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Incorporating covariance estimation
uncertainty in spatial sampling
design for prediction with
trans-Gaussian random fields
Gunter Spöck and Jürgen Pilz *

Department of Statistics, Alps-Adria University Klagenfurt, Klagenfurt, Austria

Recently, Spöck and Pilz (2010), demonstrated that the spatial sampling design problem

for the Bayesian linear kriging predictor can be transformed to an equivalent experimental

design problem for a linear regression model with stochastic regression coefficients and

uncorrelated errors. The stochastic regression coefficients derive from the polar spectral

approximation of the residual process. Thus, standard optimal convex experimental

design theory can be used to calculate optimal spatial sampling designs. The design

functionals considered in Spöck and Pilz (2010) did not take into account the fact that

kriging is actually a plug-in predictor which uses the estimated covariance function. The

resulting optimal designs were close to space-filling configurations, because the design

criterion did not consider the uncertainty of the covariance function. In this paper we also

assume that the covariance function is estimated, e.g., by restricted maximum likelihood

(REML). We then develop a design criterion that fully takes account of the covariance

uncertainty. The resulting designs are less regular and space-filling compared to those

ignoring covariance uncertainty. The new designs, however, also require some closely

spaced samples in order to improve the estimate of the covariance function. We also

relax the assumption of Gaussian observations and assume that the data is transformed

to Gaussianity by means of the Box-Cox transformation. The resulting prediction method

is known as trans-Gaussian kriging. We apply the (Smith and Zhu, 2004) approach to

this kriging method and show that resulting optimal designs also depend on the available

data. We illustrate our results with a data set of monthly rainfall measurements fromUpper

Austria.

Keywords: planning of monitoring networks, polar spectral representation, spatial design, Smith and Zhu (2004)

design criterion, trans-Gaussian kriging, rainfall data

1. Introduction

1.1. Problems in Spatial Sampling Design Envisaged in this Article
A standard approach in geostatistics is to estimate the covariance function by means of weighted
least squares or restricted maximum likelihood and then to plug-in this estimate into the formula
for the kriging predictor. This plug-in kriging predictor is no longer linear nor optimal. This
approach does not matter so far as one considers the variance of this plug-in predictor not to be best
estimated by the so-called plug-in kriging variance, where the covariance estimate is plugged into
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the standard expression for the kriging variance. Harville and
Jeske (1992) and Abt (1999) show that the plug-in kriging
variance underestimates the true variance of the considered
plug-in kriging predictor in certain cases to a large amount
and give corrections to this plug-in variance. Zhu and Stein
(2006) apply this correction also to a design criterion for
spatial sampling design and calculate almost optimal designs
by means of simulated annealing and a two-step algorithm.
As a first step they adopt simulated annealing to the plug-
in kriging variance to find many design locations, that have
good predictive performance and then as a second step, adopt
simulated annealing again but this time to the corrected plug-in
variance to get also some design locations with good estimative
performance for covariance estimation. Smith and Zhu (2004)
give a new interpretation of this design criterion as measuring
the average lengths of estimated predictive, intervals having
no coverage probability bias. Up to date, simulated annealing
algorithms are a gold standard for calculating spatial sampling
designs, see for example Diggle and Lophaven (2006), because the
design criteria seem to be mathematically intractable.

In this paper we will make no usage of stochastic search
algorithms but will derive a mathematically tractable structure
of the investigated design criteria so that deterministic design
algorithms can be used. We are going to show certain
advantageous mathematical properties of the complicated (Smith
and Zhu, 2004) design criterion like continuity and demonstrate
that for optimizing this design criterion and finding optimal
design locations no stochastic search algorithms like simulated
annealing are necessary. On the contrary, spatial sampling
designs can be found by means of methods and deterministic
algorithms from the standard theory of convex optimization and
classical experimental design. The theoretical developments are
illustrated with a dataset taken from rainfall monitoring.

1.2. A Review on Methods and Software for
Spatial Design
For a survey of model-based spatial sampling design we refer
to Spöck and Pilz (2010) from which the next following
paragraphs are taken. The importance of (optimal) spatial
sampling design considerations for environmental applications
has been demonstrated in quite a few papers and monographs,
we mention (Brus and de Gruijter, 1997; Diggle and Lophaven,
2006; Brus and Heuvelink, 2007). The papers on spatial sampling
design may be divided into several categories of which some
are overlapping. First of all we may distinguish between design
criteria for spatial prediction and for estimation of the covariance
function and between combined criteria for both goals. Works
falling into the category of criteria for prediction are (Fedorov
and Flanagan, 1997; Müller and Pazman, 1998, 1999; Pazman and
Müller, 2001; Müller, 2005; Brus and Heuvelink, 2007). Criteria
for the estimation of the covariance function are considered
by Müller and Zimmerman (1999) and Zimmerman (2006).
Combined criteria we can find in Smith and Zhu (2004), who
consider the minimization of the average estimated length of
predictive intervals. Further papers falling into this category
of combined criteria are Bayesian articles specifying a priori

distributions over covariance functions like (Brown et al., 1994;
Müller et al., 2004; Diggle and Lophaven, 2006; Fuentes et al.,
2007). Actually (Brown et al., 1994; Fuentes et al., 2007) consider
the covariance function to be non-stationary and deal with
an entropy based design criterion according to which the
determinant of the covariance matrix between locations to be
added to the design must be maximized. Both make use of
simulated annealing algorithms to find optimal designs obeying
their criteria.

At this stage we are at a second distinguishing feature
of optimal design algorithms. We can distinguish between
stochastic search algorithms like simulated annealing (Aarts
and Korst, 1989) or evolutionary genetic algorithms and
deterministic algorithms for optimizing the investigated design
criteria.With the exception of the works of Fedorov and Flanagan
(1997), Müller and Pazman (1998, 1999), Pazman and Müller
(2001), Müller (2005), and Spöck (2011) almost all algorithms
for spatial sampling design optimization use stochastic search
algorithms for finding optimal configurations of sampling
locations x1, x2, . . . , xn. The term spatial simulated annealing
(SSA) finds its first manifestation in the work of Groenigen et al.
(1999). Trujillo-Ventura and Ellis (1991) and Müller et al. (2015)
consider multiobjective sampling design optimization. Recently
published articles that are relevant to spatial sampling design are
(Hu and Wang, 2011; Li and Bardossy, 2011).

Available free software for our spatial sampling design
optimization is quite rare. Up to our knowledge there are only
6 sampling design toolboxes freely available including that of
the first author: (Gramacy and Lee, 2008) has implemented
sampling design for treed Gaussian random fields in the R-
package tgp. In treed Gaussian random fields the area X of
investigation is partitioned by means of classification trees into
rectangular sub-areas with sides parallel to the coordinate axes.
This software is especially useful for the design of computer
simulation experiments, where parameters guiding the computer
simulation output are identified as spatial coordinates. Another
software especially useful for computer simulation experiments
and sequential design is the DAKOTA package (http://dakota.
sandia.gov). Further papers falling into the category of computer
simulation experiments are (Mitchell and Morris, 1992; Morris
et al., 1993; Schonlau, 1997; Lim et al., 2002; Kleijnen and
van Beers , 2004; Chen et al., 2006; Gramacy and Lee, 2011).
Software freely available upon request for research purposes
and monitoring network optimization is (Le and Zidek, 2009).
This software implements the entropy based design criterion
mentioned above. Gebhardt (2003) implements a branch and
bound algorithm for designing with the criterion (5). Baume
et al. (2011) compare different greedy algorithms for spatial
design. Maybe the above small list of software for spatial
sampling design is not complete and hopefully more software
can be obtained from the different authors of research papers
upon request. Since for the practitioner there is a strong need
for spatial sampling design and almost no software is freely
available this was an impetus for the first author of this paper
to write his own toolbox for spatial sampling design, see
Section 7.
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2. Bayesian Spatial Linear Model and
Classical Experimental Design Problem

We consider a mean square continuous (m.s.c.) and isotropic
random field {Y(x) : x ∈ X ⊆ R2} such that

Y(x) = f(x)Tβ + ε(x), E(ε (x)) = 0,

where f(x) is a known vector of regression functions, β ∈ Rr a
vector of unknown regression parameters and

Cov(Y(x),Y(y)) = C(||x− y||); x, y ∈ X.

Spöck and Pilz (2010) demonstrate that in accordance with
(Yaglom, 1987), one can get an arbitrarily close approximation
to the isotropic random field in form of a mixed linear model

Y(x) ≈ f(x)Tβ + g(x)Tα + ε0(x). (1)

Here the components of the additional regression vector g(·)
are made up of the following radial basis functions (cosine-
sine-Bessel-harmonics); assuming polar coordinates (t, φ)
these are

gm,i(t, ϕ) = cos(mϕ)Jm(ωit); (2)

m = 0, . . . ,M; i = 1, . . . , n

gm,i(t, ϕ) = sin((m−M)ϕ)Jm−M(ωit);
m = M + 1, . . . , 2M; i = 1, . . . , n

and derive from the so-called polar spectral approximation of the
error process ε(x). The above mixed linear model has a linear
deterministic f(x)Tβ and a linear stochastic g(x)Tα component.
The random regression parameter vector α of dimension n(2M+
1) has mean 0, and a diagonal covariance matrix A, whose
variance components can be calculated from the isomorphic
correspondence of the isotropic covariance function to its polar
spectral distribution function. Actually, the continuous spectrum
of the residual process ε(x) is approximated by a discrete
spectrum represented by a piecewise constant function with
discontinuities at ω1, ..., ωn serving as an approximation of the
polar spectral distribution function. We assume the frequencies
ωi to be fixed throughout this work. Above ε0(x) is white-noise
with variance σ 2

0 . [Actually we assume that the variation in the
original error process, which the term g(x)Tα does not take
into account, can be approximated sufficiently closely by the
uncorrelated white noise term ε0(x)].

Starting from the spatial mixed linear model (Equations
1, 2) we may gain further flexibility with a Bayesian approach
incorporating prior knowledge on the trend. To this we assume
that the regression parameter vector β is random with

E(β) = µ ∈ Rr, Cov(β) = 8 (3)

This is exactly in the spirit of Omre and Halvorsen (1989) who
introduced Bayesian kriging this way. They used physical process
knowledge to arrive at “qualified guesses” for the first and second
order moments, µ and 8, respectively. On the other hand, the

state of prior ignorance or non-informativity can be modeled
by setting µ = 0 and letting 8−1 tend to the matrix of zeros,
thus passing the “Bayesian bridge” to universal kriging, see (Omre
and Halvorsen, 1989). Later, when doing spatial sampling design
with the Smith-Zhu design criterion, we will make use of exactly
this value 8−1 = 0, because this design criterion originally is
defined for universal kriging. For the design procedures discussed
immediately next onemay arrive at guesses for8 either bymeans
of expert opinions, by means of estimates from similar data or
from part of the actual data used (empirical Bayes), see (Pilz,
1991). We remark that Table 1 gives explanations of the most
used notations and definitions in this article.

Now, combining (Equations 1–3), we arrive at the Bayesian
spatial linear model (BSLM)

Y(x) = h(x)Tγ + ε0(x) (4)

where

h(x) =
(

f(x)
g(x)

)

, γ =
(

β

α

)

,

E(γ ) =
(

µ

0

)

,Cov(γ ) =
(

8 0

0 A

)

= :Ŵ

Here A is a diagonal covariance matrix containing as variance
components either 1-times or 2-times the heights of the
steps of the step-wise approximation to the polar spectral
distribution function (see also, Equation 12). Spöck and Pilz
(2010) demonstrate that Bayesian linear trend estimation in the
above BSLM actually approximates Bayesian linear kriging in
the original model arbitrarily closely. The same is true for the
total mean squared error (TMSEP) of the trend prediction and
the TMSEP of Bayesian kriging. The BSLM Equation (4) is an
accurate substitute for the original random field if its isotropic
covariance function C(||x1 − x2||) is well-approximated by the
non-stationary covariance function C(x1, x2) = g(x1)

TAg(x2)
of the BSLM. See Section 7 and Figure 5 how much accuracy is
possible with 3094 cosine-sine-Bessel surface harmonics.

Taking the TMSEP

σ 2
0 {1+ h(x0)

T(HTH+ σ 2
0 Ŵ−1)−1h(x0)}

of the Bayesian spatial linear trend prediction

h(x0)
T(HTH+ σ 2

0 Ŵ−1)−1(HTY+ σ 2
0 Ŵ−1γ 0)

in the approximating BSLM as a substitute for the original Bayes
kriging TMSEP, we arrive at the following classical experimental
design problem for so-called I-optimality:

∫

X
h(x0)

T(HT(dn)H(dn)+ σ 2
0 Ŵ−1)−1h(x0)dx0

→ min
dn

. (5)

Here “I” is a substitute for “Integrated”: The integral of the
TMSEPs is calculated over the whole region of investigation X

and then optimal design locations are searched for in such a
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TABLE 1 | Notations sorted in order of appearance.

Notation Explanation

x1, x2, ..., xn The spatial sampling locations

Y (x) The stationary spatial random field

X The spatial region of interest

f(x)Tβ The trend function
T Transpose

β The trend parameter vector

ε(x) The residual random field

E(.) Expectation

Rr The r-dimensional Euclidean space

C(||x − y||) The isotropic covariance between

Y (x) and Y (y)

g(x)Tα Polar spectral approximation to ε(x)

α Vector of stochastic amplitudes

with expectation 0

ε0 (x) Uncorrelated homogeneous random

field with mean 0

gm,i (t, φ) Components of g(.); cosine-sine-

Bessel surface harmonics

(t, φ) Polar coordinates

sin(.) The sine-function

cos(.) The cosine-function

Jm (.) Bessel function of the first kind

and order m

ω1, ..., ωn A discrete polar spectrum (frequencies)

of the stationary random field Y (x)

0 The null-vector

A The diagonal covariance matrix of α

µ The a-priori mean of β

8 The a-priori covariance matrix of β

h(x) The concatenation of f(x) and g(x)

γ The concatenation of the random

vectors β and α

Ŵ The covariance matrix of γ

Y The data vector of Gaussian observations

dn = {x1, x2, ..., xn} The spatial design

H(dn ) Design matrix from the BSLM (4)

n The number of sampling locations

σ2
0 The variance of the process ε0 (x)

MB (ξ ), MB (dn ), The Bayesian information matrices

ξ A continuous design

U A square matrix of the same

dimension as MB (dn ) containing

together with it the kriging variance

information

tr(S) The trace (sum of the diagonal elements)

of a square matrix S

9(MB (ξ )) The design functional; here average

kriging variance, to be minimized

ξ * Optimal design measure

4 The set of all design (probability)

measures defined on the compact

region X

Cθ (t) The isotropic covariance function

(Continued)

TABLE 1 | Continued

Notation Explanation

parameterized in θ

θ The vector of covariance parameters

like nugget, sill, range

|X| The size of the region X

x0 Location where prediction takes place

ŷ1−α/2 (Y) Estimated 1− α/2 predictive quantile

at x0

8(., θ0 ) True, unknown, Gaussian predictive

cumulative distribution function

θ0 True, unknown, covariance parameter

vector

θ̂ The restricted maximum likelihood

(REML) estimate of the covariance

parameter vector θ

σ2
θ̂
(x0 ) The universal kriging variance at location

x0 evaluated at θ̂

λ
θ̂
(x0 ) The universal kriging weights vector at

location x0 evaluated at θ̂

K
θ̂

The covariance matrix between the

observations in Y evaluated at θ̂

∂
∂θ

The gradient with respect to θ

κ
θ̂

The Fisher information matrix for REML

estimation of θ evaluated at θ̂

−1 The matrix inverse

y1−α/2 The 1− α/2 quantile of the standard

Gaussian distribution

F The design matrix calculated from the

trend model f(x)Tβ

Y
UK,θ̂

(x0 ) The universal kriging predictor at

location x0 evaluated at θ̂

g(ω) Polar spectral density function

G(ω) Polar spectral distribution function

σ2
0,K

Universal kriging variance at location x0

G Design matrix based on g(x)Tα

I Identity matrix

c0 Covariance vector between the variable

to be predicted at the location x0 and

the data Y

Em,i,k Square matrix of dimension

n(2M+ 1) with only the m, i, k-th

diagonal element equal to 1 and all

other elements 0

M = MB − σ2
0 Ŵ−1 The non-Bayesian information matrix

gλ (z) The Box-Cox transformation to

Gaussianity with transformation

parameter λ

Z The data vector of non-Gaussian

observations

Ŷ
θ̂ ,OK

(x0 ) The ordinary kriging predictor at

location x0 evaluated at θ̂

g−1
λ

(.) Inverse Box-Cox transformation

PtG Trans-Gaussian probability

PG Gaussian probability

1x, 1t Space and time lags
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way that this integral becomes minimized. dn = {x1, x2, . . . , xn}
collects either the design points to be added to the monitoring
network or in the case of reducing the network the design
points remaining in the monitoring network. H(dn) = (hj(xi))i,j
denotes the designmatrix, which explicitly depends on the design
points in the set dn and Y = (Y(x1), ...,Y(xn))

T is the vector of
available data.

At this point we advise the reader not familiar with Bayesian
experimental design theory to read the Appendix of Spöck and
Pilz (2010). It is appropriate to clarify here just the statistical
difference between experimental design and spatial sampling
design: Spatial sampling design tries to specify in an optimal
way measurement locations of a spatial process in order to
predict it optimally or to make optimal estimates of its properties.
Experimental design on the other hand is related to the planning
of experiments, especially in combination with regression- or
analysis of variance models. Concerning regression- and analysis
of variance models the key point in this theory is that the above
so-called concrete design problem, which is mathematically
intractable, may be expanded to a so-called continuous design
problem that has the nice feature of being a convex optimization
problem. Thus, the whole apparatus of convex optimization
theory is available to approximately solve the above design
problem for I-optimality. In particular, directional derivatives
may be calculated and optimal continuous designs may be found
by steepest descent algorithms. Continuous designs are just
probability measures ξ onX andmay be rounded to exact designs
dn. Defining the so-called continuous Bayesian information
matrix

MB(ξ ) =
∫

X
h(x)h(x)Tξ (dx)+ σ 2

0

n
Ŵ−1 (6)

and

U =
∫

X
h(x0)h(x0)

Tdx0, (7)

it may be shown that the set of all such information matrices is
convex and compact and that the extended design functional

9(MB(ξ )) = tr(UMB(ξ )
−1) (8)

is convex and continuous inMB(ξ ). The above design functional
9(.) thus attains its minimum at a design ξ∗ ∈ 4, where 4 is
the set of all probability measures defined on the compact design
region X, see (Pilz, 1991). The closeness of exact designs dn to the
optimal continuous design ξ∗ may be judged by means of a well-
known efficiency formula (cp. the Appendix of Spöck and Pilz
2010).

The idea to approximate the random field by a linear mixed
model containing a linear deterministic trend component plus
a linear stochastic fluctuation component of the form Equation
(1) is not new. Actually, Fedorov (1996) was the first to do this.
He made use of the so-called Karhunen-Loeve approximation
to the error process. This approach has the disadvantage
that a complicated Eigen-problem has to be solved, whereas
the calculation of the polar spectral approximation, which is
used here, is easier and more accessible, see (Spöck and Pilz,

2010). We also think that there is not much accuracy lost in
combination with computation time in using the polar spectral
representation although it is true for sure that the Karhunen-
Loeve representation makes use of Eigen-functions and therefore
should provide more accuracy with the same number of surface
harmonics. Up to date we have no numerical experience in this
direction because of the complicatedness of the Eigen-problems
to be solved.

The real problem with spatial sampling design is that it is
a complicated combinatorial task to select a certain number of
measurement locations in an optimal way to minimize certain
criteria concerning optimality of prediction or estimation of
certain properties of the random field. Up to date the most used
methodology to optimize these criteria and select measurement
locations in an optimal way is simulated annealing, Groenigen
et al. (1999). Simulated annealing has the disadvantage that it is
random, slow, very time consuming and that different restarts
of the algorithm lead to different results. On the opposite, our
approach, showing the equivalence of the spatial sampling design
problem to an experimental design problem from Bayesian linear
regression, can be solved by means of deterministic steepest
descent algorithms and even more, spatial sampling designs can
be characterized using experimental design theory by means
of well-known equivalence theorems, Kiefer (1959), Fedorov
(1972), and Whittle (1973).

3. The Smith and Zhu Design Criterion
Taking Account of Estimated Covariance
Function

In real world applications the isotropic covariance function Cθ (t)
is always uncertain and has to be estimated. The kriging predictor
used is then based on this estimated covariance function. Thus,
the kriging predictor is always a plug-in predictor with the
estimate for the covariance function inserted into the formula for
the kriging predictor and the reported (plug-in) kriging variance
may be shown to underestimate the true variance of this plug-in
predictor, Harville and Jeske (1992).

Smith and Zhu (2004) consider spatial sampling design by
means of minimizing the average of the lengths of estimated 1−α

predictive intervals:

1

|X|

∫

X
{length of estimated 1− α predictive

interval at x0}dx0 → Min
dn={x1,...,xn}

Here |X| denotes the area of the design region. Their predictors
of the α/2 and 1 − α/2 quantiles of the predictive distributions
are selected in such a way that the corresponding estimated
predictive intervals have coverage probability bias 0 to order
O(n−1), where n is the number of observations. That means,
E{8(ŷ1−α/2(Y), θ0)} = 1 − α/2 to order O(n−1), where
ŷ1−α/2(Y) is the estimated (1 − α/2) predictive quantile and
8(., θ0) is the true, unknown predictive cumulative distribution
function, i.e., a Gaussian distribution with mean equal to the true
unknown universal kriging predictor and variance equal to the
true unknown universal kriging variance, both based on the true
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unknown covariance parameters θ0. The above expectation is
taken with respect to the true unknown Gaussian distribution of
the dataY. The estimates ŷα/2(Y) and ŷ1−α/2(Y) of thementioned
quantiles are essentially the plug-in universal kriging predictor
based on restricted maximum likelihood (REML) estimation of
the covariance parameters ± a scaled plug-in kriging standard
deviation term that is corrected to take account of REML
estimation, see Equation (35) and (Smith and Zhu, 2004). Based
on Laplace approximations of the true and estimated predictive
densities and on second-order Taylor expansions of some more
expressions, Smith and Zhu (2004) show that the above design
criterion, up to order O(n−2), is equivalent to:

∫

X
[σ 2

θ̂
(x0)+ tr(κ−1

θ̂
{
∂λ

θ̂
(x0)

∂θT
}TK

θ̂

∂λ
θ̂
(x0)

∂θT
)

+y21−α/2{
∂σ

θ̂
(x0)

∂θ
}Tκ−1

θ̂

∂σ
θ̂
(x0)

∂θ
]dx0

→ Min
dn={x1,...,xn}

(9)

Obviously the above design functional is evaluated at θ̂ , the
REML estimate of the covariance parameters. Above

(κ
θ̂
)i,j = tr(W

θ̂

∂K
θ̂

∂θi
W

θ̂

∂K
θ̂

∂θj
) (10)

is the Fisher information matrix for REML estimation of θ ,

W
θ̂
= K−1

θ̂
− K−1

θ̂
F(FTK−1

θ̂
F)−1FTK−1

θ̂
, (11)

y1−α/2 is the 1−α/2-quantile of the standard normal distribution,
σ 2

θ̂
(x0) is the universal kriging variance at x0 and λ

θ̂
(x0) is the

universal kriging weights vector for prediction at x0 so that the
universal plug-in kriging predictor reads

YUK,θ̂
(x0) = λ

θ̂
(x0)

TY

The design criterion given above takes both prediction accuracy
and covariance uncertainty into account. A design criterion
similar to the Smith and Zhu (2004) criterion was considered
also by Zimmerman (2006).

Some details on the derivation of the above Equation (9) are
indicated here: Laplace-approximation tries to approximate the
value of the integral

∫

2

el(θ)+Q(θ)9(yp;Y, θ)dθ

Actually, the Bayesian predictive density at a location x0 can
be written as a quotient of two such expressions with l(θ)
the restricted log-likelihood function, 9(yp;Y, θ) the Gaussian
distribution function having as mean the universal kriging
predictor at x0 and as variance the universal kriging variance and
Q(θ) the log of the a-priori density for θ . Laplace-approximation
approximates the function l(θ) + Q(θ) + log(9(yp;Y, θ∗)) by

a second-order Taylor expansion at θ∗ with θ∗ either the true
unknown covariance parameter θ0, its REML-estimate θ̂ or its
posterior mode θM and then calculates an approximation to the
above integral as

{2π
n
}p/2|6θ∗ |−1/2el(θ

∗)+Q(θ∗)9(yp;Y, θ∗),

where p is the dimension of θ , n is the number of data and6θ∗ =
∂2 1

n (l(θ
∗)+Q(θ∗)+log(9(yp;Y,θ∗)))

∂θ∂θT
is the Hessian of 1

n (l(θ
∗)+Q(θ∗)+

log(9(yp;Y, θ∗))). Further simplifications in the derivation of
the above Equation (9) are made by means of applying further
second-order Taylor approximations to the inverse Gaussian
distribution function 9−1(.;Y, θ) at θ∗.

4. Experimental Design Theory Applied to
the Smith and Zhu Design Criterion

Sections 2, 3 have demonstrated that by using the BSLM
(Equation 4) as approximation to the true isotropic random field
the I-optimality design criterion (Equation 5) can be completely
expressed in terms of the Bayesian information matrix

MB = HTH+ σ 2
0 Ŵ−1.

and that it is convex on the set of all such information matrices.
Thus, classical convex experimental design algorithms could be
used to find optimal spatial sampling designs minimizing the
criterion (Equation 5).

The aim of this section is to demonstrate that the (Smith
and Zhu, 2004) design criterion has some favorable properties,
too, which allow the application of classical convex experimental
design theory to this design criterion:

Theorem: Expression (Equation 9) can be expressed
completely in terms of the Bayesian information matrixMB. The
design functional is continuous on the convex and compact set
of all matricesMB(ξ ).

This allows us to make use of classical iterative experimental
design algorithms to find spatial sampling designs. The next
following Subsection proves the stated Theorem.

4.1. Proof that the Smith-Zhu Design Criterion
can be Expressed Completely in terms of the
Bayesian Information Matrix MB

Assuming the BSLM (Equation 4), the covariance function
actually is parameterized through the diagonal matrix A and
the nugget variance σ 2

0 . Since the (Smith and Zhu, 2004) design
criterion assumes the covariance parameters to be estimated by
REML we actually estimate this diagonal matrix A and σ 2

0 by this
methodology. The a priori covariance matrix 8 = Cov(β) must
be given almost infinite diagonal values because the (Smith and
Zhu, 2004) approach assumes the trend parameter vector β to
be estimated by generalized least squares and 8 → ∞ bridges
the gap from Bayesian linear to generalized least squares trend
estimation. The a priori mean µ = E(β) can be set to 0 then.
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According to the polar spectral representation given in Spöck
and Pilz (2010), several values in the diagonal matrix A are
identical:

A = diag({dma2i }m=0∗
k
,...,M;i=1,...,n;k=1,2),

with 0∗k = 0 if k = 1 and 0∗k = 1 else, (12)

where the definitions of the a2i ’s, -the discrete spectra-, and the
indexing derive from the polar spectral representation given in
Spöck and Pilz (2010). k = 1, 2 index the sine-Bessel term and the
cosine-Bessel term in formula (Equation 2), respectively dm = 1
for m = 0 and dm = 2 for m ≥ 1. For REML estimation of A we
have two possibilities:

• We can leave the discrete spectra a2i unspecified: This
approach is almost non-parametric because a lot of ai’s and
corresponding frequencies wi are needed to get the isotropic
random field properly approximated and corresponds to
a semiparametric estimation of the spectral distribution
function via a step function.

• We can specify a parametric model for the a2i ’s: The polar
spectral density function for an isotropic random field over
R2 possessing for example an exponential covariance function

B(h) = Cexp(− 3h
α
) is given by

g(w) =
C 3

α
w

(

( 3
α
)2 + w2

)3/2
.

We note that this α for the range is different from the α in
Equation (1). The polar spectral density function is defined as
the first derivative of the polar spectral distribution function
G(w), see (Spöck and Pilz, 2010). A possible parametrization
for the a2i ’s:

a2i = 0.5(g(wi)+ g(wi−1))(wi − wi−1),

i = 1, 2, . . . , n, (13)

where 0 = w0 < w1 < . . . < wn are fixed frequencies.

Figure 1 displays the behavior of different types of correlation
functions and their associated polar spectral distribution
functions. The approximations of the correlation functions
are based on 50 pre-specified support points ω1, ..., ω50 with
increasing frequency lags. The approximations for the spherical
and exponential correlation functions are close enough even for
30 and fewer support points. Roughly speaking, if the correlation
function C(r)/C(0) is suspected to have a steep descent at the
origin (irregular behavior and strong fluctuations ofY(.)) thenωn

should be chosen large enough, whereas in case of a more regular
behavior of Y(.) and moderate steepness of the correlation
function near the origin (as e.g., in case of a Gaussian correlation
function) we do not need large frequencies ωn. The relationship
between the gradient of the correlation function at the origin and
the choice of the largest necessary frequency ωn can be more
deeply explored using results from Yaglom (1987), especially
results 4.1.46 and 4.1.47. From our numerical experience we
propose to choose ωn > ω0.99, the 99%-quantile of the spectral

FIGURE 1 | Above: Polar spectral distribution functions. Below:

Corresponding correlation functions and their approximations.

distribution function [99% of its maximum level C(+0)], i.e.,
G(ω0.99) = 0.99C(+0). For example, for a Gaussian covariance
function C(r) = s exp(3r2/α2) with sill s = 1 and range α = 10,
we obtain ω0.99 = 0.825, whereas for a spherical covariance
function with the same parameters we obtain ω0.99 = 19.5.

One may want to skip the following subsubsections at a first
reading. It is just shown there that the (Smith and Zhu, 2004)
design criterion can be expressed as a function of the information
matrixMB.

4.1.1. Proof that the Kriging Variance σ 2
0,K

, the Kriging

Weights Vector λ and W can be Expressed in Terms

of MB

According to Equation (5), the kriging variance can be
expressed as

σ 2
0,K = σ 2

0

(

1+ h(x0)
TM−1

B h(x0)
)

.

The kriging weights vector may be written

λ = HM−1
B h(x0),
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and furthermore,

W = 1

σ 2
0

(I−HM−1
B HT), (14)

where I is the identity matrix. All these expressions derive from
the application of the Sherman-Morrison-Woodbury matrix
inversion formula

(A+ UCV)−1 =
= A−1 − A−1U(C−1 + VA−1U)−1VA−1,

from the fact that GAg(x0) and σ 2
0 I + GAGT are the vector of

covariances and covariance matrix of observations, respectively,
and that the kriging weights vector for Bayesian kriging may be
written as

λ = (K+ F8FT)−1(c0 + F8f(x0)),

where F is the design matrix of the linear regression that is based
on the drift function f(x).

4.1.2. Partial derivatives of M−1
B

Let MB = HTH + σ 2
0 Ŵ−1 be the Bayesian information matrix.

Using the matrix identity

∂M−1

∂t
= −M−1 ∂M

∂t
M−1,

the partial derivative ofM−1
B with respect to σ 2

0 = nugget may be
calculated as

∂M−1
B

∂σ 2
0

= −M−1
B Ŵ−1M−1

B . (15)

Defining

γm,i,k = dma
2
i ,

m = 0∗k, . . . ,M;
i = 1, . . . , n;
k = 1, 2

we obtain

∂M−1
B

∂γm,i,k
= σ 2

0

γ 2
m,i,k

M−1
B Em,i,kM

−1
B ,

where Em,i,k is a matrix of 0’s, with only the m, i, k-th diagonal
element being 1. Setting γm,i,k = dma

2
i and using

∂M−1
B

∂a2i
=

∑

k= 1,2

M
∑

m= 0∗
k

∂M−1
B

∂γm,i,k

∂γm,i,k

∂a2i

one gets

∂M−1
B

∂a2i
= σ 2

0

a4i
M−1

B JiM
−1
B , (16)

where

Ji =
∑

k= 1,2

M
∑

m= 0∗
k

1

dm
Em,i,k.

For the parametric model (Equation 13), partial derivatives with
respect to α = range, C = partial sillmay be calculated by using

∂M−1
B

∂α
=

n
∑

i= 1

∂M−1
B

∂a2i

∂a2i
∂α

∂M−1
B

∂C
=

n
∑

i= 1

∂M−1
B

∂a2i

∂a2i
∂C

.

Defining

Jα = σ 2
0

n
∑

i= 1

1

a4i

∂a2i
∂α

Ji,

JC = σ 2
0

n
∑

i= 1

1

a4i

∂a2i
∂C

Ji

one obtains

∂M−1
B

∂α
= M−1

B JαM
−1
B (17)

∂M−1
B

∂C
= M−1

B JCM
−1
B (18)

Note, these expressions are dependent on the spatial design only
via the Bayesian information matrixMB.

4.1.3. Partial Derivatives of σ0,K and λ

Using the partial derivatives ofM−1
B given in Section 4.1.2 and the

expressions for σ 2
0,K and λ from Section 4.1.1, we arrive at:

∂σ 2
0,K

∂σ 2
0

= 1+ tr(h(x0)h(x0)
TM−1

B MM−1
B ) (19)

∂λ

∂σ 2
0

= −HM−1
B Ŵ−1M−1

B h(x0) (20)

∂σ 2
0,K

∂a2i
= σ 4

0

a4i
tr(h(x0)h(x0)

TM−1
B JiM

−1
B )

∂λ

∂a2i
= σ 2

0

a4i
HM−1

B JiM
−1
B h(x0) (21)

∂σ 2
0,K

∂α
= σ 2

0 tr(h(x0)h(x0)
TM−1

B JαM
−1
B ) (22)

∂σ 2
0,K

∂C
= σ 2

0 tr(h(x0)h(x0)
TM−1

B JCM
−1
B )

∂λ

∂α
= HM−1

B JαM
−1
B h(x0) (23)

∂λ

∂C
= HM−1

B JCM
−1
B h(x0), (24)
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where M = MB − σ 2
0 Ŵ−1. Partial derivatives

∂σ0,K
∂θ

are then
given as

∂σ0,K

∂θ
=

∂σ 2
0,K

∂θ
/(2

√

σ 2
0,K). (25)

4.1.4. Proof that the Information Matrix κ can be

Expressed in Terms of MB

The i, j-th element of the information matrix κ is defined in
Equation (10), whereW is defined in Equation (14) and we must
set

K = HŴHT + σ 2
0 I− F8FT . (26)

In the semiparametric model θi and θj are either made of the
parameters ai, aj, σ

2
0 ; for the parametric model θi and θj may be

either made of the parameters α,C, σ 2
0 .

For the partial derivatives of K we obtain along the same lines
of reasoning as in Sections 4.1.2, 4.1.3:

∂K

∂σ 2
0

= I

∂K

∂a2i
= HLiH

T

∂K

∂α
= HLαH

T

∂K

∂C
= HLCH

T,

where

Li =
∑

k= 1,2

M
∑

m= 0∗
k

dmEm,i,k,

Lα =
n

∑

i= 1

∂a2i
∂α

Li,

LC =
n

∑

i=1

∂a2i
∂C

Li.

Inserting these expressions and the expression (Equation 14) for
W into the definition (Equation 10) of the Fisher information
matrix we obtain, after some linear algebra, the following
expressions for κ:

κa2i ,a
2
j

= tr(LjVLiV) (27)

κσ 2
0 ,σ 2

0
= n−m

σ 4
0

+ tr(Ŵ−1M−1
B Ŵ−1M−1

B )

κσ 2
0 ,a2i

= tr(Ŵ−1M−1
B VLi)

κα,α = tr(LαVLαV) (28)

κC,C = tr(LCVLCV) (29)

κα,C = tr(LCVLαV) (30)

κσ 2
0 ,α = tr(Ŵ−1M−1

B VLα) (31)

κσ 2
0 ,C = tr(Ŵ−1M−1

B VLC), (32)

where

V = Ŵ−1 − σ 2
0 Ŵ−1M−1

B Ŵ−1,

n is the number of design locations andm is the dimension of the
information matrix.

4.1.5. The Smith-Zhu Design Criterion Expressed

Completely in Terms of MB

We are now going to show that the (Smith and Zhu, 2004) design
criterion (Equation 9) is dependent on the spatial sampling
design only via the Bayesian information matrix MB. For
simplicity we consider here only the expression of this design
criterion for the parametric model (Equation 13). By analogy,
similar expressions may be derived also for the semiparametric
model. Defining
θ = (σ 2

0 , α,C)T we have to derive expressions for

tr

(

κ−1{ ∂λ

∂θT
}TK ∂λ

∂θT

)

and

{∂σ0,K

∂θ
}Tκ−1 ∂σ0,K

∂θ
.

Expressions dependent only onMB for the 3×3 matrix κ , for the
kriging variance σ 2

0,K and all partial derivatives of σ0,K and λ have
already been given in the last subsubsections.

Defining the 3-column matrix

Rx0 = (−M−1
B Ŵ−1M−1

B h(x0),

M−1
B JαM

−1
B h(x0),M

−1
B JCM

−1
B h(x0))

such that

∂λ

∂θT
= HRx0

we obtain after some linear algebra

tr

(

κ−1{ ∂λ

∂θT
}TK ∂λ

∂θT

)

= (33)

= tr
(

κ−1Rx0
T{MUM+ σ 2

0M}Rx0

)

,

where

M = MB − σ 2
0 Ŵ−1

U =
(

0 0

0 A

)

.

Obviously,

{∂σ0,K

∂θ
}Tκ−1 ∂σ0,K

∂θ
(34)

is dependent on the spatial design only via the Bayesian
information matrix MB, observing expressions (Equations 27–
32) for κ and the expressions (Equations 20–25) for the partial
derivatives of σ0,K .
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We may now consider experimental design ideas and replace,
in the above expressions for the (Smith and Zhu, 2004)
design criterion, the matrix MB everywhere by its continuous
version nMB(ξ ), where n is the number of spatial samples in
consideration and

MB(ξ ) =
∫

X
h(x)h(x)Tξ (dx)+ σ0

n
Ŵ−1

with ξ (dx) a probability measure on the design space X, is the
so-called continuous Bayesian information matrix associated to
the BSLM (Equation 4). As already mentioned, the set of all such
informationmatrices is convex and compact. This way the (Smith
and Zhu, 2004) design criterion becomes a continuous functional
over the convex and compact set of all such continuous Bayesian
information matrices MB(ξ ). Continuity and compactness are
nice properties because they guarantee that actually a minimum
among all such continuous information matrices exists for this
design functional.

5. Spatial Sampling Design for
Trans-Gaussian Kriging

In trans-Gaussian kriging the originally positive valued data
Z(xi), i = 1, 2, . . . , n are transformed to Gaussianity by means
of the Box-Cox-transformation

gλ(z) =
{

zλ−1
λ

: λ 6= 0
log(z) : λ = 0

.

Let Z = (Z(x1),Z(x2), . . . ,Z(xn))
T be the vector of original

data and

Y = (gλ(Z(x1)), gλ(Z(x2)), . . . , gλ(Z(xn)))
T

be the vector of transformed data. The predictive density for
trans-Gaussian kriging at a location x0 then may be written:

ϕ(gλ(z); ŶOK(x0), σ
2
OK(x0)) z

λ−1,

where ϕ(.; ŶOK(x0), σ
2
OK(x0)) is the Gaussian density with mean

equal to the ordinary kriging predictor ŶOK(x0) at x0 and based
on the transformed variables Y, and variance equal to the
ordinary kriging variance σ 2

OK(x0). The expression zλ−1 is the
Jacobian of the Box-Cox transformation.

For spatial sampling design taking into account the REML
estimation of the covariance parameters θ we can consider
again the average of the lengths of estimated (1 − α)-predictive
intervals. In order to make the lengths of estimated predictive
intervals also dependent on REML-estimation of the covariance
function, we can consider instead of the Gaussian density
ϕ(.; ŶOK(x0), σ

2
OK(x0)) that unique Gaussian density whose α/2

and 1−α/2 quantiles are given by the endpoints of the following
estimated (1 − α) predictive interval derived in Smith and

Zhu (2004) and having coverage probability bias 0 to order
O(n−1):

Ŷ
θ̂ ,OK(x0)±

y1−α/2σθ̂
(x0){1+

1

2σ 2
θ̂
(x0)

[tr(κ−1

θ̂
{
∂λ

θ̂
(x0)

∂θT
}TK

θ̂

∂λ
θ̂
(x0)

∂θT
)+

y21−α/2{
∂σ

θ̂
(x0)

∂θ
}Tκ−1

θ̂

∂σ
θ̂
(x0)

∂θ
]}. (35)

Here, θ̂ is the REML estimate of the covariance parameters
and all expressions are evaluated at this estimate,
y1−α/2 is the 1 − α/2 quantile of the standard normal
distribution.

Later, when calculating spatial sampling designs with the
algorithms from theAppendix and investigating new prospective
design locations with no data available, we have to replace in the
statistic T

θ̂
(Y) = Ŷ

θ̂ ,OK(x0) every variable Y(xi) for which we do
not have a datum by its ordinary kriging predictor based on the
available data.
The above estimated lower and upper quantiles ŷα/2 and ŷ1−α/2 of
the Gaussian estimated 1−α predictive intervals are transformed
back to the original Z-scale by means of the inverse Box-Cox
transformation g−1

λ (.) to get estimated predictive intervals

[ẑα/2: = g−1
λ (ŷα/2), ẑ1−α/2: = g−1

λ (ŷ1−α/2)]

for trans-Gaussian kriging.
Moreover, although we have spoken only about the coverage

probability bias 0 to order O(n−1) of the estimated predictive
intervals [ŷα/2, ŷ1−α/2] for Gaussian random fields, coverage
probability bias 0 is also true for the proposed estimated
trans-Gaussian predictive intervals [ẑα/2, ẑ1−α/2] as long as we
consider the transformation parameter λ to be fixed and not
estimated. This can be easily seen from the fact that

PtG: = PtG(Z0 ≤ ẑ1−α/2|Z) =
= PtG(gλ(Z0) ≤ gλ(ẑ1−α/2)|Z) =
= PG(Y0 ≤ ŷ1−α/2|Y) = :PG,

where Z0 and Z are random variables from the true trans-
Gaussian random field and Y0 and Y are random variables
from the corresponding true Gaussian random field at locations
x0, x1, ..., xn ∈ X, and gλ(.) is the Box-Cox transformation.
Thus, the random variables PtG and PG coincide. They provide
the values of the true predictive trans-Gaussian and Gaussian
distribution function at the estimated quantiles. For the Gaussian
case we already know from the definition of ŷ1−α/2 that E{PG} =
1−α/2 to orderO(n−1) because of unbiasedness. Here, again, the
expectation is taken with respect to the true Gaussian distribution
of the data Y. From the coincidence of the random variables
PtG and PG we also have E{PtG} = 1 − α/2 and the proposed
estimated predictive intervals have thus coverage probability bias
0 also in the trans-Gaussian case.

In reality, the transformation parameter λ itself is estimated,
too, e.g., by maximum likelihood, then is plugged-in into the
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ordinary kriging predictor Ŷ
θ̂ ,OK(x0) of (Equation 35) by means

of transforming the original data Z with the estimated Box-
Cox transformation, and is then used again to transform the
Gaussian quantiles ŷα/2 and ŷ1−α/2 by means of the inverse Box-
Cox transformation to the original Z-scale. In a future paper
we will take account of this additional uncertainty, assume that
both λ and θ are estimated by means of maximum likelihood
and will investigate estimated predictive intervals with coverage
probability bias 0, too.

6. Properties of the Smith and Zhu Design
Criterion and a Deterministic Optimization
Algorithm

For the optimization of the (Smith and Zhu, 2004) design
criterion we make use of the same principal greedy design
algorithms as described in the Appendix. We must simply
replace 9(ξ ) from the Appendix by the (Smith and Zhu,
2004) design functional or the design functional for the trans-
Gaussian case, both given by expressions (Equations 19–35)
and the inverse Box-Cox-transformation. From these formulas
it is obvious that in the Gaussian case, where the criterion
(Equation 9) must be optimized, the calculation of the integral
over the design region X appearing in Equation (9) can be
simplified. Because all expressions under the integral sign are
specific linear combinations of the components of the matrix
function [h(x0)h(x0)

T] one just needs to compute the matrix
U =

∫

X h(x0)h(x0)
Tdx0 once, before applying the iterative

design algorithms formulated in theAppendix. One then gets the
integral (Equation 9) just by inserting components Ui,j from U

instead of hi(x0)∗hj(x0) in the expressions appearing in Equation
(9) and referenced above.

At the first sight, no such computational simplification is
possible for the trans-Gaussian case, since the components of
[h(x0)h(x0)

T] enter the Gaussian quantiles (Equation 35) non-
linearly through 1/σ 2

θ̂
(x0) and σ

θ̂
(x0) and, moreover, these

quantiles are transformed non-linearly via the inverse Box-Cox
transformation. The design functional in the trans-Gaussian case
may be written as the difference of two expressions having the
form

∫

X
inv. Box-Cox transf. of{krigingpredictor+

+
√
linear combination 1 of functions+

+ linear combination 2 of functions√
linear combination 1 of functions

}dx0

The functions referred to in the linear combinations are just the
components of the matrix function h(x0)h(x0)

T . Thus, if one
could show that integrals of the above form can be expressed
just by the integrals of the component functions, then one could
compute the above mentioned matrix U just before applying the
design algorithms from the Appendix and the computational
complexity during optimization would decrease a lot. Up to
date, we could not show that the above mentioned simplification
is possible. Therefore, in our implementation of the design

algorithms given in the Appendix we have to compute an
integral in every step of the optimization algorithms. This is
computationally quite demanding as we will see in the following
section, where we apply our ideas.

The proof of convexity properties of the (Smith and Zhu,
2004) design functional and the design functional for the trans-
Gaussian case is a further topic for future research.

7. Network Design with Rainfall Data

Applications and numerical examples for the I-optimality design
criterium of the Appendix have already been given in Spöck and
Pilz (2010). There the so-called Gomel and Jura data sets have
been considered. All the following computations are done with
the MATLAB and Octave toolbox spatDesign:

wwwu.uni-klu.ac.at/guspoeck/
spatDesignMatlab.zip
wwwu.uni-klu.ac.at/guspoeck/
spatDesignOctave.zip

This toolbox is freely available from the first author.

7.1. Data Set and Preparatory Calculations
The data set considered here is a rainfall data set from Upper
Austria, see (Mateu and Müller, 2012). The monitoring network
comprises 36 locations. Total monthly rainfall has beenmeasured
at each location, starting in January 1994 and ending in
December 2009. In Figure 2 we see that there are obviously areas
in the design region that look very empty, having no sampling
locations. Therefore, because it has only 36 monitoring stations
and the correlation length of the covariance function, Figure 5, is
relatively large compared to the design area, this data set is very
suitable for spatial sampling design with the Smith-Zhu criterion.
The variance of the covariance estimate is quite large and thus
should be included in spatial sampling design. This is a situation
that we are often confronted with in practical applications.

In the book edited by Mateu and Müller (2012) this data set
is analyzed by different authors with different methodologies.
Different approaches to spatio-temporal design are developed
there. Design locations are removed as well as added from/to the
original design. The Smith-Zhu design criterion is considered by
the authors of this article but also by second authors, Zimmerman
and Li (2013). Based on the Smith-Zhu criterion they remove
two stations from the monitoring network, an approach that
is computationally much less demanding than our approach of
adding monitoring stations. The most common methodology
used for optimization of the different design criteria in this
book is simulated annealing, Aarts and Korst (1989). Besides
integrated kriging variance (I-optimality) one other used design
criterion in this book is entropy. It is also well-suited to be
used in a Bayesian spatio-temporal approach to spatial sampling
design. Furthermore, in the book also approaches to informative
sampling and informative missingness are developed. Further
chapters in Mateu and Müller (2012) pertain to large spatial-
temporal data sets, improvements over random sampling,
anisotropies in space-time kriging and sampling design, variable
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FIGURE 2 | Above: The 36 sampling locations of the Upper Austria rainfall

data set set. Below: The 36 time series of average monthly rainfall at each

station.

transformations and entropy criteria, adaptive-dynamic designs,
dynamic designs in the non-Gaussian exponential family,
machine learning and optimal design, pollution dispersion, and
optimal design.

We now come back to our rainfall data set and calculate
for each station the mean rainfall over the years, as well as the
residual rainfall, for each of the 12 months, Figure 3. Hereafter,
we calculate for each station the mean of standardized rain
residuals, the empirical semivariogram corresponding to these
means and a fitted exponential semivariogram to the means of
original rain residuals, Figure 4.

The fact that the standardized semivariograms are almost
the same for all months means that the space-time random
field is separable and that we can use one and the same
semivariogram (the gray one at the Bottom of Figure 4) for
doing spatial sampling design for each month. As the next step
we calculate the polar spectral distribution function, Figure 5,
corresponding to the covariance function in Figure 5. Obviously,
this spectral distribution function almost attains its maximum
of 1735.2 at frequency w = 47. We select frequencies
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FIGURE 3 | Above: The average monthly rainfall over the years at each of the

36 stations, for each of the 12 months. Below: The residual rainfall at each of

the 36 stations, for each of the 12 months.

wi, i = 1, 2, . . . , 34, calculate an approximation to the spectral
distribution function via a step function [the steps are the a2i
from Equations (12, 13)] and check whether this approximation
to the spectral distribution function provides a good fit to the
original covariance function, Figure 5. In order to get a well-
fitting approximating covariance function it is necessary to select
the frequencies ωi more densely close to 0 but to select also quite
large frequencies, where the polar spectral distribution function
almost attains its maximum. The formula for the approximating
covariance function then directly derives from Equations (1, 2, 4)
and is given by

ˆCov(Y(x1)Y(x2)) = g(x1)
TAg(x2)

The worst approximating covariance function may be calculated
along the outer border of upper Figure 2, because the
oscillations of the cosine-sine-Bessel surface harmonics in
Equation (2) are most damped there. A look at the worst
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FIGURE 4 | Above: Empirical semivariograms of the standardized rain

residuals for all of the 12 months and a fitted exponential semivariogram (gray).

Below: Empirical semivariogram for the means of original rain residuals and a

fitted exponential semivariogram (gray).

approximating covariance function in Figure 5 shows that the
difference between the true covariance function and the worst
approximating covariance function at the origin is 20. This is
small scale variation that the approximating covariance function
does not take into account. Later in spatial sampling design we
will add this value of 20 to the nugget effect 106.8 of the true
covariance function. Thus, 20 + 106.8 is the variance of the
uncorrelated error process ǫ0(x) in our approximating BSLM
Equation (4).

We now have all quantities that we need in order to do
spatial sampling design on the basis of our approximating BSLM,
corresponding to the assumption of Gaussianity of observations.

7.2. Optimal Design for Gaussian Kriging
We consider to add 14 additional sampling locations from the
complete design region X to the available grid of 36 sampling
locations. We design for the random field of means of the
original rain residuals with corresponding covariance function
given in Figure 5 and being proportional to the individual
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FIGURE 5 | Above: Polar spectral distribution function and its approximation

(gray). Below: True covariance function (black) and its worst approximation

(gray).

covariance functions of the monthly rain residuals. Because
of this proportionality, designs calculated with the mentioned
covariance function would be optimal also for the individual
monthly residual rainfall fields. Figure 6 shows the optimal 8 and
14 point designs. Obviously, certain locations have been selected
with multiplicities larger than 1. The reason is that the Smith and
Zhu design criterion does not only take account of best prediction
but also of covariance estimation; in order to get the nugget effect
and the behavior of the covariance function close to its origin
well-estimated locations are needed in the optimal design which
are close to each other. Figure 7 plots the decrease of the average
of the lengths of the 95% predictive intervals when adding up to
14 design locations in an optimal way.

7.3. Optimal Design for Trans-Gaussian Kriging
In the above example we have assumed the data to be
Gaussian and have used ordinary kriging for prediction,
although, as is visible from Figure 8, the data are not Gaussian.
Thus, we will consider that the standardized rainfall residuals
can be transformed to Gaussianity by means of a Box-Cox
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FIGURE 6 | Above: Optimal 8 point design for Gaussian kriging. Below:

Optimal 14 point design for Gaussian kriging. Certain locations have been

selected with multiplicities larger than 1. Red dots: Sampling locations added.

transformation. Since the Box-Cox transformation works only
for positive valued data we have to add a positive offset to the
12 monthly sets of standardized rainfall residuals. To identify
the appropriate offset and optimal Box-Cox transformation
parameter λ0 we perform a sequence of Lilliefors tests for
Gaussianity on the transformed standardized rainfall residuals.
We then retain that offset and that corresponding Box-Cox
transformation parameter λ0, where the sum of the 12 p-values
from the Lilliefors tests attains its maximum. Figure 9 gives the
corresponding surfaces of the sum of p-values and number of
rejected hypotheses for Gaussianity at the 10% significance level.
According to these figures the optimal parameters are chosen as:
offset = 53, λ0 = −0.25. Obviously, for these parameters only
one hypothesis of Gaussianity is rejected at the 10% significance
level.

When designing for trans-Gaussian kriging we have the
problem that the designs and the ordinary kriging predictor
Ŷ

θ̂ ,OK(x0) therein are also dependent, via Equation (35), on the
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FIGURE 7 | Average of the lengths of estimated 95% predictive

intervals, when adding up to 14 design locations.
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FIGURE 8 | The 12 histograms of the rainfall residuals+53 in different

shades of gray.

actual data. Since we want to find only one unique design for all
12 months, we have to agglomerate the monthly data somehow
and have to design for these agglomerated data. We proceed as in
the Gaussian case and consider the random field of the means of
standardized rain residuals for spatial sampling design. Let R(x, i)
be the original rainfall residual plus 53 at location x ∈ X and at
month i = 1, 2, ..., 12 and let σ̂ 2

i be the usual empirical estimate
of the variance of the rain residuals for the i-th month. Then,
standardization is performed in the following way:

Z(x, i) = R(x, i)

√

√

√

√

∑12
j= 1 σ̂ 2

j

12σ̂ 2
i

(36)

In the following we discard that the standardization and σ̂ 2
i

actually are estimates and assume them to be fixed and not
random. According to our exploratory analysis, the random
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FIGURE 9 | Above: Sum of the p-values, depending on the transformation

parameter λ and the offset. Below: Number of rejected hypotheses of

Gaussianity at 10% significance level, depending on the transformation

parameter λ and the offset.

variables Z(x, i) all come from trans-Gaussian random fields
with the same Gaussian covariance function and Box-Cox
transformation parameter λ0 = −0.25, but possibly different
means. Consequently, Y(x, i) = gλ0 (Z(x, i)), i = 1, 2, ..., 12,
with gλ0 (.) denoting the Box-Cox transformation, come from
Gaussian random fields with the same covariance functions but
possibly different means. Assuming independence of all random
fields at different months, the meanM(x) = 1

12

∑12
i= 1 Y(x, i) also

comes from a Gaussian random field with covariance function as
given above, but divided by 12. As a consequence, g−1

λ0
(M(x)) =

g−1
λ0

( 1
12

∑12
i= 1 gλ0 (Z(x, i))) comes from a trans-Gaussian random

field with Box-Cox parameter λ0 = −0.25 and Gaussian
covariance function divided by 12. It may be shown directly that

g−1
λ0

(M(x)) = (37)

=
( 1
12

∑12
i= 1 Z(x, i)

λ0 )1/λ0

1
12

∑12
i= 1 Z(x, i)

1

12

12
∑

i= 1

Z(x, i).

We have validated by means of simulations that for λ0 = −0.25
the standard deviation of the expression

( 1
12

∑12
i= 1 Z(x, i)

λ0 )1/λ0

1
12

∑12
i= 1 Z(x, i)

is quite small compared to the values of 1
12

∑12
i= 1 Z(x, i). Hence,

we may assume the above expression to be constant with value
d > 0, the simulated mean of above expression. Because all
considered random fields are stationary, the factor d is unique
to all locations x ∈ X. An alternative choice for d would be

d =
stdev(g−1

λ0
(M(x)))

stdev( 1
12

∑12
i= 1 Z(x, i))

=
stdev(g−1

λ0
(M(x)))

1
12

√

∑12
i= 1 σ̂ 2

i

with stdev(.) denoting standard deviation, thus making the
variances to the left and right in the approximation to expression
(Equation 37) equal. Thus, the distribution of 1

12

∑12
i= 1 Z(x, i) is

quite well-approximated by the distribution of 1
d
g−1
λ0

(M(x)).
It can be shown that scaling up trans-Gaussian random

variables by a factor c > 0 results again in a trans-Gaussian
random field, but with the corresponding Gaussian random
field having as covariance function the original covariance
function multiplied by c2λ, and having as mean the original
Gaussian mean multiplied by cλ and then linearly shifted by
cλ−1

λ
. According to this result the distribution of 1

d
g−1
λ0

(M(x))
is trans-Gaussian, too, with transformation parameter λ0 and
above mentioned unique Gaussian covariance function of the
random fields {Z(x, i); x ∈ X}, i = 1, 2, ..., 12 multiplied by
1
12 (

1
d
)2λ0 . The above approximation is slightly biased with respect

to both, the mean and the covariance of the Gaussian random
variablesM(x) and the approximately Gaussian random variables
gλ0 (d

1
12

∑12
i= 1 Z(x, i)).

In our approach to spatial sampling design we can therefore
assume that the random field of the means of standardized
rain residuals can be approximated by a trans-Gaussian random
field with Box-Cox transformation parameter λ0 = −0.25
calculated from the 12 monthly trans-Gaussian random fields of
standardizedmonthly rain residuals and corresponding Gaussian
covariance function multiplied by 1

12 (
1
d
)2λ0 . Furthermore, we

note that 1
12

∑12
i= 1 R(x, i) = 1

12

∑12
i= 1 Z(x, i). We thus run

our optimal design algorithms from the Appendix for the
agglomerated random field { 1

12

∑12
i= 1 R(x, i); x ∈ X}, the

random field of mean original raw rainfall residuals. Figure 10
shows empirical semivariogram estimates of the Box-Cox
transformed standardized rain residuals and a fitted exponential
semivariogram function.

We go on to calculate the spectral distribution function
corresponding to the covariance function of the Box-Cox
transformed standardized rain residuals multiplied by 1

12 (
1
d
)2λ0 ,

its step-wise approximation and the worst approximating
covariance function. We note that, close to the origin
h = 0, the difference between the true covariance function
and its approximation is 0.001. Finally, Figure 11 visualizes
optimal 8- and 14-point designs for trans-Gaussian kriging
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FIGURE 10 | Empirical semivariograms of the Box-Cox transformed

standardized rain residuals for all of the 12 months and a fitted

exponential semivariogram (gray). The same Box-Cox parameter

λ = −0.25 is used for the calculation of all variograms.

of { 1
12

∑12
i= 1 R(x, i); x ∈ X}. Figure 12 gives the lengths of

estimated 95% predictive intervals. Obviously, the designs for
trans-Gaussian kriging in Figure 11 are completely different
from the designs for Gaussian kriging in Figure 6. Whereas
the designs in Figure 6 are much more space-filling, the
design locations in Figure 11 have been selected in areas
that have high mean value of residual rainfall. This fact
becomes more transparent when we compare Figures 11–13,
where the predictive median of mean residual rainfall from
the estimated predictive distributions of trans-Gaussian kriging
is visualized. Obviously, in areas with high mean residual
rainfall the average length of estimated 95% predictive intervals
can be most decreased. This fact results from a fundamental
difference between designs for Gaussian random fields and
trans-Gaussian ones: Designs for trans-Gaussian kriging have
stronger dependence on the data values themselves, through the
ordinary kriging predictor in (Equation 35) and the inverse Box-
Cox transformation of the corresponding estimated Gaussian
predictive quantiles.

Predictive maps for the original rainfall field at each month
can be obtained by means of applying (trans-) Gaussian kriging
also to the means of original rainfall values visible in Figure 2

and then adding these predictive maps for the mean rainfall to
appropriately scaled, cp. Equation (36), predictions for the mean
rainfall residuals.

According to Equation (37), we have

g−1
λ0

(M(x)) ≈ (38)

≈ d
1

12

12
∑

i= 1

R(x, i) =

= d
1
12

∑12
i= 1 R(x, i)

R(x, j)
R(x, j).

By means of simulations we could once again show that for
our λ0 = −0.25 the variance of the quotient in Equation

FIGURE 11 | Above: Optimal 8 point design for trans-Gaussian kriging.

Below: Optimal 14 point design for trans-Gaussian kriging. Certain locations

have been selected with multiplicities larger than 1. Red dots: Sampling

locations added.

(38) is quite small. Thus, the trans-Gaussian random variables
g−1
λ0

(M(x)), R(x, j), j = 1, 2, .., 12 and the approximately trans-

Gaussian random variable 1
12

∑12
i= 1 R(x, i) are approximately

proportional to each other, with proportionality factors
unique for all x ∈ X because of stationarity of the
considered random fields. Moreover, we note that the
above approximations are quite good because all random
fields corresponding to above approximations have correct
Gaussian correlation functions. Bias is introduced in the above
approximations mainly in the mean of the corresponding
Gaussian variables. Because the unscaled rain residuals
R(x, j) are approximately proportional to 1

12

∑12
i= 1 R(x, i) and

g−1
λ0

(M(x)) and because the estimated predictive quantiles for

random variables cZ: = c (Z(x1),Z(x2), ...,Z(xn))
T are c times

the estimated predictive quantiles for the random variables
Z: = (Z(x1),Z(x2), ...,Z(xn))

T , our approximately optimal
designs calculated for the random variables 1

12

∑12
i= 1 R(x, i) are

approximately optimal also for the raw rain residuals R(x, j)
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FIGURE 12 | Above: Decrease of the average of the lengths of estimated

95% predictive intervals, when adding up to 14 design locations. Below:

Lengths of estimated 95% predictive intervals corresponding to the optimal 14

point design.

at all months j = 1, 2, ..., 12. This can be seen easily from the
fact that when using the trans-Gaussian random variables cZ in
Equation (35) the proportionality constant for the covariance
function c2λ0 cancels to cλ0 and that the new kriging predictor is

cλ0 times the one based on Z plus the constant cλ0−1
λ0

, observing
that kriging weights sum-up to 1. Applying the inverse Box-Cox
transformation to the estimated quantile given in Equation (35)

ŷ1−α/2,cZ = cλ0YOK,Z + cλ0−1
λ0

+ cλ0z1−α/2σest,Z , we get

(ŷ1−α/2,cZλ0 + 1)1/λ0 =
= (cλ0 (YOK,Z + z1−α/2σest,Z)λ0 + cλ0 )1/λ0

= c(ŷ1−α/2,Zλ0 + 1)1/λ0 .

Therefore, the 12 different design functionals are just rescaled by
different proportionality factors and are otherwise approximately
equivalent, with the exception that they are based on different
data. Clearly, data at different times are not truly proportional,
only approximately so (in distributional law). True equivalence

median
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FIGURE 13 | Above: The predictive median of the mean residual rainfall

field+53 calculated from the predictive distributions of trans-Gaussian kriging

applied to the 36 means of rainfall residuals+53. Below: Lengths of estimated

95% predictive intervals corresponding to the trans-Gaussian kriging from the

upper figure.

holds if the unstandardized residuals are truly proportional to
each other and to an unique trans-Gaussian variable V(x), with
the same Gaussian correlation function.

One could calculate also estimated expected lengths of
estimated predictive intervals by means of taking either the
expectations of the ordinary kriging predictors in Equation
(35), which are all unique because of stationarity, ± the
expectation (or not) of the additional Gaussian-quantile times the
standard deviation term, and then applying the inverse Box-Cox
transformation on the expected Gaussian quantiles (Equation
35), or by means of taking expectations of the inverse Box-
Cox transformed Gaussian quantiles. Then we get design criteria
that are independent of the actual data values, at least with the
exception that the true mean and true covariance function of
the corresponding Gaussian random field must be estimated
somehow. Up to date, we could not show that these two proposed
approaches are equivalent, although we know that the first one
is maybe more practical and mathematically easier, whereas the
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second one would be statistically and mathematically correct.
We will follow up these approaches in a future paper. These
approaches would be especially useful and necessary, when one
has no data available and one desires to plan a design for a trans-
Gaussian random field without having data from the scratch.

8. Discussion

8.1. Space-Time Trans-Gaussian Random Fields
A similar approach as in Section 7.3 also applies to stationary
random fields Z(x, i) that are correlated in space and time
and whose Gaussian correlation function can be assumed to
be separable, i.e., C(1x,1i) = CX(1x) CT(1i), if we assume
the Gaussian time-correlation function to be fixed and not
estimated, and only the Gaussian spatial covariance function to
be estimated by REML. As before, the trans-Gaussian R(x, i)
are assumed to have the same Gaussian correlation functions,
but possibly different trans-Gaussian variances σ̂ 2

i . Then the
same standardization may be applied as above in Equation
(36), and the trans-Gaussian Z(x, i) are again assumed to have
the same Gaussian covariance function. The only difference to
the time-uncorrelated case is that now 1

d
1
12

∑12
i= 1 R(x, i) and

1
d

1
12

∑12
i= 1 Z(x, i) do not have the same variance. We thus

calculate our designs for 1
d

1
12

∑12
i= 1 Z(x, i). Let σ

2 be the variance
of the Gaussian variables Y(x, i) = gλ0 (Z(x, i)). From the
separability of the random field {Y(x, i), x ∈ X, i = 1, 2, ..., 12}
we conclude that the average M(x) = 1

12

∑12
i= 1 Y(x, i)

has covariance cov(M(x1),M(x2)) = = { 1
12

∑12
i,j= 1 CT(|i −

j|)} σ 2

12CX(x1 − x2). This is the multiple of 1/12 times the
spatial covariance function of the Y(x, i) times the constant,
{ 1
12

∑12
i,j= 1 CT(|i − j|)}. Thus, the same approach to optimal

design may be applied as already discussed before. In Equation
(35) the ordinary kriging predictor based on the data M(x) does
not change in comparison to the uncorrelated case, because it
is dependent only on the spatial correlation function, but what
changes is the right-hand side of Equation (35); the original
estimated standard deviation term from the time-uncorrelated

case is now multiplied by
√

1
12

∑12
i,j= 1 CT(|i− j|), due to time-

correlation.
Another approach to design would be to time-decorrelate

the Y(x, i) by means of multiplying for each location x ∈
X the vector [Y(x, 1), ...,, Y(x, 12)] with the matrix-root of
the inverse Gaussian time-correlation matrix, to average the
resulting vector and to base the sampling design on these time-
averages of decorrelated Gaussian standardized rain residuals.
Because this time-decorrelation does not change the Gaussian
spatial covariance function of the time-decorrelated Gaussian
standardized residuals in comparison to the uncorrelated case, an
approach similar to before results for design, with the exception
that now the ordinary kriging predictor in Equation (35) is
different from the original one in the uncorrelated case. However,
the estimated standard deviation term in the right-hand side
of Equation (35) remains the same as in the uncorrelated
case, because the time-decorrelation has not changed the spatial
covariance function.

It is an open question whether both proposed approaches are
equivalent. We will follow-up both of the above approaches and
investigate this question in one of our next papers.

Actually, in our example, trans-Gaussian kriging and optimal
design could have been performed also on the original, raw data,
instead of the residual rainfall data. But then, as we have found
out, the Box-Cox transformation parameters for each month
would not have been the same and our approach of calculating
a unique design for all months would not have been possible.
Instead it would have been necessary to calculate individual
designs for each of the 12 months and then combine them in
some way to form a single usable design.

As one reviewer proposed, the approach in this article could
be generalized also to multivariate trans-Gaussian random fields.
The simplest possibility would be to weight the estimated
predictive lengths of the individual random fields by means of
some positive weighting factors, add the weighted lengths and
minimize their average over the design area. The determination
of weighting factors needs some more research and will be the
topic of a future paper.

8.2. Computation
Whereas the computations of the designs for the I-optimality
criterion in Spöck and Pilz (2010) took only 6 h on a 3.06Ghz
CPU in MATLAB, the computations with the (Smith and Zhu,
2004) design criterion and trans-Gaussian kriging took 7 days on
the same CPU and a NVIDIA GTX 580 graphics card acting as
multi-coprocessor with CUDA support

http://www.nvidia.de/page/tesla/_
computing/_solutions.html

The reason for this long computation time is that the averaging
over the design areaXmust be done for the I-optimality criterion
only once by means of calculating the matrix U in Equation (7)
before the actual design algorithm starts. On the other hand,
when using the trans-Gaussian Smith-Zhu design criterion, it is
clear from the derivations in Section 6 that the averaging over
the design region X must take place in every step when a new
design location is tested for being added or being removed from
the design.

Experimentally and theoretically it may be concluded that
the computation time for trans-Gaussian Smith-Zhu design
scales linearly with the number of sampling locations to be
added and scales approximately with n(2M + 1) to power 75 (25
matrix multiplications), where n is the number of frequencies
ωi in the polar spectral approximation and M is the number of
circular frequencies in Equation (2). In the rainfall example from
Section 7 there was n = 34 and M = 45. Although we made
use of the freely available GPUmat toolbox (http://gp-you.org)
to parallelize matrix multiplications on the GTX 580 GPU, the
computations took so much time. As we have tested, without
this implementation on the GPU the computations would take
110 times longer. One disadvantage of the GPUmat toolbox is
that it can work only with one single GPU but our mainboard
can deal with up to 6 GPUs. In future we will investigate
whether the MATLAB parallelization toolbox and JACKET
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(http://www.accelereyes.com) can further speed up the
computations on multi-GPUs.

8.3. Conclusions and Future Developments
The preceding sections demonstrate that design functionals have
a convenient and mathematically tractable structure and there is
no need for stochastic search algorithms like simulated annealing
in order to optimize them. The trace functional criterion is shown
to be a convex functional similar to design functionals from
the theory of optimal experimental design for linear regression
models. Powerful tools from this theory can be used to get
this criterion optimized by means of steepest descent algorithms
and to show optimality of spatial sampling designs by means of
equivalence theorems. The Smith and Zhu design functional, too,
is shown to be continuously extendable to the compact set of
continuous information matrices. To show convexity properties
of this design functional remains a topic for future research.
Designs with the Smith and Zhu criterion differ from designs
with the trace functional: Because the Smith and Zhu design
criterion takes the uncertainty and estimation of the covariance
function into account, resulting designs with this criterion must
have sampling locations very close to each other as well as space-
filling locations. Designs resulting from optimization of the trace
functional only show quite regular space filling locations. Designs
for trans-Gaussian kriging on the other hand via minimizing
the average of the lengths of estimated predictive intervals
also are strongly dependent on the data values themselves, in
sharp contrast to designs for Gaussian kriging without REML

correction, which, if the covariance function can be assumed to
be certain, are completely independent of the data. Furthermore,
we remark that a similar approach for spatial sampling design
of non-stationary random fields is under development (cp. also
Spöck and Pilz, 2008) and will soon become freely available in
the spatDesign toolbox of the first author, see (Spöck, 2011).
Because this toolbox is freely available, researchers may use it
for their own problems in spatial sampling design. It is easy
to use, demonstrations are included as in Spöck (2012). Really
useful is the toolbox mainly for data that have, like in our data
example skew marginal distributions so that the advantages of
trans-Gaussian kriging and sampling design come to bear. Such
skew data may be found all over our environment: Rainfall,
radioactivity, air-, surface-, and groundwater pollutants are only
some examples. Similar methods for “spatial” sampling design
may be used also in the response surface design of computer
simulation experiments, where “spatial” coordinates correspond
here to the values of certain parameters at which the computer
simulations should be run.

Currently we work on an extension of the trans-Gaussian
sampling design approach to stochastic partial differential
equations guiding, for example, the dispersion of pollutants
in space and time. This approach will consider also mobile
sensors.

The main reason that lead us to the polar spectral
approximation is that by means of this approximation we are
actually in the context of Bayesian regression models whose
additional linearity makes many things much easier.
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A1. Appendix

A1.1. Iteration Procedures for Determining Exact
Designs
We are now going to formulate iteration procedures for the
construction of approximately optimal exact designs. Contrary
to the construction of optimal discrete designs, here we cannot
prove convergence of the exact designs to the functional value
9(d∗) of an optimal exact design d∗; we can only guarantee
stepwise improvement of a given exact starting design, i.e., the
sequence of functional values 9(dn,s) decreases monotonically
with increasing iteration index s. The algorithm is an exchange
algorithm improving n-point designs and starts with a given
initial design.

A1.1.1. Exchange algorithm:

Step 1. Use some initial design dn,1 = {x1,1, . . . , xn,1} ∈ Xn of
size n.
Step 2. Beginning with s = 1, form the design dn+1,s = dn,s +
(xn+1,s) by adding the point

xn+ 1,s = arg min
x∈X

9(MB(dn,s + (x)))

to dn,s.

Then form d
j
n,s = dn+1,s − (xj,s), j = 1, 2, . . . , n + 1 and delete

that point xj∗,s from dn+1,s for which

9(MB(d
j∗
n,s)) = min

j∈{1,...,n+1}
9(MB(d

j
n,s))).

Step 3. Repeat Step 2 until the point to be deleted is equivalent to
the point to be added.
For the design functional (Equation 8), Step 2 is determined as
follows:
xn+ 1,s maximizes (over X)

h(x)TMB(dn,s)
−1UMB(dn,s)

−1h(x)

n+ h(x)TMB(dn,s)−1h(x)
.

j∗ is the index which minimizes

h(xj,s)
TQB(dn+ 1,s)h(xj,s)

n+ 1− h(xj,s)TMB(dn+ 1,s)−1h(xj,s)
,

where

QB(dn+ 1,s) = MB(dn+ 1,s)
−1UMB(dn+ 1,s)

−1.

For the Smith and Zhu design criterion no such simplification
exists and the complete design functional (Equations 9, 35) must
be recalculated in every step.

A1.1.2. Generation of an initial design
The starting design is taken as a one-point design which
minimizes the design functional among all designs of size n = 1.
Note that such a design exists since the Bayesian information

matrix is positive definite even for designs of size n = 1.

Step 1. Choose x1 ∈ X such that
x1 = arg minx∈X 9(MB((x))), and set d1 = (x1).
Step 2. Beginning with i = 1, find xi+1 such that xi+1 =
arg minx∈X 9(MB(di + (x))) and form di+1 = di + (xi+1).
Continue with i replaced by i+ 1 until i+ 1 = n.
Step 3. If i+ 1 = n then stop and take
dn,1 = {x1, . . . , xn} as an initial design.

It is a good idea to combine the initial design algorithm Section
A1.1.2 and the exchange algorithm Section A1.1.1.

A1.1.3. Reduction of experimental designs
Often it is desired to reduce a given experimental design d =
{x1, x2, . . . , xn} to one including only m < n design points from
d:

Step 1. Delete that design point xj∗ from d for which
xj∗ = argminxj∈v 9(MB(d − (xj))), and set
d: = d − (xj∗ ).
Step 2. Iterate Step 1 until the design d contains only m design
points.

Also, this algorithmmay be combined with an improvement step
similar to the exchange algorithm Section A1.1.1. In algorithm
Section A1.1.1 the calculation of xn+1,s has merely to be replaced
by

xn+ 1,s = arg min
x∈d−dn,s

9(MB(dn,s + (x))),

where d is the initial design that has to be reduced. This improved
algorithm has the advantage that design points, once deleted, can
reenter the design in the exchange step.

A1.1.4. Determining the inverse of the information

matrix
Obviously, the calculation of exact designs requires in every
step the calculation of the inverses of the information matrices
MB(dn,s) and MB(dn+ 1,s). We saw that these information
matrices can have a quite high dimension of about 4000 ×
4000. So, how can one invert such large matrices in affordable
time? A first artificial, inverse information matrix in spatial
sampling design can always be one with block-diagonal structure
corresponding to 0 selected design points, having one very small
block, being the a priori covariancematrix for deterministic trend
functions, and having one further block, being just a diagonal
matrix of very high dimension (about 4000 diagonal elements,
being the variances of the stochastic amplitudes resulting from
a harmonic decomposition of the random field into sine-cosine-
Bessel surface harmonics). So, no inversion is needed at a first
step. The inversion of all other information matrices becomes
easy, and there is computationally no need to make explicit use
of numerical matrix inversion algorithms, when one considers
Equations (13.26, 13.28) in Pilz (1991):

MB(dn,s + (x))−1 = n+ 1

n

{

MB(dn,s)
−1
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−MB(dn,s)
−1h(x)h(x)TMB(dn,s)

−1

n+ h(x)TMB(dn,s)−1h(x)

}

,

MB(d
j
n,s)

−1 = n

n+ 1

{

MB(dn+ 1,s)
−1

+
MB(dn+ 1,s)

−1h(xj,s)h(xj,s)
TMB(dn+ 1,s)

−1

n+ 1− h(xj,s)TMB(dn+ 1,s)−1h(xj,s)

}

Obviously, only matrix- and vector multiplications are needed in
these update formulae.
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