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Mathematical models are of fundamental importance in the understanding of complex

population dynamics. For instance, they can be used to predict the population evolution

starting from different initial conditions or to test how a system responds to external

perturbations. For this analysis to be meaningful in real applications, however, it is

of paramount importance to choose an appropriate model structure and to infer the

model parameters from measured data. While many parameter inference methods are

available for models based on deterministic ordinary differential equations, the same

does not hold for more detailed individual-based models. Here we consider, in particular,

stochastic models in which the time evolution of the species abundances is described by

a continuous-timeMarkov chain. Thesemodels are governed by amaster equation that is

typically difficult to solve. Consequently, traditional inference methods that rely on iterative

evaluation of parameter likelihoods are computationally intractable. The aim of this paper

is to present recent advances in parameter inference for continuous-time Markov chain

models, based on a moment closure approximation of the parameter likelihood, and

to investigate how these results can help in understanding, and ultimately controlling,

complex systems in ecology. Specifically, we illustrate through an agricultural pest case

study how parameters of a stochastic individual-based model can be identified from

measured data and how the resulting model can be used to solve an optimal control

problem in a stochastic setting. In particular, we show how the matter of determining

the optimal combination of two different pest control methods can be formulated as a

chance constrained optimization problem where the control action is modeled as a state

reset, leading to a hybrid system formulation.

Keywords: stochastic population dynamics, moment equations, Bayesian parameter inference, optimal control,

agricultural pests

1. Introduction

The use of mathematical models in population ecology and epidemiology has a
long history (Murray, 2002). Among the wide range of available models, two major
categories can be distinguished: population-level and individual-based models (Black and
McKane, 2012). Population-level models (PLMs) implicitly assume an infinite population
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size and provide a phenomenological description of the overall
population behavior. The main advantage of PLMs is that they
involve ordinary differential equations that can be analyzed
using dynamical systems theory; their main drawback is that
they neglect any effect that may be caused by finite population
sizes or by the inherently random nature of interactions
between individuals. Individual-based models (IBMs), on the
other hand, are discrete models that represent an ecological
system as a collection of a finite number of individuals that
are modeled explicitly (DeAngelis and Mooij, 2005; Railsback
and Grimm, 2012). Depending on how many details are
included for each individual, IBMs can be further distinguished
into agent-based models, which provide great detail but are
limited to algorithmic and numerical analysis, and stochastic
process models that typically distinguish a limited number of
different types of individuals but are more amenable to analytical
investigation (Black and McKane, 2012). Among IBMs we
restrict our attention to stochastic process models where the
possible interactions of species occur with a probability that is
proportional to the number of individuals present in the system.
Mathematically, these models can be represented by continuous-
time discrete-state Markov chains (CTMCs).

Discrete stochastic models naturally arise in many
applications both in ecology (Marion et al., 1998; Ovaskainen
and Cornell, 2006; Ovaskainen and Meerson, 2010) and in
epidemiology (Isham, 1991; Nåsell, 2002). While stochastic IBMs
and CTMCs in particular, provide an intuitive description of
these systems, their analysis tends to be difficult. Consequently,
the use of these models has for a long time remained limited
to systems containing at most a handful of different interacting
species. Recent years have seen, on the one hand, an immense
increase in computational resources, and on the other hand, a
surge of studies in which IBMs have been used to study biological
systems at the cellular level. Specifically, in these applications
interacting molecules play the role of interacting individuals
(Balazsi et al., 2011; Goutsias and Jenkinson, 2013; Neuert et al.,
2013). These developments have stimulated research on new
methods for analyzing IBMs (see, e.g., Munsky and Khammash,
2006; Wolf et al., 2010; Ruess et al., 2011, 2013), which opened
the path for using larger and more complicated models that are
more suitable to represent the complex systems encountered
in applications. As a consequence of these new modeling
capabilities, problems that were for a long time solvable only
using PLMs can now be analyzed (and hence receive renewed
interest) in the context of IBMs. In the case study of this paper,
for example, we consider the use of IBMs to address optimal
control problems for pest management. Many studies on optimal
control problems in ecology were performed using PLMs during
the 1970’s (see Wickwire, 1977 and references therein). In these
pioneering works, the control actions were usually included
by changing the model parameters (e.g., birth or death rates)
according to the control action or by developing a new model
for the controlled system, in which the control is included as a
continuous input. In the case study presented here, we adopt a
different modeling approach, similar to the idea presented in
Jaquette (1970) for a simple birth-death process. Specifically, we
assume that the control operator can reset the state of the system

(for example reduce the number of pest individuals by applying
pesticide) at certain given intervention times, while the dynamics
of the system between the reset times follow the uncontrolled
IBM. The resulting model is thus a stochastic hybrid system
with controlled state reset (Branicky et al., 1998; Bensoussan and
Menaldi, 2000).

In the 1970’s, the main difficulty in translating the control
theoretical studies into real world applications was the lack of
efficient and accurate procedures to estimate the required model
parameters (Wickwire, 1977). While for PLMs these difficulties
have been to a large extent overcome, for the more detailed
IBMs the problem of reverse engineering parameter values
from measured data is still a major challenge (Poovathingal
and Gunawan, 2010; Stumpf, 2014). Most of the available
approaches, in fact, require iterative evaluation of parameter
likelihoods, which are usually not available analytically and
computationally very expensive. To circumvent this problem,
likelihood-free approaches for parameter inference, such as
approximate Bayesian computation, have found applications in
ecology (McKinley et al., 2009; Lagarrigues et al., 2014) and other
fields (Toni et al., 2009).

In this paper, we suggest a different approach for parameter
inference based on an expression that allows for fast (but
approximate) evaluation of the likelihood. To obtain this
expression, we move from a full description of the stochastic
model to ordinary differential equations that describe the time
evolution of only means and (co)variances (and possibly higher
order moments) of the interacting species. We then use moment
closure techniques to approximate the solution of these equations
and show that the results can be used to approximate the
likelihood. Moment closure methods have a long history in
population biology (Whittle, 1957; Nåsell, 2003; Krishnarajah
et al., 2005; Singh and Hespanha, 2006; Hespanha, 2008), but
only recently first attempts have been made to use these methods
for parameter inference (Kügler, 2012; Zechner et al., 2012;
Milner et al., 2013). The approach we take here is motivated by
recent developments in the modeling of biochemical reaction
networks (Zechner et al., 2012) and differs from typical methods
in ecology (Ross et al., 2009; Gillespie and Golightly, 2010) in
that it is intended to be used with data that are obtained from
many independent observations of a system, instead of being
tailored to a single observation of an ecological system over time.
Accordingly, it is most suitable for applications in which many
replicates of the same experiment can be performed, as typically
done in microcosm and mesocosm experiments (Srivastava et al.,
2004; Hekstra and Leibler, 2012; Altermatt et al., 2014), but
only one measurement per replica is feasible. This might be
the case when measurements are costly or time-consuming,
resulting in a trade-off between the number of measurements
and the number of replicates (e.g., Carrara et al., 2014), or if
they perturb the system so that further measurements of the
same replicate are not possible or meaningful. This is the typical
scenario for destructive measurements as, for instance, in the
study of bacterial colonization dynamics where measurements
may require sequencing the bacterial genomes of the whole
community (Cordero et al., 2012). At the subcellular scale,
this type of data is naturally obtained when the experimental
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replicates are individual cells and the intracellular dynamics of
chemical species are measured (e.g., Zechner et al., 2012).

2. Materials and Methods

2.1. Individual-Based Modeling
Consider an ecological system comprisingm species, X1, . . . ,Xm

that can interact, in a given habitat, according toK different types
of interactions

ν
′

1kX1+. . .+ν
′

mkXm

θk

−−−−−→ ν
′′

1kX1+. . .+ν
′′

mkXm, k = 1, . . . ,K.
(1)

The expression on the left hand side of the arrow denotes
the amount ν

′

ik
of individuals for each species Xi needed for

interaction k to happen. The expression on the right hand
side describes the result of the interaction. In other words, the
effect of interaction k is to update the number of individuals
of each species Xi by the net amount νik: = ν

′′

ik
− ν

′

ik
. Let

X(t) =
[
X1(t) · · ·Xm(t)

]⊤
denote the amount of individuals of

each species present in the system at time t. In the following,
we assume that each interaction is a stochastic event whose
probability to occur depends on the probability that the required
amounts of individuals meet in some location of the habitat
and on a parameter θk that determines the probability that
the individuals successfully interact when they meet. Since the
interactions are stochastic events, X(t) is a stochastic process that
takes values x = [x1 · · · xm]

⊤ ∈ N
m
0 . Under the assumption of

randommovement of the individuals, the probability that a given
interaction takes place in the infinitesimal time interval [t, t+dt],
given the current population state X(t) = x, can be determined
by the law of mass action as

ak(x, θ)dt: = θkhk(x)dt, where hk(x) =

m∏

i=1

(
xi
ν
′

ik

)
,

k = 1, . . . ,K and θ = {θ1, . . . , θK} .

Note that we assumed that the habitat is homogeneous, that is, the
probabilities ak(x, θ)dt do not depend on the spatial location, but
only on the total amount x of individuals present in the system.

2.2. Data Description
Since the model introduced in the previous section is stochastic,
for a given initial population X(0) = x0, many different
evolutions of the system, corresponding to different realizations
of the stochastic process X(t), are possible. In the following, we
assume that we can monitor many of these different replicates
of the system, but only one measurement per replica can be
taken (possibly at different times). Therefore, the collected data
consists of several measurements of the number of individuals
of one species1 Xj at different time points, each coming from a
different replicate. This means that we assume that the collected
data contains information about the dynamics but not about
the correlation of the species abundance between different
time points. Let t1, . . . , tS denote the measurement times and

1Extension to multiple measured species is straightforward.

suppose that for each measurement time we have measured n
different replicates2. The data set is then of the form D ={
X1
j (ts), . . . ,X

n
j (ts)

}S
s= 1

, where all the measurements Xi
j(ts), i =

1, . . . , n, s = 1, . . . , S are statistically independent.
A feature of such data, which is at the same time a strength and

a serious complication, is that the measurements described above
correspond to observations from n · S (supposedly) identical
replicates of the system. In a realistic situation, these replicates
might be performed in different days or come from slightly
different ambient conditions. Not taking into account this source
of variability can have deleterious effects on model predictions
and accordingly also on any strategy for optimal interventions
and population control. Consequently, the variability observed
in different replicates is an asset that should be used in order
to identify a model that is not tailored to one particular
experimental condition but can describe all of them. To allow
this type of flexibility, we assume that in different repetitions of
an experiment some of the parameters θk, k = 1, . . . ,K may
be slightly different. Without loss of generality, let us denote by
k = 1, . . . , r the interactions for which the rate θk varies between
different repetitions of the experiment, and by k = r + 1, . . . ,K
the remaining ones that are the same for all repetitions. We
describe the experimental variability by assuming that the success
of the first r interactions is given by θk · Zk, k = 1, . . . , r, where
Z = [Z1 · · ·Zr]

⊤ is a random vector with unknown distribution
PZ . Moreover, we assume that the marginal means of PZ are all
equal to one, so that θk, k = 1, . . . , r are the average interaction
success rates over different replicates of the experiment. This
gives rise to a model akin to mixed-effects models in the statistics
literature (Lavielle, 2014).

2.3. The Conditional Master Equation and
Moment Dynamics
Under the assumption of a homogeneous environment, for
fixed success parameters θk, the time evolution of the number
of individuals X(t), as described in Section 2.1, follows
a continuous-time Markov chain. Consequently, the time
evolution of its probability distribution p(x, t): = P

[
X(t) = x

]
,

can be described by a master equation (Black andMcKane, 2012).
The same theory holds in the case of random success rates θk ·Zk,
k = 1 . . . , r, if we fix a specific realization z of the random
vector Z. Mathematically, the conditional process X(t) | Z = z
is Markovian and can be described by the master equation

ṗ(x, t|z) = − p(x, t|z)

K∑

k=1

ak(x, θ, z)

+

K∑

k=1

p(x− νk, t|z)ak(x− νk, θ, z), (2)

where3 p(x, t|z): = P
[
X(t) = x|Z = z

]
. Typically, Equation (2)

cannot be solved explicitly and for complex systems also

2The assumption that n is the same for each time point is only for notational

convenience and is by no means necessary.
3For ease of notation we omit the dependence of this probability on the initial

condition.
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numerical approachesmight fail. However, if one is not interested
in the whole probability distribution, Equation (2) can be used
to derive evolution equations for some of the moments of the
distribution, as mean and variance. Specifically, denoting by ψ̃
the l-dimensional vector of the (uncentered) moments up to
some order L of the joint process X̃(t) = [X(t)⊤ Z⊤]⊤ and by
¯̃
ψ the vector containing the higher order moments of X̃(t), one
obtains

d

dt
ψ̃(t) = Ã(θ)ψ̃(t)+ B̃(θ) ¯̃ψ(t), (3)

where Ã(θ) ∈ R
l×l and B̃(θ) ∈ R

l×∞ are matrices defined by the
reaction network and by the parameters θ [a detailed derivation
is given in Zechner et al. (2012)]. For mass action kinetics with at

most pairwise interactions of the species, ¯̃
ψ contains moments

of order at most L + 2, so that B̃(θ) is a finite dimensional
matrix (Ruess and Lygeros, 2015). Nonetheless, the system in
Equation (3) is not solvable because it depends on the unknown

quantities ¯̃
ψ(t) (which act as an external input, that is, they are

not part of the state vector). To overcome this issue, one can
use moment closure techniques to approximate the unknown

higher order moments ¯̃
ψ(t) by non-linear functions of the lower

order moments, that is, ¯̃
ψ(t) ∼= f̃ (ψ̃(t)). As a consequence, the

right hand side of Equation (3) can be approximated with an
expression that depends only on the state variables leading to the
solvable closed system

d

dt
ν̃(t) = Ã(θ)ν̃(t)+ B̃(θ)f̃ (ν̃(t)). (4)

Note that in Equation (4) we used a different symbol for the
state vector to stress the fact that ν̃(t) are approximations of the
true moments ψ̃(t), since they are obtained as solution of the
approximated dynamics.

Given that the marginal moments corresponding to Z of the
joint process X̃(t) are constant, we can write Equation (4) as

d

dt
ν(t) = A(θ)ν(t)+ C(θ)µZ + B(θ)f (ν(t), µZ), (5)

where ν(t) are the moments of X̃(t) excluding the marginal
moments of Z, µZ are the moments of Z up to order L and the
matrices A(θ),B(θ),C(θ) are sub-matrices of Ã(θ), B̃(θ). This
form of the equations is convenient because we can now regard
the moments µZ as additional parameters and the system of
moment equations for ν(t) as being parameterized by γ ={
θ, µZ

}
. Consequently, for a specified parameter vector γ , the

system of Equation (5) can be solved numerically allowing one to
compute any desired moment of X(t) up to order L.

2.4. Bayesian Inference with Population Data
In real applications, usually neither the rates θ nor the variability
µZ between repetitions of the experiments are known. Hence,
to obtain a model that is useful in practice, we need to estimate
the parameters γ from measured data. This task can be posed
as a Bayesian parameter inference problem, where any available

knowledge about γ can be specified as an a priori parameter
distribution p(γ ). The result of the Bayesian inference procedure
is a parameter posterior distribution p(γ |d) that reflects the
updated belief about γ , given the observed realization d of the
data D. According to Bayes’ rule, this posterior distribution can
be obtained as

p(γ |d) =
p(d|γ ) · p(γ )

p(d)
,

where p(d|γ ) is the likelihood of γ for the observed realization
d, p(γ ) is the prior distribution, and p(d) =

∫
p(d|γ )p(γ )dγ

is the marginal likelihood of the data. Since computing the
posterior distribution analytically is usually impossible, Monte
Carlo schemes are typically used to draw samples γ1, . . . , γM ,
from p(γ |d), allowing one to construct an empirical estimate
of the posterior distribution. The iterative evaluation of the
likelihood p(d|γ ), needed in these schemes, can however be
computationally very expensive or even impossible for complex
high dimensional systems. For the data considered in this
paper, for example, evaluating the parameter likelihood requires
computing the distribution of the measured species at all
the measurement time points. Specifically, the likelihood is
given by

p(d|γ ) =

S∏

s=1

n∏

i= 1

P
[
Xi
j(ts) = xij(ts)|γ

]
=

S∏

s= 1

n∏

i= 1

pj(x
i
j(ts), ts|γ ),

where pj(·, t|γ ) is the distribution of species Xj at time t

given that γ are the model parameters, and xij(ts), i =

1, . . . , n, s = 1, . . . , S are the measured abundances of
species Xj. The factorization of the joint distribution over
time points and samples stems from the assumption that all
the measurements are statistically independent. It is evident
that evaluating this likelihood requires computing pj(·, t|γ ).
This cannot be done (except in some special cases) without
first computing the entire joint distribution of X̃(t) at all the
measurement time points, hence solving Equation (2). For
these reasons, exact Bayesian inference is very difficult, if not
impossible.

A naive idea to overcome these issues would be to approximate
pj(·, t|γ ) by using the moments computed according to
Equation (5) together with the assumption that pj(·, t|γ ) belongs
to a certain family (e.g., that it is a Gaussian distribution). Such
assumptions are, however, in general not satisfied and, as detailed
in the following, they are not really necessary. By using as data the
first Lmoments of themeasured samples only, it is in fact possible
to derive a different likelihood function that is correct for any
distribution pj(·, t|γ ), in the limit of n → ∞. Specifically, set L =

2 and let µ̂1(ts) and µ̂2(ts) be sample mean and variance of the

random samples D(ts) =
{
X1
j (ts), . . . ,X

n
j (ts)

}
, which represent

the measured species abundances at time ts, s = 1, . . . , S.
Furthermore, denote byµ1(t) themean and byµi(t), i = 2, . . . 4,
the centered moments up to order four of pj(·, t|γ ). By the
central limit theorem, the probability density function pµ̂(·|γ ) of

µ̂: =
[
µ̂(t1)

⊤ · · · µ̂(tS)
⊤
]⊤

, where µ̂(ts): =
[
µ̂1(ts) µ̂2(ts)

]⊤
is
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the vector of sample moments up to order 2 at time ts, is for n
large enough given by

pµ̂(·|γ ) =

S∏

s= 1

pµ̂(ts)(·|γ ), where

pµ̂(ts)(·|γ ) = N (M(ts), 6(ts)) and

M(ts) =

[
µ1(ts)
µ2(ts)

]
and

6(ts) =
1

n

[
µ2(ts) µ3(ts)

µ3(ts) µ4(ts)−
n−3
n−1

(
µ2(ts)

)2
]
. (6)

Equation (6) allows one to evaluate the likelihood for the
collection of sample moments µ̂ up to order two, given the
first four moments of pj(·, t|γ ). These moments can be obtained
efficiently by numerically solving Equation (5). Consequently,
using this approach it becomes feasible to draw samples from
p(γ |µ̂) using a Markov chain Monte Carlo scheme. The
downside is that, by transitioning from the full data to the sample
moments up to order L = 2, all the information about the
parameters γ that might have been provided by higher order
statistics of the data is discarded (Ruess and Lygeros, 2013).
However, formulas for the likelihood of sample moments up to
any desired order L can be obtained in exactly the same way, and
thus, this approach is not limited to sample means and variances
only. Evaluating the likelihood for sample moments up to order L
requires computing moments of pj(·, t|γ ) up to order 2L, which
becomes computationally expensive for large L. The choice of
howmany samplemoments to include in the parameter inference
is therefore a trade-off between computational cost and neglected
information.

3. Case Study: Optimal Pest Control

3.1. The Model
As case study we consider the problem of modeling, and
eventually controlling, the evolution of an agricultural pest. To
this end, we consider an extension of the model of cotton aphids
proposed in Matis et al. (2007) and Gillespie and Golightly
(2010). Specifically, we introduce an additional immigration term
to the original model and we include a recovery process of the
habitat. In more detail, our model consists of a discrete state
stochastic process N(t) that describes the size of the current pest
population and a discrete state stochastic process C(t) that is
used as an indicator of how much the environment has been
deteriorated, up to time t, by the infestation. In the following,
we assume that these two processes are updated according to the
occurrence of the following stochastic events:

∅
α

−−−−−→ N + C

N
λZ

−−−−−→ 2N + C

N + C
η

−−−−−→ C

C
r

−−−−−→ ∅.

(7)

Specifically, we suppose that new pest individuals arise in the
system due to immigration, with rate α, or birth events, with
a rate that is proportional to the current population size.
To capture variability between different replicates, stemming
for instance from different ambient conditions, we assume
that the birth rate is given by λN(t)Z, where Z is a one-
dimensional random variable distributed according to a log-
normal distribution PZ with mean one and unknown variance.
The death rate of the pest is given by ηN(t)C(t), i.e., it depends
on the current population size, but also on the damage to the
environment.

Furthermore, we assume that the process describing the state
of the environment,C(t), is increased by one unit whenever a new
pest individual is added in the system (either via immigration
or due to a birth event). Since pest individuals deteriorate the
environment for a time period that may exceed their own life
span, we assume that the death of pest individuals leaves C(t)
unchanged. However, we model the fact that the environment
may eventually recover by assuming that C(t) decreases with rate
rC(t).

This model induces a conditional master equation, see
Equation (2), with state x = [n c]⊤ and parameters θ =

{α, λ, η, r}, in which ak(x, θ, z) and νk, k = 1, . . . , 4 are
given by

a1(x, θ, z) = α, ν1 =

[
1
1

]
,

a2(x, θ, z) = λ · n · z, ν2 =

[
1
1

]
,

a3(x, θ, z) = η · n · c, ν3 =

[
−1
0

]
,

a4(x, θ, z) = r · c, ν4 =

[
0
−1

]
.

From this master equation we can derive moment equations and
use moment closure to obtain a closed system in the form of
Equation (5). In the following, we use equations for the moments
up to order four and a fifth-order derivative matching closure,
as described in Singh and Hespanha (2006). Solving the resulting
approximate systems, for given parameter values θ and given first
two moments of Z, enables us to approximately compute the
moments of X(t) = [N(t)C(t)]⊤ up to order four.

3.2. Inference Results
Since we assumed that Z has a log-normal distribution with
mean one, it is sufficient to include only the variance of Z as an
unknown parameter, so that γ = {θ,Var [Z]}. For the in silico
case study, we assume that N(0) = C(0) = 0, that is initially no
pests are present in the system, and that the true values of the
parameters are given by

α = 0.03, λ = 0.012, η = 0.25 · 10−4,

r = 0.003 and Var [Z] = 0.05, (8)

where we used hours as time units. These parameters produce
pest outbreaks that are on the timescale of realistic profiles
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of aphids pest infestations. As hypothetical data set D ={
N1(ts), . . . ,N

n(ts)
}S
s=1

, we consider a case study in which
n = 100 different replicates of the system are measured
once a week (ts = 7 · 24 · s hours) for a total of S =

5 weeks. We note that the chosen measurements times are
consistent with the dynamics generated by the parameters
given in Equation (8). If, as in real scenarios, the parameters
and hence the timescale of the systems dynamics are not
known one may use a sequential experiment design approach
to produce informative datasets. To generate the dataset
considered in this in silico case study we used the stochastic
simulation algorithm (SSA), described in Gillespie (1976), with
randomly drawn values z from PZ . The sample means and

variances of the data are denoted by µ̂ =
[
µ̂(t1)

⊤ · · · µ̂(t5)
⊤
]⊤

where µ̂(ts): =
[
µ̂1(ts) µ̂2(ts)

]
⊤, s = 1, . . . , 5. In principle, this

gives us all the ingredients to evaluate the likelihood using

FIGURE 1 | Parameter posterior distribution. The panels show different

marginals of the posterior distribution computed using the Bayesian inference

MCMC approach described in Section 3.2. For each panel, the x-axis has

been rescaled to show ratios of inferred to true parameter value. The red line

highlights the 1/1 ratio, which corresponds to perfectly inferred parameters.

The maximum a posteriori estimates γ̂MAP are those maximizing the posterior

distribution. The parameters are λ = birth, η = death, α = immigration,

r = recovery rate.

Equation (6). However, the fact that we approximate the
moments µi, i = 1, . . . , 4 using moment closure means
that we only have an approximation of the true covariance
matrices 6(ts), s = 1, . . . , 5. Since these approximations are
not guaranteed to be positive semi-definite, a further step may
be required in which the approximated symmetric matrices
are projected onto the cone of positive semi-definite matrices.
Another possibility, which we follow here, is to construct
empirical estimates 6̂(ts) of 6(ts), s = 1, . . . , 5, from the
measured data and use these in Equation (6). This procedure

is reasonable whenever sufficient data is available to estimate

moments up to fourth order to acceptable precision.

We assume that no prior information about γ is available and

accordingly choose flat prior distributions for all the parameters.

To draw samples from the posterior distribution p(γ |µ̂) we used

a Metropolis-Hastings Markov chain Monte Carlo algorithm

FIGURE 3 | Parameter posterior distribution. The panels show different

marginals of the posterior distribution computed using the Bayesian inference

MCMC approach if only the means of the dataset D are used. For each panel,

the x-axis has been rescaled to show ratios of inferred to true parameter value.

The red line highlights the 1/1 ratio, which corresponds to perfectly inferred

parameters. The parameters are λ = birth, η = death, α = immigration,

r = recovery rate.

FIGURE 2 | Inference data. Comparison of the sample means (A) and variances (B) of the pest population N(t) used to infer the parameters (dots) and the

predictions given by the moment Equation (5) using the maximum a posteriori estimates γ̂MAP given in Equation (9).
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with randomly chosen initial parameter guesses, log-normal
proposal distributions and a chain length of 10000 (for more
information on this algorithm see, for instance, Zechner et al.,
2012). The first 3000 iterations of the chain were discarded as
a burn-in period and an empirical estimate of the posterior
distribution was obtained from the remaining 7000 iterations of
the chain. The results are shown in Figure 1. It can be seen that
the posterior distributions are relatively tight with mode close
to the true parameters. The small deviations between posterior
mode and true parameter value visible in some of the panels
stem from a combination of approximation error due to moment
closure and errors coming from the fact that the moments used
as inference data were estimated from a finite (n = 100) number
of replicates and are hence affected by the noise described in
Equation (6). The obtained maximum a posteriori estimates
γ̂MAP are

α̂ = 0.0307, λ̂ = 0.0115, η̂ = 0.247 · 10−4,

r̂ = 0.0026 and V̂ar [Z] = 0.0501. (9)

In Figure 2, the mean and variance, computed from the model
using Equation (5) and γ = γ̂MAP, are compared to the sample
means and variances µ̂(ts) of the considered data set.

To assess the advantages of the proposed stochastic approach
with respect to more standard methods based on measurements
of the average species density only, we repeated the previously
described inference process using only the means {µ̂1(ts)}

S
s=1

as data. By comparing the parameter posterior distribution
obtained in this case (Figure 3) with the one obtained using as
inference data also the variance (Figure 1) one can immediately
see that higher order statistics may contain valuable information
regarding the parameters. As a consequence, the proposed
approach could help solving identifiability problems of standard
inference approaches based on deterministic models.

The previous results were obtained assuming a dataset that
contains n = 100 replicates of the system for each measurement
time. As rigorously encoded in the mathematical description of
the noise given in Equation (6), the variance of the estimates is
inversely proportional to the number of samples n. Consequently,
if the number of replicates is very low, the variance of the data
used in the inference may be large resulting in inconclusive
(i.e., very spread) parameter posterior distributions. This is due
to the fact that many different parameters give rise to model
predictions that are consistent with the high level of noise
given by Equation (6). To test the performance of the proposed
approach for different levels of noise, we performed a case
study in which we estimated the real parameter values given in
Equation (8) using mean and variances estimated from different
numbers of replicates. In particular, we considered four different
scenarios with n = 10, n = 25, n = 50 and n = 100 replicates
and simulated 10 different datasets for each scenario to reduce the
influence of the particular realization of the data in the results.
We then performed the parameter inference for all scenarios
and all datasets (i.e., 40 times) and computed the relative error(
e.g., 100 · |λ̂−λ|

λ

)
of the MAP estimates with respect to the real

ones. The results are reported in Table 1. It can be seen that

TABLE 1 | Average error of the MAP estimates.

λ η α r Var[Z]

n = 10 20.35 20.26 44.94 49.54 64.46

n = 25 5.82 9.61 15.82 22.01 29.65

n = 50 4.50 3.20 9.72 12.05 11.25

n = 100 3.32 2.72 8.62 7.28 12.97

The table reports the relative error (in per cent) with respect to the true parameters

averaged over 10 different realizations of the dataset for different numbers n of replicates.

the precision of the estimates becomes larger as the number
of replicates increases. In particular, n = 10 replicates lead to
very imprecise results, whereas the estimates obtained from both
n = 50 and n = 100 replicates attain reasonable precision. The
scenario with n = 25 replicates provides an intermediate case
and may or may not be sufficiently accurate depending on what
errors are tolerable for the application.

3.3. Optimal Control
The identified model can be used to derive optimal control
strategies for pest control. Specifically, we suppose in the
following that we can influence the system in Equation (7) by
means of two different control strategies: pesticides and release
of sterile pest individuals. While pesticides are probably the most
used strategy for pest control, they present some disadvantages, as
for example progressive reduction of efficiency, negative impact
on beneficial insect populations (as pest natural enemies) or
chemical residues in crops and in the ecosystem (Rafikov and
Balthazar, 2005). For these reasons, the use of complementary
or alternative biological control approaches has been suggested
(Bhattacharyya and Bhattacharya, 2006; Greenman and Norman,
2007; Vreysen et al., 2007). The release of sterile insects, in
particular, is a biological control method that aims at reducing
the pest population size by introducing in the ecosystem sterile
insects, usually male, that compete with the wild type for
reproduction (Dyck et al., 2005). The desired effect is thus
achieved as a result of the fact that females mating with sterile
males will have no offspring. In other words sterile releases
reduce the number of pest individuals available for reproduction
and hence the birth rate. This approach has been successfully
employed, for example, to eradicate screwworm flies, melon flies,
the codling moth and pink bollworm among others, see Barclay
and Li (1991) and references therein. Pesticide and sterile release
are very different strategies also from an economical perspective:
while the cost of pesticide is proportional to the area that has to be
treated, the cost of steriles depends on the amount released. We
notice that, in order to prevent a given fraction of the population
from reproduction, the amount of released steriles should be
roughly proportional to the number of pest individuals present
in the system. Finally, the two approaches differ in the effect
that they have on the ecosystem. In the following, we model
the effect of pesticide as an instantaneous state reset of the pest
population to N(t+) = (1 − up(t))N(t−), where up(t) ∈ [0, 1] is
the percentage of the field treated with pesticide at time t. Note
that since X(t) is a stochastic process, this reset influences all
the moments and cross-moments of X(t) involving the random
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process N(t). For example, for the ith moment of N(t), that
is µN

i (t): = E
[
Ni(t)

]
, we get µN

i (t
+) = (1 − up(t))

iµN
i (t

−)
in Equation (5). To model the effect of the release of sterile
individuals we need to include them as a new species S(t). In
particular, we model the interaction between healthy and sterile
individuals by

N + S
κ1

−−−−−→ B

B
κ2

−−−−−→ N + S

B+ C
η

−−−−−→ C

S+ C
η

−−−−−→ C.

(10)

Note that we assume that the steriles have the same death
rate as the healthy individuals, but they cannot reproduce. The
interaction between the two species is modeled by assuming
that each sterile individual can prevent one healthy individual
from reproducing for a random time period during which both
the individuals can die. Accordingly, the introduction of steriles
effectively reduces the birth rate of the population. This is
captured by B(t), which quantifies how many of the healthy
individuals cannot reproduce at a certain time. If we denote by
us(t) ∈ [0, 1] the percentage of steriles introduced at time t,
with respect to an assumed maximal number of steriles S̄ that
can be introduced, we can again model this control action as a
state reset of the extended model. Specifically, let Q(t): = us(t)S̄
be the deterministic amount of steriles added at time t, then
S(t+) = S(t−) + Q(t) and C(t+) = C(t−) + Q(t). Note that
C(t) is updated as well since we assume that sterile individuals
are also damaging the field. Again, the state reset action leads
to an update of the moment equations: for example, for the
moments involving only S(t), we get µS

i (t
+) = E

[
S(t+)i

]
=

E
[
(S(t−)+ Q)i

]
=

∑i
h=0

( i
h

)
· µS

h
(t−) · Qi−h. Overall, the effect

of the two control actions is to reset the state of the extended
stochastic system, leading to a hybrid model.

One of themain problems in pest management is to determine
what combinations of the available treatments are most effective
for maintaining the infesting population below a given economic
threshold, as described in Barclay and Li (1991), (or eventually
eradicating the invasion) while minimizing the economic cost.
Specifically, consider a given time horizon T = [0,T] and
suppose that control actions can be taken at discrete time
intervals th = h1Tac where h = 1, . . . ,H with H: = ⌊T/1Tac⌋.
The optimal pest management problem can be stated as the
following optimization problem

min
up(th),us(th)

h=1,...,H

H∑

h=1

[
ρP up(th) A+ ρS us(th) S̄

]
+ ρCµC

1 (T)

s.t. P
[
N(t) > ξ

]
≤ δ, ∀t ∈ [0,T] , (11)

where ρP > 0 models the cost of pesticide per area (possibly
including a disincentive to penalize the use of pesticide with
respect to biological control), A is the total area of the habitat,
ρS > 0 is the cost per sterile and ρC > 0 is a factor that
translates the expected value of the process C at the end of the

period into an economic cost due to damage to the field and
hence decrement in productivity. The parameter ξ represents the
economic threshold below which the pest should be contained.
Note that since the considered model is stochastic it is not
possible to guarantee that, for a given control strategy, all the
realizations of the process will be below the economic threshold.
We can however impose that the constraint should be satisfied
with a given probability 1 − δ, that is, the constraint should be
satisfied in 100(1 − δ)% of the realizations. In the following we
assume that the average population starts below the economic
threshold ξ . If this was not the case, for example due to on-going
infestations, one could substitute the constraint in Equation (11)
with a time-varying decreasing threshold ξ (t), which is higher
at the beginning (to guarantee the feasibility of the optimization
problem) and eventually reaches the desired threshold ξ .

The problem in Equation (11) is a chance constrained
optimal control problem and is in general very difficult to
solve (Prékopa, 1995). Some possible approaches are based on
sampling techniques (Vapnik and Chervonenkis, 1971; Tempo
et al., 2012; Grammatico et al., in press) or convex relaxations
(see Nemirovski and Shapiro, 2006 and references therein). Here,
we decided to solve a simplified version of the problem in
Equation (11) by assuming that the distribution of the pest N(t)
is approximately Gaussian. If this is the case, we can rewrite the
constraint P

[
N(t) > ξ

]
≤ δ in terms of mean and variance of the

stochastic process N(t) as follows

min
up(th),us(th)

h=1,...,H

H∑

h=1

[
ρP up(th) A+ ρS us(th) S̄

]
+ ρCµC

1 (T)

s.t. µN
1 (t)+8

−1(1− δ) · σN(t) ≤ ξ, ∀t ∈ [0,T] ,
(12)

where 8(·) is the cumulative distribution function of a
normalized Gaussian random variable4 and σN(t): =√
µN
2 (t)− µ

N
1 (t)

2 is the standard deviation of the process

N(t) (Boyd and Vandenberghe, 2004, p. 157; Nemirovski
and Shapiro, 2006). Note that the problem in Equation (12)
depends on the moments of the stochastic processes N(t) and
C(t) only. Hence it can be solved using the approximated
moment equations derived in Equation (5). Given the fact that
we modeled the control actions as state resets, the controlled
system in Equation (5) can be thought of as a deterministic
continuous-time system with discrete-time controlled jumps,
leading to a hybrid optimal control problem (Branicky et al.,
1998; Bensoussan and Menaldi, 2000; Shahid Shaikh and Caines,
2007).

We assume in the following that ρC = ρP = 1, ρS =

4, S̄ = 200, and A = 100. Figure 4 reports the result of
the optimization problem, solved using the function fmincon of
Matlab, for δ = 0.1, a horizon of 6 weeks, 1Tac = 1 week and
deterministic initial state N(0) = C(0) = 10. The lowest possible
economic threshold that guarantees feasibility of the problem in

4If no information is known about the distribution, Chebyshev’s inequality can be

used to enforce the constraint P
[
N(t) > ξ

]
≤ δ, leading to the more restrictive

bound µN
1 (t)+

√
1
δ
· σN (t) ≤ ξ .
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FIGURE 4 | Optimal control strategy. The two panels at the top

visualize the optimal control strategy u⋆p, u
⋆
s, solution of Equation (12).

For all the other panels, the solid blue line represents the time

evolution of the mean of the corresponding process, [respectively,

N(t),S(t),B(t), and C(t)], according to the optimal control laws. To

obtain these results we solved the approximated moment Equations (5)

using the identified parameters γ̂MAP, given in Equation (9), together

with κ1 = κ2 = 0.01. In the plot of the healthy population N(t), the

dashed line represents the quantity µN1 (t)+8
−1 (0.9) · σN (t). The fact

that this line is below the economic threshold ξ = 150 (red line)

guarantees that the constraint of the problem in Equation (12) is

satisfied. Consequently the stochastic realizations of the pest

population are contained below the economic threshold, that is

N(t) < ξ , with probability 100(1− δ) = 90%.

Equation (12), given the chosen initial condition and the fact
that the first intervention is after 1 week, is 130. For the results
of Figure 4, we fixed ξ = 150. To find the global minimum
of the non-convex problem in Equation (12) we restarted the
optimization from 10 different random initial control vectors
and then selected the strategy with minimum cost. For solving
the moment equations in Equation (12), we used the identified
parameters γ̂MAP given in Equation (9) and we set the unknown
parameters κ1 = κ2 = 0.01. The resulting optimal control laws,
u⋆p, u

⋆
s , consist of applying pesticide to almost all the crop field

at the first possible control time t1 = 168 hrs and subsequently
controlling the population with consecutive sterile releases. This
result is consistent with the analysis reported in Barclay and Li
(1991), where it was shown that releasing steriles is economically
preferable when the infesting population is low, while if the
population is high, pesticide has to be preferred.

In order to test the performance of the derived control law, we
simulated the behavior of the model in Equations (7) and (10),
according to the real parameters given in Equation (8), using the
stochastic simulation algorithm. Specifically, we performed 500
simulations and reported in Figure 5 the median (blue line) and
the probability distribution ofN(t) andC(t). Figure 5A illustrates
the behavior of the system if no control action is taken. We
see that in this case the pest population exceeds the economical
threshold ξ = 150. In Figure 5B, on the other hand, we see that
the computed optimal control laws u⋆p, u

⋆
s successfully regulate

all the possible realizations, maintaining the population well-
under the given threshold. This result is obtained by applying
pesticide at time t1 = 168 h and then using only sterile release.

To show that a single application of pesticide at the beginning
of the horizon would not suffice to control the population, we
show in Figure 5C the behavior of the system if only the optimal
control law u⋆p is applied. From the result it appears that the use
of steriles is fundamental to complement the effect obtained by
applying u⋆p.

4. Discussion

One of the major future challenges for ecologists is to
find strategies for organizing human interactions with the
environment in a long-term sustainable way. We believe that
dynamical models, inferred from measured data, together with
optimal control theory have the potential to be of substantial
help in achieving this task. While it is usually straightforward
to incorporate the effect of human actions in a model and
to formulate related optimal control problems, solving these
problemsmay be a challenge. This has however not prevented the
advancement of control theory across all engineering disciplines.
So why is it that optimal control has not found more applications
in ecology? A reason for this is the intrinsic complexity of
ecological systems. Contrary to engineering disciplines, where
the systems usually have known structure and parameters,
ecological systems have been shaped by evolution in ways that
we do not yet fully understand. Therefore, before we can attempt
to control an ecological system with the help of a mathematical
model, we first need to identify an appropriate model and its
parameters from measured field data. This task is complicated
by the fact that ecological systems are inherently driven by
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FIGURE 5 | Control performances. For each column, the performance

of the control strategy shown at the top is illustrated. Specifically, the

middle and bottom panels visualize the probability distribution of N(t)

and C(t), obtained from 500 stochastic simulations, using the real

parameters given in Equation (8) and κ1 = κ2 = 0.01. The blue line

denotes the median of the distribution (i.e., 50% of the realizations are

below this line), the nested colored regions represent the cumulative

distribution of N(t) and C(t), with steps of 10% (i.e., 10% of the

realizations are inside the dark green region and 90% are inside the

yellow one). The red line represent the economical threshold ξ = 150.

(A) refers to no control action, (B) to the optimal strategy u⋆p, u
⋆
s, and

(C) to the use of u⋆p, only.

random interactions between individuals that take place in
spatially structured habitats and may be influenced by different
environmental conditions. To be applicable in practice, a model
should take into account all these factors.

In this paper, we took a first step in this direction by
proposing an approach for dealing with stochasticity and varying
environmental conditions, neglecting the spatial aspect of the
problem. Our approach requires data from many different
replicates of the system. In the current paper we used a simulated
dataset; as future work it is important to test this method on
real data. These may not be straightforward to obtain in some
applications, as for the pest control application considered here.
However, one could envision grouping a habitat into many small
and clearly separated patches. Each patch could then provide a
replicate of the system. Another possibility would be to “zoom
out” and regard the model not as a model for one specific habitat
(i.e., one specific crop), but as a model for all habitats of this kind
(i.e., all cotton crops), for instance in an entire country. Based on
the identified model, we formulated an optimal control problem
in which two different control strategies can be used to reduce
the pest population, both resulting in a state reset. This lead to a
hybrid system in which the control operator can reset the state
at certain given intervention times, while the dynamics of the
system between the reset times are given by a continuous-time
stochastic process.

All of the results of this paper rely on the possibility to obtain
good approximations of the moments of the species abundances,
that is, on the existence of an adequate moment closure method
for the studied system. In some applications, it can happen that

all the available methods do not perform adequately. To address
this issue, further work is required on the development of new
moment closure methods. From a hybrid systems perspective, an
appealing approach is to group the interacting species into highly
and lowly abundant species and to model them using continuous
deterministic and discrete stochastic dynamics, respectively.
Methods to analyze such hybrid models have been developed
recently (Jahnke, 2011), but their use for parameter inference or
optimal control has so far not been documented.
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