-von-Frisch-Strasse 8, 35043
Marburg, Germany
e-mail: bianka.steffens@
biologie.uni-marburg.de

While it is widely accepted that reactive oxygen species (ROS) are common players in
developmental processes and a large number of adaptations to abiotic and biotic stresses
in plants, we still do not know a lot about ROS level control at cellular or organelle level.
One major problem that makes ROS hard to quantify and even to identify is their short
lifetime. A promising technique that helps to understand ROS level control in planta is
the electron paramagnetic resonance (EPR) spectroscopy. Application of the spin trapping
method and the spin probe technique by this advanced method enables the quantification
and identification of specific ROS in different plant tissues, cells or organelles or under
different conditions. This mini review summarizes the knowledge using EPR spectroscopy
as a method for ROS detection in plants under different stress conditions or during
development. This technique allows disentangling the origin of specific ROS and transient
alteration in ROS levels that occur by changes in ROS production and scavenging.
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INTRODUCTION
Reactive oxygen species (ROS) are derivatives of molecular oxy-
gen. The term “ROS” combines non-radical forms of oxygen such
as hydrogen peroxide (H2O2), singlet oxygen (1O2) or ozone
(O3), and oxygen-centred radicals such as superoxide anion rad-
icals (O −

2 ) and hydroxyl radicals ( OH). All these kinds of ROS
are generated in plants during development or different stresses.
The primary ROS is often O −

2 that is produced either by plasma
membrane-located NADPH oxidase or in electron transfer chains
of mitochondria (Torres et al., 1998; Blokhina and Fagerstedt,
2010; Shapiguzov et al., 2012). ROS such as H2O2 are converted
in enzymatic or non-enzymatic steps. All ROS are highly active
in terms of oxidative modification of lipids, proteins, DNA and
RNA. Also, ROS are indispensable in cellular signaling processes.

ROS are involved in the regulation of many internal plant pro-
cesses such as growth (e.g., Schopfer et al., 2002) and death of
specific cells (e.g., Steffens and Sauter, 2009; Steffens et al., 2011,
2012), to name only two. It is therefore indispensable to find out
about ROS levels as well as specific ROS in organs, tissues or even
cells, and organelles. ROS are however highly reactive and exhibit
very short lifetimes that vary from nanoseconds to seconds. OH,
for example, reacts with most organic compounds by electron
addition or electron transfer (Renew et al., 2005) and has a life-
time of about 10 ns. O −

2 exhibits a low steady state concentration
of around 10−10 M in different cell or organelle types (Gardner,
2002). The half-life of O −

2 depends on its concentration. At a
concentration of 10 μM O −

2 exhibits a half-life time of 0.2 ms
in water, whereas at a lower concentration of 1 μM half-life rises
to 20 ms. 1O2 exhibits a lifetime of 2.7 μs (Karonen et al., 2014).
Effort has been made to develop in planta ROS detection methods
that are suitable to identify specific ROS and to quantify them in

order to understand ROS signaling and ROS level control. These
spectrophotometrical techniques, histochemical or live cell imag-
ing approaches have unfortunately tremendous disadvantages;
chlorophyll has to be removed from the tissue for histochemi-
cal ROS detection. Quantification of ROS is neither possible with
histochemical methods nor with the use of small-molecule fluo-
rescent probes (for review see Steffens et al., 2013). Fluorescent
probes, however, benefit from their ability to detect ROS in living
cells by confocal laser scanning microscopy.

Electron paramagnetic resonance (EPR; also termed electron
spin resonance, ESR) spectroscopy is a widely used method for
detecting the presence of unpaired electrons, such as ROS. Using
the X-band, EPR is the most specific and even sensitive technique
to identify, quantify and visualize the short-lived ROS (Bačić et al.,
2008). Nevertheless, it is very challenging to monitor ROS suc-
cessfully in biological systems due to their very low concentration,
the enzymatic defense systems and the different compartments of
the living cell. A way to make short-lived ROS detectable by EPR
is the application of spin traps or spin probes. In this mini review
we will focus on these two methods of ROS detection by EPR in
planta.

ROS DETECTION IN PLANTA BY THE SPIN TRAPPING
METHOD
Spin traps are stable, diamagnetic compounds that form longer-
lived radical species with transient, very reactive radicals with low
half-lives of only 10−9 to 10−1 s. The paramagnetic spin adducts
are stable for minutes or even hours, accumulate in the tissue and
reach a sufficient concentration for detection by EPR (Mojovié
et al., 2005). The prerequisites for suitable spin traps are defined
by their ability either to exclusively trap one radical species or to
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lead to different specific signature EPR spectra. The sensitivity of
the trapping technique depends on the local spin trap concen-
tration, the concentration of the transient radical, the reaction
kinetic to form adducts and the stability of these adducts (Bačić
et al., 2008). Properties of the spin traps, such as lipophilicity are
also crucial for an effective detection of radicals. The trapping
technique benefits from the fingerprint spectra of the adducts,
allowing identification of the trapped radical species and even
quantification by double integration of the whole spectra or the
low-field signal by using a calibration curve.

Various radical specific spin traps such as Tiron and 4-POBN
are available. Tiron was applied for specific O −

2 detection in
microsomal membranes of Dianthus caryophyllus or roots of
Triticum spp. (Mayak et al., 1983; Vylegzhanina et al., 2001; Taiwo,
2008; Table 1). 4-POBN solved in ethanol exclusively detects OH
(Renew et al., 2005; Table 1) by forming a 4-POBN/hydroxyethyl
radical adduct generated from oxidation of ethanol by OH. This
spin adduct is stable for hours. Renew et al. (2005) used 4-POBN
to perform a region-specific OH profiling in roots of Cucumis
sativus by detecting individual spin adduct spectra in distinct
regions of the root. With this EPR spectroscopy analysis, the
growth zone of the root was identified as site of OH production
(Renew et al., 2005). A couple of studies were done specifically
detecting OH with 4-POBN in surrounding medium of growing
Zea mays coleoptiles (Schopfer et al., 2002; Liszkay et al., 2003) or
in roots of Zea mays and Arabidopsis thaliana (Liszkay et al., 2004;
Renew et al., 2005; Table 1). In addition, 4-POBN was applicable
to analyze OH in single cells of Oryza sativa suspension cultures
(Kuchitsu et al., 1995) or even in membranes of Spinacia oler-
acea and Pisum sativum thylakoids (Borisova et al., 2012). Both
spin traps however do not seem to be the best choice in biolog-
ical systems. The 4-POBN/OH adduct may be converted into a
4-POBN/4-POBN spin adduct during the reaction of peroxidases,
whereas Tiron is acidic which decreases intra- and extracellu-
lar pH value and may alter O −

2 production (Bačić and Mojovic̀,
2005).

One of the first descriptions of O −
2 detection with the spin trap

technique using EPR spectroscopy in planta was given by Habour
and Bolton (1975). Harbour and Bolton detected O −

2 produc-
tion in chloroplasts of Spinacia oleracea with an O −

2 adduct of
DMPO; this spin trap was also used to detect O −

2 in thylakoid
membranes about 20 years later ((Hideg et al., 1994); Table 1).
Since then improvement of spin traps with longer lifetime, less
degradation of the spin adducts and a faster reaction kinetic, such
as the DMPO analogs DEPMPO, EMPO and BMPO, led to a suc-
cessful trapping of both, O −

2 and OH (Figure 1A). DEPMPO
is the phosphorylated analog of DMPO. DEPMPO adducts are
stable for 22.3 min and exhibit a lifetime 10 times longer than
DMPO adducts. EPR spectroscopy was used to analyze oxygen-
centered radicals of OH with DEPMPO in apoplastic fluid of Zea
mays roots (Dragišic̀ Maksimovic̀ et al., 2014). During growth,
cell wall loosening is facilitated by OH. DEPMPO was effec-
tively used to detect ROS in root cells of Pisum sativum with EPR
and to differentiate between O −

2 and OH (Veljovic̀-Jovanovic̀
et al., 2005; Kukavica et al., 2009). Unfortunately, there are
four DEPMPO/OOH species, and DEPMPO/OH shows diastere-
omers (Dikalov et al., 2005), making the identification of radical

species more complicated. Both DMPO and DEPMPO lead to
the conversion of the O −

2 -adduct into the OH-adduct which
underestimates the O −

2 detection (Figure 1A). Transformation of
DEPMPO occurs at a slower rate. To avoid the problem of trans-
formation, the carboxylated DMPO analog EMPO and an analog
with a large butoxycarbonyl group, BMPO, were developed (Bačić
et al., 2008). Both radical specific spin traps are able to exclusively
detect O −

2 (Figure 1A). The EMPO/OOH adduct is eight times
more stable than the DMPO/OOH adduct. BMPO/OOH adducts
are slightly more stable than the EMPO/OOH adducts because
of the large butoxycarbonyl group. Other analogs of the DMPO
group, such as DPPMPO, DBPMPO, and DEHPMPO, possess a
higher lipophilicity and allow measurements in lipophilic media
(Bačić et al., 2008).

Spin traps specific for 1O2 are TEMP and TMPD. TEMP
was used to specifically detect 1O2 in thylakoid membranes of
Spinacia oleracea (Fischer et al., 2006), and the more hydrophilic
spin trap TMPD was used for 1O2 detection in thylakoid and
plasma membranes of Spinacia oleracea, Chlamydomonas rein-
hardtii, or Triticum spp., respectively (Qiu et al., 1995; Fischer
et al., 2007; Yadev et al., 2010). 1O2 is one important reactive
species generated under high light conditions in chloroplasts. It
is scavenged by tocopherol and plastochromanol in Arabidopsis
thaliana, as was shown by using a tocopherol cyclase-deficient
vte1 mutant (Rastogi et al., 2014). The spin trap TMPD was
used to analyze the production of 1O2 in Arabidopsis thaliana
under high light conditions at 1000 μmol photons m−2 s−1 with
EPR spectroscopy. In vte1 mutant plants 1O2 production was
enhanced under high light, as was shown by using EPR spec-
troscopy (Rastogi et al., 2014). Combining mutant analysis and
ROS detection by EPR spectroscopy will help to understand ROS
effects and ROS signaling in planta.

Although spin traps benefit from their ROS specificity, with
some of them detecting exclusively one ROS intermediate, high
spin trap concentrations between 10 and 100 mM have to be used
to reach an adequate sensitivity (Dikalov et al., 2011). Potential
toxic effects, for example inhibition of photosynthesis, might
occur at concentrations of more than 25 mM. Spin traps are often
solved in ethanol; hence they are unsuited for the use in planta or
other biological systems. Adducts may be transformed into other
products (Figure 1A) or they may be reduced by plant metabolites
into molecules without EPR activity.

SPIN PROBE TECHNIQUE—A BETTER CHOICE FOR ROS
DETECTION IN PLANTA?
To circumvent the drawbacks of spin trapping technique the use
of spin probes for ROS detection by EPR spectroscopy is favored.
There are two possibilities of the use of spin probes. Commonly
used spin probes are, on the one hand, endogenous nitroxides that
are reduced by ROS to EPR-silent hydroxylamines. On the other
hand, endogenous cyclic hydroxylamines (CHAs) are oxidized by
ROS to EPR-active nitroxides (Figure 1B). Nitroxide radicals are
stable products of CHAs that are much more stable than other
known spin adducts. The three types of rings commonly used for
nitroxide spin-probes are piperidine, pyrrolidine (e.g., DCP-H;
Table 1) and doxyl (doxyl stearates). Nitroxides offer different
properties and are more or less stable and reactive. In addition,
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Table 1 | EPR technique used for detection of •OH, O•−
2

, and 1O2 in planta.

ROS Spin probe/spin trap Characteristics of spin

probe/spin trap

Species Organ/organelle/

membrane

References

•OH 4-POBN

α-(4-pyridyl-1-oxide)-N-
tert-butylnitrone
Spin trap
Nitrone

Soluble in ethanol (170 mM up to
850 mM)

Oryza sativa Suspension cells Kuchitsu et al., 1995

Zea mays Coleoptile Schopfer et al., 2002;
Liszkay et al., 2003

50 mM 4-POBN is requird for •OH
detection

Zea mays Root Liszkay et al., 2004

High rate of transformation by
peroxidases

Arabidopsis thaliana,
Cucumis sativus

Roots Renew et al., 2005

Spinacia oleracea,
Pisum sativum

Thylakoid membrane Borisova et al., 2012

O•−
2 PTM-TC

Perchlorotriphenylmethyl
radical-tricarboxylic acid
spin probe

Water soluble
Rate constant: 8.3 × 108 M−1s−1

Arabidopsis thaliana Whole plant, root Warwar et al., 2011

DEPMPO

5-(diethoxyphosphoryl)-5-
methyl-1-pyrroline
N-oxide
Spin trap
Nitrone phosphorylated

DEPMPO adducts exhibit a
lifetime 10 times longer than
DMPO adducts
Lower rate of transformation than
DMPO

Pisum sativum Root/ cell wall Veljovic̀-Jovanovic̀ et al.,
2005

Pisum sativum Root/ cell wall Kukavica et al., 2009

Pisum sativum Plasma membrane Mojovic̀ et al., 2004

Zea mays Root/ apoplastic fluid Dragišic̀ Maksimovic̀
et al., 2014

Purification prior to use Pisum sativum Thylakoid membrane Kozuleva et al., 2011

TMT-H

1-hydroxy-4-
isobutyramido-2,2,6,6-
tetramethyl-piperidinium
CHA

Lipophilic
EPR-silent
1 mM are sufficient for O•−

2
detection is reduced equimolarly
Rate constant: 4.9 × 103 M−1s−1

Spinacia oleracea,
Pisum sativum

Thylakoid membrane Borisova et al., 2012

Oryza sativa Internode Steffens et al., 2013

Pisum sativum Thylakoid membrane Kozuleva et al., 2011

DCP-H

1-hydroxy-2,2,5,5-
tetramethylpyrrolidine-
3,4-dicarboxylic acid
CHA

Hydrophilic
EPR-silent
1 mM are sufficient for O•−

2
detection is reduced equimolarly
Rate constant: 3.2 x 103 M−1s−1

Dianthus
caryophyllus

Microsomal membrane Mayak et al., 1983

Tiron

1,2-dihydroxy-3,5-
benzene-disulfonic acid
Spin trap

May alter O•−
2 production Triticum spp. Root Vylegzhanina et al., 2001

Spinacia oleracea Chloroplasts, thylakoid
membrane

Habour and Bolton, 1975;
Hideg et al., 1994

O•−
2 /•OH DMPO

5,5-dimethyl-1-pyrroline
1-oxide
Spin trap
Nitrone

High rate of transformation
Purification prior to use
Rate constant: 35–75
M−1s−1/∼103 M−1s−1

Spinacia oleracea Thylakoid membrane Fischer et al., 2006

Zea mays Plasma membrane Mojovic̀ et al., 2004

1O2 TEMP

2,2,6,6-tetramethyl-
piperidine
Spin trap

Specific 1O2 detection soluble in
methanol

Chlamydomonas
reinhardtii

Thylakoid membrane Fischer et al., 2007

(Continued)
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Table 1 | Continued

ROS Spin probe/spin trap Characteristics of spin

probe/spin trap

Species Organ/organelle/

membrane

References

TEMPD/TMPD

2,2,6,6-tetramethyl-4-
piperidone
Spin trap

Hydrophilic Spinacia oleracea Thylakoid membrane Yadev et al., 2010

Arabidopsis thaliana
(wild type, vte1)

Chloroplasts Rastogi et al., 2014

Triticum spp. Plasma membrane Qiu et al., 1995

Commonly used spin traps or probes proper to detect ROS in different species, organs, organelles or membrane fractions. If available, rate constants of spin traps

or probes toward specific ROS. Characteristics of each spin probe/spin trap summarized. This table gives a broad overview of EPR measurements in planta.

FIGURE 1 | Principles of spin trapping and spin probe method. (A) Spin
trap DMPO and its analogs DEPMPO, EMPO, and BMPO are differentially
used for detection of specific ROS via EPR in planta. Detailed description in
text. (B) Interconversion of nitroxyl radical allows two principles of the spin
probe technique using endogenous nitroxides or cyclic hydroxylamines for
EPR analysis. Detailed description in text.

nitroxides are hydrophilic or lipophilic, charged or neutral and
hence applicable to various EPR spin-probing experiments in
redox research (Kocherginsky and Swartz, 1995).

Endogenous nitroxides may be reduced by several enzymatic
processes such as ascorbate or glutathione relating to the antiox-
idative status of the organism and therefore to its oxidative status
(Valgimigli et al., 2001). A recent study demonstrates that the
nitroxide TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) and its
derivates react with oxygen-centered radicals under acidic con-
ditions as well (Amorati et al., 2010), being a most effective
antioxidant. Spin probes can be reduced by OH and O −

2 without
processes analogous to OOH/OH adduct transformation. They
exhibit an intense EPR signal allowing quantitative analysis due
to the high signal-to-noise ratio. Localization of free radical gen-
eration is possible, since spin probes located in or excluded from
the membranes are available.

The spin probe technique does however not provide any infor-
mation to identify specific radical species. Apart from the redox
status and ROS detection spin probes offer, via their EPR spectra,

information on their mobility and different characteristics of
their environment such as viscosity, pH, pO2, and tempera-
ture (Kocherginsky and Swartz, 1995). Bačić and Mojovic̀ (2005)
therefore recommended combining the spin-probe and spin-trap
technique to study free radical species produced in biological
systems effectively.

CHAs, such as TMT-H and DCP-H, become paramagnetic
after oxidation, are EPR-silent and are reduced equimolarly by
several ROS into EPR-active nitroxides. The very fast reaction
between ROS and hydroxylamine is a major advantage compared
with spin traps. For example, the rate constant of the spin trap
DMPO to form the O −

2 -adduct DMPO/OOH is 35–75 M−1 s−1

(Dikalov et al., 2002), whereas the rate constant of the CHA
TEMPO-H to form the O −

2 -adduct is 103–104 M−1s−1 (Dikalov
et al., 2011). The efficiency of CHAs to detect O −

2 is therefore
very high; hence very low concentrations of CHAs are necessary
to detect O −

2 , and side effects can be minimized. For example,
1 mM CHAs are sufficient for O −

2 detection whereas concentra-
tions of 10–50 mM of spin traps are needed. One disadvantage is
the presence of Cu2+ and Fe3+ in biological systems leading to
autoxidation of CHAs. This problem is decreased by the use of
metal chelators (Dikalov et al., 1999). Since the reaction of CHAs
toward ROS is unspecific, control experiments with supplements
of ROS-scavenging enzymes, such as superoxide dismutase or
catalase, or other non-enzymatic scavengers have to be performed
for the identification of specific ROS (Dikalov et al., 2011).

The lipophilic spin probe TMT-H was applied to analyze
whether ethylene influences ROS levels in internodes of Oryza
sativa (Steffens et al., 2013). Using the spin-trapping method
showed that ethylene enhances ROS levels in the rice intern-
ode. ROS were identified as signals that induce parenchymal
cell death resulting in aerenchyma formation in specific regions
of the rice internodes (Steffens et al., 2011). The paramagnetic,
water-soluble spin probe PTM-TC was used to detect O −

2 via
a one-dimensional (1D) imaging method in whole Arabidopsis
thaliana plants or roots after injury of the apex (Warwar et al.,
2011). Negatively charged PTM-TC does not penetrate mem-
branes, is very specific for O −

2 detection and grants a distinct
single-line EPR spectrum. After reaction of paramagnetic spin
probes with ROS the signal is lost, and the loss of signal indi-
cates the presence of ROS. The spin probe method can be used
for in planta O −

2 detection with an adequate temporal and spa-
tial resolution. The authors conclude that the wound signal in the
Arabidopsis root is transmitted at a rate of around 1–3 cm/min.
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By these high resolution scans, the authors show that the root tip
at around 0.7 mm possesses more ROS than the part at around
2.2 mm. In addition, during injury ROS levels change within the
whole plant. Leaf injury, for example, results in O −

2 production
in roots. This was also shown by the use of the stable spin probe
that possesses a relatively sharp and strong signal of around 1 G
(Warwar et al., 2011).

DISENTANGLING OF SPECIFIC ROS LEVELS AND ROS
SIGNALING VIA EPR SPECTROSCOPY IN PLANTS
Despite the abovementioned issues, EPR spectroscopy is an excel-
lent method for analyzing levels of ROS and for identifying
specific ROS. In complex biological systems such as plant cells,
compartmentation impedes the possibility of ROS detection and
quantification. Fortunately, spin probes of different polarities and
charges resulting in different cell permeability are available. These
properties allow site-specific ROS detection with a higher sen-
sitivity than nitrone spin traps. This is mainly due to the high
reactivity of radicals. The reaction site of radicals and radical
spin probes is very close to their generation or solubilisation
site (Heins et al., 2007). The compartments in plant cells, in
particularly the membranes, are comparable to simple model
systems where the compartments act as barriers for stable radi-
cals. It is therefore crucial for an efficient detection to define the
solubilisation site of the spin probe close to the site of radical
generation.

Detection of different ROS in membrane fractions, such as
thylakoids (e.g., Hideg et al., 1994; Table 1) and plasma mem-
branes (Qiu et al., 1995; Mojovic̀ et al., 2004; for details: Table 1)
have been performed over the years using spin traps. A more
sophisticated approach was used to analyze production of ROS in
the photosynthetic electron transport chain in chloroplasts under
high light with CHAs with different lipophilicities (Kozuleva
et al., 2011; Borisova et al., 2012). Even in membrane systems,
such as thylakoids, ROS production within or without the thy-
lakoid membranes could be distinguished. As the spin probe
TMT-H exhibits a high lipophilicity, O −

2 measurements within
thylakoid membranes are possible (Kozuleva et al., 2011; Borisova
et al., 2012), while the hydrophilic spin probe DCP-H allows mea-
surement of O −

2 outside the membranes (Kozuleva et al., 2011).
At pH 7, DCP-H is negatively charged and hence excluded from
membranes. These CHAs are excellent tools for ROS detection
with high spatial resolution.

To visualize the distribution of free radicals in tissues or cell
compartments with a high spectral resolution, 1D- to 3D-X-
band EPR imaging (EPRI) experiments are an excellent choice.
The application of spin traps for EPRI experiments in planta is
limited due to solvent compatibility with living tissue, high con-
centrations of spin traps needed and a multiple signal spectrum
(Warwar et al., 2011). The use of stable exogenous spin probes
that possess a relatively sharp and strong signal of around 1 G
enable the acquisition of EPRI images (Yan et al., 2008). In par-
ticular, the application of 15N spin probes with a lower linewidth
and a lower detection limit enhances spatial resolution (Yan et al.,
2008). There are few successful 2D- or 3D-spectral-spatial EPRI
applications found for herbal foodstuff such as seeds of Sesamum
indicum (Nakagawa and Hara, 2015), Piper nigrum (Nakagawa

and Epel, 2014) and Helianthus annus (Levêque et al., 2008)
and coffee beans (Levêque et al., 2008); however, there are not
many examples for in planta ROS imaging. Possibly, the different
strategies that will be followed to reduce biological responsibil-
ity of spin probes in living tissues focusing on narrow EPR lines,
tissue-targeting specificity and high stability (Yan et al., 2008)
will improve the possibilities for EPRI application in planta. The
visualization of spatiotemporal intracellular ROS dynamics by
time-laps imaging in intact plants, organs, organelles, or even dif-
ferent membrane systems by EPRI would provide new insights
into the ROS production, their scavenging and possibly into the
ROS signaling during plant development and different stresses
occurring in a plants’ life.
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