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This paper presents the application of Fuzzy Rule Based Circulation Patterns (CPs)

classification in the description and modeling of two different physical processes: rainfall

regimes and ocean waves. Large ocean waves are typically generated over fetches of

the order of thousands of kilometers far off shore, whereas rainfall is generated by local

atmospheric variables including temperature, humidity, wind speed, and radiation over

the area of concern. The spatial distribution of these variables is strongly dependent on

regional pressure patterns, which are similar for associated weather and wind behavior

on a given day. The choice of the CP groupings is made by searching for those CPs

which generate (i) different daily rainfall patterns over mesoscale regions and (ii) wave

heights from different directions at chosen shoreline locations. The method used to

choose the groupings of CPs is a bottom-up methodology using simulated annealing,

ensuring that the causative CPs are responsible for the character of the results. This

approach is in marked distinction to top-down approaches such as k-means clustering

or Self Organizing Maps (SOMS) to identify several classes of CPs and then analysing the

effects of those CPs on the variables of choice on given historical days. The CP groups

we define are often different for the two phenomena (rainfall and waves) simply because

different details of the pressure fields are responsible for wind and for precipitation. The

region chosen for the application is the province of KwaZulu-Natal in South Africa, using

the same set of raw geopotential heights to represent the pressure patterns, but selecting

from the set those typical patterns affecting ocean waves on the one hand and regional

rainfall on the other.

Keywords: circulation patterns, rainfall, waves, classification, South Africa

1. Introduction

Local weather (precipitation, temperature wind) and related phenomena such as floods, storm,
and waves are strongly dependent on atmospheric processes. These processes are very complex
and highly non-linear. On the other hand due to the continuity of the atmospheric conditions
these local phenomena are imbedded into large scale features. It is both of theoretical and practical
importance to understand these links. Among the atmospheric variables, pressure is the driver for
flow and transport. Air pressure at the land surface is a variable which can be measured simply and
with good accuracy. Selected observations and meteorological models provide information on high
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altitude pressure conditions. Air pressure and geopotential
heights are among the best modeled quantities. Therefore, it
is reasonable to use them as a basis to describe atmospheric
circulation.

The relationship between local variables and atmospheric
circulation described with the help of pressure conditions is
a complicated and highly non-linear one. On the other hand
it reasonable to assume that similar circulation conditions
cause similar local meteorological conditions. Therefore, an
appropriate classification can help to quantify the relationship
between local variables, such as amount of rain on a day in a
region or wave height and period on a shoreline, and circulation.
The intention is to define classes on the basis of the circulation
and the local variables via conditional distributions. The behavior
of the local variable described for example using the conditional
distribution should be different for the different classes from
the unconditional distribution of the variable. A comprehensive
summary of classification methods can be found in Jacobeit
(2010).

There are different ways one can define groups of circulation
patterns (CPs):

1. to define CPs using atmospheric variables only
2. to define CPs using atmospheric variables by taking the local

variable into account for setting up the patterns
3. to define CPs using a combination of atmospheric variables

and local variables

The first method intends to find typical distinct patterns of the
atmospheric variables. The patterns differ in their defining space.
Their link to local variables is determined after the classification
and might for some variables yield a good distinction in the
behavior while for others not.

The second method acknowledges the fact that relatively
small differences of the atmospheric variables might lead to
very different behavior of the local variables. This means that
the classification should not intend to distinguish the patterns
by producing very different CPs but to group CPs which to
some extent are similar but explain the target variable as well as
possible. On the other hand it is important that the classification
is done on the basis of the atmospheric variables only so that the
classification can be used for time periods lacking the observation
of the local variables.

The goals of various classification schemes can differ widely.
While the classification of pressure fields on a purely statistical
basis might reveal specific features of atmospheric dynamics,
it might not provide the best basis for the explanation of
the behavior of surface variables such as wind, temperature
or precipitation. Under certain circumstances relatively small
differences in the atmospheric conditions can lead to very
different behavior of the surface variables. If one is interested
in explaining the relationship between surface variables and
atmospheric conditions then the purpose is to obtain classes of
CPs with distinct conditional probabilities or distributions of the
selected variables.

The first classifications were developed for regions in Europe
on a subjective basis (Lamb, 1972 for Great Britain and Hess and
Brezowsky, 1952 for Germany). Automated classifications were

developed for different regions in Europe, North America, and
China. In this paper fuzzy rule based classifications are developed
for precipitation and waves in South Africa.

2. Methodology

The basic methodology of fuzzy rule-based classification was
described for explaining precipitation behavior in Bárdossy et al.
(1995). The main ideas are summarized here.

The classification is performed on anomalies of daily air
pressure based variables: sea level pressures or geopotential
heights g. These data can be obtained from reanalysis products on
a regular grid. The anomalies are calculated under consideration
of the annual cycle of both the mean and the standard deviation
of the observed pressure. The anomaly at gridpoint x and time t
is calculated as:

d(x, t) =
g(x, t)− ḡ(x, J(t))

sg(x, J(t))
(1)

where J(t) is the Julian date corresponding to day t (which is a
value between 1 and 366), ḡ(x, J(t)) is the mean and sg(x, J(t)) is
the standard deviation of g at location x and Julian day J(t). These
anomalies d have zero mean and unit standard deviation for each
grid location.

The classification is based on the location of certain anomalies.
For each gridpoint x of the pressure grid G five different
possibilities of anomalies are considered to define a classification
class. A triangular fuzzy number is assigned to each of these
possible anomalies:

1. positive anomaly (0, 3,+∞)T
2. negative anomaly (−∞,−3, 0)T
3. non-positive anomaly (−4,−0.85, 0.25)T
4. non-negative anomaly (0.25, 0.85, 4)T
5. non-representative anomaly (−∞, 0,+∞)T

where the subscript T denotes a triangular fuzzy number with the
membership function:

µ(a,b,c)T (d) =











d−a
b−a

if a ≤ d ≤ b
d−c
b−c

if b < d ≤ c

0 else

(2)

This means that for the classification of each gridpoint one of the
above possible classes is assigned. Thus, a class k can be defined
as a vector jk(x)x ∈ G where each jk(x) is an integer such that
1 ≤ jk(x) ≤ 5.

For a given day t and a given set of rules jk(x) x ∈ G and
k = 1, . . . ,K the classification is performed as follows:

1. For each rule k and each location x the membership value of
d(x, t) in the fuzzy set corresponding to jk(x) is calculated.
These values are µjk(x)(d(x, t))

2. These individual membership values are combined to an
overall degree of fulfillment of the rule k by calculating:

DOF(k, t) =

4
∏

m= 1





1

#{x jk(x) = m}

∑

x|jk(x)=m

µjk(x)(d(x, t))
qm





1
qm

(3)
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3. The k0 index corresponding to the maximal DOF(k, t) is
selected as class for day t

For further details the readers are referred to Bárdossy et al.
(1995).

The fuzzy rule based classification is performed to explain
the behavior of one or more selected variables. These are
denoted with the variable V . Two types of objective functions
are considered. The first one relates the CPs to the exceedance
of certain thresholds of V . The objective is to define classes with
frequencies of exceedances which differ from the unconditional
frequency of occurrences. The first is O1:

O1(θ) =

(

T
∑

t= 1

(

hCP(t)(V > θ |CP(t))− h(V > θ)
)2

)

1
2

(4)

where h stands for the frequency of an event, V is the variable
under interest and θ is a prescribed threshold. This objective
expresses that a classification should help to decide if a threshold
is exceeded or not.

The second objective type is related to the mean magnitude of
the variable V with respect to the CPs. It is formulated as:

O2 =
1

T

T
∑

t= 1

∣

∣

∣

∣

∣

¯(V|CP(t))

V̄
− 1

∣

∣

∣

∣

∣

(5)

The second objective function evaluates the ability of the
algorithm to derive classes with average values of V that are
different from the unclassified average. In other words this
objective function measures the separability of the classes from
the mean.

These objective functions can be used in combination—
for example for different thresholds θ and even for different
variables. A weighted combination of them is used as the
classification objective function.

The value of the objective functions depends on the
classification, which itself depends on the selected rules {jk(x)x ∈

G k = 1, . . . ,K}, where K is the number of rules. Once
objective functions for the classification are defined, different
classifications can be compared with respect to their ability to
explain the variability of the surface variable investigated. The
higher the objective function values the better the classification
is. Thus, one can use an optimization procedure to find rules
jk(x) which maximize the objective functions. The number of
possible rule systems for a given number of patterns is given by
the combinatorial:

NK =

(

5|G|

K

)

This is usually an extremely large number (for example for a
small pressure grid 10 × 10 with |G| = 100 nodes and K = 10
rules the number of possible rule systems is > 10340) thus the
best rules cannot be found by trying all possibilities. Instead
an optimization method has to be applied. Simulated annealing
provides a reasonable alternative as described in Bárdossy et al.
(2002).

2.1. Classification Quality
The quality of the classification can be measured by the above
defined objective functions. Besides that other measures can be
defined, which can be used for comparison, for example to find
the optimal number of classes. For this one can use thresholds for
the variable V . The entropy of the conditional distributions can
be used to measure the binary quality of a classification:

H(K) =

K
∑

k= 1

hk
(

pk log2 pk + (1− pk) log2(1− pk)
)

(6)

where pk is the probability of the exceedance of the threshold on
a day with the k-th CP, and hk is the frequency of the k-th CP.
The quantity H(0) is the entropy in the case no classification was
performed:

H(0) = p0 log2 p0 + (1− p0) log2(1− p0) (7)

A classification provides information for the variableV ifH(K) <

H(0). In general a classification using K classes is better than
another with L classes if:

H(K) < H(L)

2.2. Non-Uniqueness Issues
Different CP classifications can be obtained for the same region.
In Philipp et al. (2014) the authors investigated 27 automatic CP
classification approaches and found that different classification
methods lead to very different classifications. The Fuzzy Rule
Based classification method can lead to different classifications as
the stochastic optimization obtained using simulated annealing
does not necessarily lead to the same classification if another
sequence of random numbers is selected. A different choice
of stations or a different choice of thresholds or weights for
the objective functions can lead to different classifications too.
Different classifications can be compared from the viewpoint
of their performance or from the viewpoint of the similarity
of their classes. While the calculation of the objective functions
is straightforward, the similarity of the classifications requires
further measures.

Two statistics can be calculated based on the contingency
tables of the pairs of classifications. For two different
classifications nij is the number of days in class i for the
first and in class j in the second classification. The χ2 statistics to
compare the classifications is calculated as:

χ2 =

r
∑

i= 1

s
∑

j= 1

(

nijn− ni·n·j
)2

ni·n·jn
(8)

where r is the number of classes in the first classification, s is the
number of classes in the second classification, ni· is the number of
days in class i for the first classification, n·j is the number of days
in class j for the second classification and n is the total number
of days. If the classifications are independent then the χ2 value is
small, the bigger it is the more the classifications resemble each
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other. Based on the χ2 values two measures of dependence were
calculated, the modified Pearson coefficient C:

C =

√

min(r, s)

min(r, s)− 1

√

χ2

χ2 + n
(9)

and the Cramer coefficient (Hartung et al., 2005) V :

V =

√

χ2

n(min(r, s)− 1)
(10)

Both coefficients are bounded by 1, and the higher they are the
stronger the association is. The associations of CP classifications
for the same geographical regions using different objective
functions or different stochastic optimization settings are usually
strong, which is a consequence of the fact that the same variables
(geopotential heights) are classified.

2.3. Data Used
The classifications were performed using ECMWF ERA
reanalysis data sets. The classification is based on daily
normalized anomalies, derived from the 700 hPa geopotential
height with a grid resolution of 2.5o (10o—50o S; 0o—50o W).
Geopotential heights were obtained from the ERA-Interim data
set of Dee et al. (2011) for the period 1979–2009 (http://apps.
ecmwf.int/datasets/).

3. Classification for Precipitation

3.1. Objective Functions
Precipitation has a highly skewed distribution with above 80%
probability of a dry day in many parts of South Africa. Individual
very high values of precipitation can lead to “random” optima
which are not robust. Instead a new variable related to the average
wetness of a selected number of stations was considered:

W(t) =
#{xi;Z(xi, t) > 0}

#{xi;Z(xi, t) ≥ 0}
(11)

by definition 0 ≤ W(t) ≤ 1. This variable is taken as V for the
objective functions in Equations (4, 5).

The 24 Climate Regions defined by Kruger (2004), slightly
modified by concatenating some of the very small regions (mostly
in dry areas) with larger ones, were used for the classification. The
map with the locations of the regions is shown in Figure 1. A set
of representative stations was selected for each region and the CPs
were classified using the above defined objective function. The
classification obtained using this objective function works well
for precipitation in all selected regions both for the calibration
and the validation time periods. For variety, we will show some
CPs and resulting rainfall in Figure 2 and specific CPs selected
for region 6 in Figure 3.

3.2. Spatial Extent of Classification and
Non-Uniqueness of CP Set Selection
We explore three sets of classifications driven by precipitation
wetness. The first CP set is conditioned on wetness in region
5 and we compare the differences in rainfall distributions from

FIGURE 1 | The Kruger climate regions of South Africa after (Kruger, 2004).
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FIGURE 2 | Three different CPs and the related distributions of daily precipitation in Mpumalanga in Region 5 of Figure 1. The maps on the left are CPs 8,

2, and 5, appearing as blue (middle), red (dry), and green (wet) lines in the figure of frequency distributions.

three distinct sets of CPs. The second set involves determining the
robustness of themethod when different sets of gauges in a region
are used for CP classification. For this purpose we use data from
region 6 and randomly sample 2 sets for comparison. The third
experiment treats CPs defined over three regions in Figure 1.
These are region 6 which experiences subtropical summer rainfall
and the occasional hurricane, 10 which is typically savannah,
experiencing summer rainfall dominated by convective systems,
and 22 which has a Mediterranean climate and experiences
mostly frontal system winter rainfall.

Due to the stochastic optimization no unique best
classification can be achieved. It is of interest to see how

• the selection of the stations for the objective function
• the randomness due to stochastic optimizations

influences the results. For this purpose the performancemeasures
were calculated for different classification results.

To introduce the first experiment, which is to demonstrate
the link between rainfall regimes and CPs, we offer Figure 2,
which shows the correspondence between (i) three CPs chosen
from a set of 8 in Mpumalanga and (ii) the rainfall distribution
at a particular rain-gauge in the region. Figure 2 shows the 700
hPa anomalies for three selected CPs and the corresponding
distributions of daily precipitation. CP2 is the driest with the

highest probability of a dry day. CP5 is the wettest with a much
lower probability of a dry day. CP8 is medium wet with statistics
between CP5 and CP2. The distributions are significantly
different from each other indicating that classification provides
useful information on precipitation behavior.

To illustrate the methodology applied in the second
experiment, we selected region 6, then we selected some gauges
within the region, in different configurations, to classify the
Circulation Pattern anomalies [CPs] which are the cause of
different types of rainfall over this region.

We find we get similar CPs, enough similarity of shape to
pick a set, [note that the labeling within each set is random, so
we match by correlation of shape, not label]. Figure 3 shows the
700 hPa anomalies for two different classifications.

This similarity allows us to settle on one set of CPs per region
(and season) because we have a robust method. In the next
section we turn to the Infilling/repair problem an extension of
which we will use later in spatial interpolation between gauges.

The third experiment was to make comparisons between CP
sets within and between 3 regions. This started by selecting 5
random subsets of 12 gauges from the historical datasets in each
of the regions. CPs were conditioned on each of the 5 subsets in
each region independently.We then set out to determine whether
the similarity of the sets within each region was materially greater
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FIGURE 3 | Two pairs of CPs: top two similar to each other and the bottom two likewise, selected from the CPs chosen on 2 sets of gauges in Region 6.

than between regions. Because these are categorical data it does
not make sense to compute correlation coefficients between sets,
so Pearson and Cramer coefficients (Equations 9, 10) based on
the χ2 were the statistics used.

We chose three climate regions within South Africa to
compare sets of CPs. The regions chosen and shown in Figure 1

are: region 6 (KwaZulu-Natal), region 10 (Free State), and region
22 (Western Cape). We used 5 different random groupings of
gauges for classifications in each region, thus for each region we
derived 5 independent sets of CPs, making 15 in all.

The purpose of this calculation was to determine if the
CPs derived for a given region had a higher inter-association
than between regions. These coefficients were calculated for all
pairs of classifications for the same regions. Then the averages
of the association measures were calculated for classifications
corresponding to the same (excluding the comparison of a
classification with itself), and corresponding to different regions
leading to 2 sets of 3 by 3 matrices.

The average of the 20 within-region statistics are compared
with the averages of the 25 between-region statistics and appear
in Tables 1, 2 (the difference in the numbers in each group is
because we omitted the diagonal elements of comparing a set
with itself). The result is that there is a significant difference
between the within against the between coefficients, supporting
our exploitation of this CP selection procedure based on daily
wetness.

All classifications show significant dependence, which of
course is reasonable as the atmospheric conditions on the

TABLE 1 | CP similarities for different classifications using the Pearson

coefficient in the regions numbered 6, 10, and 22 in Figure 1.

Region 6 10 22

6 0.699 0.617 0.640

10 0.617 0.674 0.592

22 0.640 0.592 0.698

TABLE 2 | CP similarities for different classifications using the Cramer

coefficient in the regions numbered 6, 10, and 22 in Figure 1.

Region 6 10 22

6 0.263 0.213 0.226

10 0.213 0.247 0.201

22 0.226 0.201 0.262

same region are classified in all cases. On the other hand the
within block average statistics are larger than the between block
counterpart, inferring that there is a stronger within relationship
than between blocks. The conclusion is that the choosing of CPs
dependent on regions is valuable and worth the effort.

4. Classification for Waves

Atmospheric circulations drive regional wave climates through
atmosphere-ocean interactions. In particular they control the
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generation of the extreme wave events that cause severe
coastal erosion. They are therefore also fundamental drivers
of coastal vulnerability. The link between the wave climates
and atmospheric circulation is complex. However, statistical
models that link synoptic scale atmospheric circulation to
regional wave characteristics have recently been shown to give
significant insights (Pringle et al., 2014). We propose that
the classification of atmospheric drivers can improve coastal
vulnerability assessments and the prediction of climate change
effects. For example it provides a natural way to identify and
isolate the effects of independent storm events, which is required
for extremum analysis. For example (Corbella and Stretch, 2012a)
identified independent events based on the autocorrelation or by
using a 6-h inter-arrival window. The transition of CPs between
classes is a physically more meaningful method for defining
independent events. Atmospheric CPs also contain important
information regarding the distribution of wave height, direction
and period, because when a particular CP type occurs the
associated wave height, direction, and period can be (statistically)
predicted. Linking wave events to CPs can also be used to extend
current data sets and to infill missing data (Hewitson and Crane,
2002). Finally the prediction and evaluation of climate change
impacts on coastal vulnerability would be more robust if linked
to changes in the atmospheric CPs that are the basic drivers of
wave climates and extreme wave events.

4.1. Case Study Description
The KwaZulu-Natal (KZN) coastline (Figure 4) is associated with
a high energy wave climate. A number of weather types have been
cited as the drivers of this wave climate. For example tropical
cyclones, mid-latitude (extra-tropical) cyclones and cut off lows
(Rossouw et al., 1982; Corbella and Stretch, 2012c; Mather and
Stretch, 2012). The location and persistence of tropical cyclones
(TC’s) are believed to drive large wave events that cause severe
beach erosion in KZN (Corbella and Stretch, 2012c; Mather and
Stretch, 2012). Cut-off lows are deep low pressure systems that

FIGURE 4 | Locations of the wave observation buoys at Durban and

Richards Bay, along the KwaZulu Natal coastline.

are displaced from the normal path of west-east moving mid-
latitude cyclones (Preston-Whyte and Tyson, 1988). They are
caused by instabilities within the westerly zonal flow due to the
high wind shear. Vortices can become cut-off and move equator-
ward (Preston-Whyte and Tyson, 1988). These features lead to
seasonality in the wave climate and the occurrence of storms in
particular. On average autumn and winter (April to September)
are associated with the largest wave energy, while summer
(January toMarch) has the smallest (Corbella and Stretch, 2012c).
The significant wave height (Hs) is the key variable of interest for
coastal vulnerability applications. Our algorithm considers both
the daily average significant wave height and the daily maximum
significant wave height.Wave data for the period 1992–2009 were
obtained fromwave buoys located near Durban and Richards Bay
on the KZN coastline (Figure 4).

In this application the goal of the classification is to obtain a set
of CP classes which explain extreme wave events. Wave heights
larger than 3.5m have been shown to cause significant erosion
along the KZN coastline (Corbella and Stretch, 2013). The
objective functions (Equations 4, 5) were used as performance
measures.

The wave height threshold θ can be exploited to incorporate
various scenarios. Two different thresholds were used. The first
relates to the occurrence of extreme events (θ1 = 3.5m), while
the second relates to midrange wave heights (θ2 = 2.5m). The
second objective function type is also used to provide a more
detailed classification.

To account for the persistence of CPs during extreme events
(Equation 4) was modified to include storm durations, defined as
the duration of wave height excursions above 3.5m.

4.2. Dominant CP Classes
Figure 5 shows the average anomaly patterns for all the CP
classes. CP99 refers to an unclassified class. Useful statistical
parameters for each CP class are their frequency of occurrence,
their contribution to extreme events, and the average and
maximum significant wave heights (Hs) associated with them.
These parameters are shown in Table 3.

The results reflect a number of trends in CP-wave generation.
However, only the two most significant trends are discussed
herein. Firstly CP01 and CP02 (Figure 5A) occurmost frequently
(about 17% of the time). Both CP classes resemble a mid-
latitude cyclone in its different stages of development. The
CP01 resembles the central low pressure region of a mid-
latitude cyclone as it moves from west to east south of
the country, while CP02 resembles the high-pressure region
that follows. Secondly, Table 4 shows a class (CP03) that
comprises 60% of all extreme wave events. The CP03 is
shown to contribute significantly to extreme events all year
round with highest contribution in winter (65%). However,
CP03 (Figure 5C) occurs infrequently (9% of the time). Its
occurrence is associated with large average and maximum
significant wave heights ranging from 2.4 to 3.0m and 5.0 to
8.5m, respectively. CP05 and CP06 (Figures 5E,F) contribute
approximately to 30% of extreme events in spring and summer,
respectively. The CP06 resembles a pattern similar to TC’s
south of Madagascar. TC’s located within this region have been
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A B

C D

E F

G H

FIGURE 5 | Average anomaly patterns for 8 CP classes derived from the regional wave climate data. Negative (low) pressure anomaly contours are shown

as solid lines while positive pressure contours are dashed.

cited to drive large swells toward the KZN Coast (Mather and
Stretch, 2012). The CP05 resembles low-pressure systems over
the interior.

The algorithm only considered CPs associated with extreme
events at the time the event was recorded. In other words no time
lags were considered when deriving the CP classes. Therefore, the
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TABLE 3 | CP Occurrence frequencies and wave height statistics associated with each CP class.

Statistics CP01 CP02 CP03 CP04 CP05 CP06 CP07 CP08 CP99a

OCCURRENCE FREQUENCY (p(CP)%)

Summer 18 18 8.0 13 7.5 8.1 5.6 15 8.3

Autumn 18 19 8.0 11 10 7.2 5.1 13 8.8

Winter 16 17 8.1 12 11 8.4 4.5 14 8.9

Spring 17 16 9.1 12 9.4 7.7 5.0 15 9.2

All Seasons 17 17 8.3 12 9.6 7.8 5.1 14 8.8

THRESHOLD EXCEEDANCE FOR A GIVEN CP (p(Hs ≥ θ |CP)%)

Summer – 0.4 8.0 0.3 – 3.5 2.6 0.7 –

Autumn 1.2 1.5 12 1.6 2.1 2.0 5.6 0.6 5.0

Winter 0.9 0.8 14 – 0.9 0.4 2.3 0.8 0.4

Spring 0.3 – 4.6 0.6 2.2 – 0.7 – –

All Seasons 0.6 0.7 9.6 0.6 1.4 1.5 2.8 0.5 1.4

EXCEEDANCE CONTRIBUTION (p(CP|Hs ≥ θ )%)

Summer – 5.6 50 2.8 – 22 11 8.3 –

Autumn 7.7 10 33 6.4 7.7 5.1 10 2.6 17

Winter 7.5 7.5 64 – 5.7 1.9 5.7 5.7 1.9

Spring 4.5 – 55 9.1 27 – 4.5 – –

All Seasons 5.8 7.4 48 4.2 7.9 6.9 8.5 4.2 7.4

AVERAGE Hs (m) FOR EACH CP

Summer 1.8 1.9 2.5 1.8 1.8 2.2 2.2 1.9 1.9

Autumn 1.8 1.9 2.7 1.9 2.0 2.0 2.1 1.9 2.1

Winter 2.0 2.0 2.9 1.9 2.1 2.0 2.2 2.0 1.9

Spring 2.0 1.9 2.4 1.9 2.2 2.0 2.2 2.0 2.0

All Seasons 1.9 1.9 2.6 1.9 2.1 2.1 2.2 2.0 2.0

STANDARD DEVIATION of Hs (m) FOR EACH CP

Summer 0.48 0.49 1.1 0.49 0.53 0.76 0.74 0.61 0.49

Autumn 0.58 0.66 1.0 0.70 0.76 0.66 0.90 0.55 1.0

Winter 0.58 0.61 0.94 0.55 0.66 0.58 0.66 0.55 0.67

Spring 0.51 0.49 0.84 0.52 0.71 0.50 0.61 0.50 0.49

All Seasons 0.54 0.57 1.0 0.56 0.69 0.63 0.74 0.56 0.70

MAX Hs (m) FOR EACH CP

Summer 3.4 4.0 8.5 3.7 3.4 5.0 5.2 5.6 3.3

Autumn 4.0 5.5 5.7 5.5 6.3 4.3 5.1 4.0 5.4

Winter 4.2 3.8 5.6 3.4 3.8 3.5 4.3 4.8 3.6

Spring 3.9 3.3 5.3 4.5 5.4 3.4 3.7 3.5 3.3

All Seasons 4.2 5.5 8.5 5.5 6.3 5.0 5.2 5.6 5.4

aCP99 is the unclassified class. Blank entries imply zero occurrences in the data set.

algorithm assumes that extreme events are driven by relatively
stationary CPs.

4.3. CP Variability
The degree of fit (DOF) describes the membership of a CP
for given day to a particular class. The larger the DOF the
stronger the belief that the CP belongs to a particular class.
Figure 6 shows the average anomaly pattern for CP03 and the
CPs associated with both the strongest and weakest membership
for that class. CP03 is associated with a strong low pressure
region east/south-east of South Africa. The pattern also shows
a strong high-pressure region to the southwest. The coupling

between the strong low and high pressure drive strong winds and
subsequently large waves toward the coastline. The CP with the
weakest membership to CP03 is shown to be a weak anomaly
pattern (refer to Figure 6C).

4.4. Variability within Classes
It is expected that in regions of high pressure pattern variation
should be low. This is attributed to the stability of high pressures
in their positions. In contrast pattern variation in regions of
low pressure should be higher primarily due to the movement
of low pressure systems. This is reflected in Figure 6D, which
shows significantly larger variation (standard deviation of 1)
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in the vicinity of the low-pressure region. The magnitude of
the variation also indicates that CPs driving extreme events are
associated with strong low pressures.

4.5. CP Rules and Extreme Events
Daily CP realizations associated with extreme wave events (Hs ≥

3.5m) were compared to the average class pattern to which
they belong. Figure 7 shows the average pattern for CP03
together with selected extreme events corresponding to CP03.
The locations of the peak negative anomalies are shown in the
plot. Significant pattern variability within the class is apparent.
Figure 8 and Table 4 show the CPs associated with six of the

TABLE 4 | Six of the most extreme wave events on record and their

associated CPs for the period 1992–2009.

Fig Date CP HS (m)

(a) 19/03/2007 CP03 8.50

(b) 05/05/2001 CP05 6.30

(c) 18/03/2001 CP03 5.92

(d) 03/04/2001 CP03 5.66

(e) 23/09/1993 CP03 5.64

(f) 19/03/2001 CP08 5.63

largest significant wave height events. The majority of the six
events have been classified as belonging to CP03. Figure 8F
from visual inspection shows a pattern similar to CP04 and
CP08. Both classes are associated with low-pressure regions
southeast of Madagascar. However, the CP has been classified as
belonging to class CP08 and not CP04. From a visual account
it appears to better resemble class CP04. Figures 8A,C are the
CPs associated with the March 2007 storm which caused severe
coastal erosion along the KZN coastline (Corbella and Stretch,
2012b; Mather and Stretch, 2012) with significant wave heights
reaching 8.5m.

5. Discussion and conclusions

In this paper different problems related to the fuzzy rule based
classification of CPs were discussed. It was shown that reasonable
classifications can be developed for precipitation and waves in
South Africa. We did this by selecting long sequences of CPs
in the region surrounding Southern Africa and conditioning the
selection of the CPs on selected variables germane to the task;
daily wetness for rainfall and wave height frequencies of ocean
waves. The classifications yield classes with significantly different
behavior depending on the classification goal. It was shown in the

A B

C

D

FIGURE 6 | Average anomaly pattern for CP03 (A) showing (B) the anomaly with highest DOF, (C) the anomaly with lowest DOF value, and (D) the

standard deviation for all CP03 anomalies.
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A B

C

FIGURE 7 | (A) Average anomaly pattern CP03 with (+) symbols indicating the centers of all negative anomalies (low pressures) contributing to the class. (B,C) show

actual CP’s for the dates 19/03/2007 and 30/08/2006, respectively, both of which were classified as members of the CP03 class.

A B C

D E F

FIGURE 8 | CP’s associated with the six largest significant wave heights for the dates (A) 19/3/2007, (B) 5/5/2001, (C) 18/3/2001, (D) 3/4/2001, (E)

23/9/1993, and (F) 19/3/2001.

precipitation part of the study, that using different stations of a
climatic region for the classification objective leads to different
classifications, but the performance of these classifications is
nevertheless very similar. Different classifications for the same

region are more similar than classifications corresponding to
different regions. This justifies the use of different classifications
for the different regions and variables, because they add
discriminatory power to the modeling procedure.
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In the case of the wave study, the emphasis was on the
statistical link between atmospheric CPs and extreme wave
events. The results show that the classification algorithm is
able to identify CPs that drive extreme wave events along the
KZN coastline. The most frequent CPs associated with wave
generation are revealed as low and high pressure anomalies
south of the country. These reflect easterly traversing mid-
latitude cyclones and their associated high pressures anomalies.
The CP class that drives the majority of extreme wave events
(labeled CP03) is associated with strong low pressure anomalies
east of the country. A high/low pressure coupling drives strong
winds toward the coastline and generates large waves. It is not
clear what weather regimes are associated with these events
since both mid-latitude cyclones and cut-off lows may belong
to the CP03 class depending on their location. The classification
algorithm does not currently identify CP anomalies as part of
an overall structure developing in space and time: each class
could be a snapshot in the temporal evolution of (perhaps

distinct) CPs. Therefore, a particular weather system may be
associated with a number of classes during its development,
which makes for added complexity and requires further
research.

There are similarities in the CP classes driven by the two
surface variables because in some instances they are linked
to similar synoptic weather systems. However, there are also
significant differences in the details of the pressure fields. These
differences are expected because large ocean waves are typically
generated over fetches of the order of thousands of kilometers far
off shore, whereas some rainfall is generated by local atmospheric
variables including temperature, humidity, wind speed, and
radiation over the area of concern.
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