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To assess the toxicity of new chemicals and drugs, regulatory agencies require

in vivo testing for many toxic endpoints, resulting in millions of animal experiments

conducted each year. However, following the Replace, Reduce, Refine (3R) principle,

the development and optimization of alternative methods, in particular in silico methods,

has been put into focus in the recent years. It is generally acknowledged that the more

complex a toxic endpoint, the more difficult it is to model. Therefore, computational

toxicology is shifting from modeling general and complex endpoints to the investigation

and modeling of pathways of toxicity and the underlying molecular effects. The U.S.

Toxicology in the twenty-first century (Tox21) initiative has screened a large library

of compounds, including approximately 10K environmental chemicals and drugs, for

different mechanisms responsible for eliciting toxic effects, and made the results publicly

available. Through the Tox21 Data Challenge, the consortium has established a platform

for computational toxicologists to develop and validate their predictive models. Here,

we present a fast and successful method for the prediction of different outcomes of the

nuclear receptor and stress response pathway screening from the Tox21 Data Challenge

2014. The method is based on the combination of molecular similarity calculations and a

naïve Bayes machine learning algorithm and has been implemented as a KNIME pipeline.

Molecules are represented as binary vectors consisting of a concatenation of common

two-dimensional molecular fingerprint types with topological compound properties. The

predictionmethod has been optimized individually for eachmodeled target and evaluated

in a cross-validation as well as with the independent Tox21 validation set. Our results

show that the method can achieve good prediction accuracies and rank among the

top algorithms submitted to the prediction challenge, indicating its broad applicability in

toxicity prediction.
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Introduction

The U.S. Toxicology in the twenty-first century (Tox21) initiative
has been established in 2008 with the vision to support the
transformation of toxicology into a predictive science (Krewski
et al., 2010). In order to achieve this goal, a large library
of compounds, including approximately 10K environmental
chemicals and drugs, was screened for different mechanisms
responsible for eliciting toxic effects. Among the screens were
high-throughput assays for two important pathways, the nuclear
receptor and the stress response pathway, which were the subject
of the Tox21 Data Challenge 2014.

Interactions of chemicals with nuclear receptors represent
a major health concern. In particular, binding of chemicals
to steroid receptors can cause the disruption of the normal
endocrine function and have an adverse effect on development,
reproduction and metabolic homeostasis (Huang et al., 2014).
A famous example of an endocrine disrupting chemical is
bisphenol A, a compound which has been widely used, e.g.
in plastic bottles and metal cans, but has only recently been
associated with impairments of neurobehavioral development
(Weiss, 2012). Bisphenol A and its derivatives have been
shown to exhibit a promiscuous binding behavior involving,
for instance, estrogen receptors (ER), androgen receptors (AR)
and peroxisome proliferator-activated receptors (PPAR) of the
γ subtype (Delfosse et al., 2014), all of which are subject
of the Tox21 screening. Another current focus of the Tox21
screening is aromatase, an enzyme involved in the conversion
of androgen to estrogen and therefore a target of endocrine
disrupting chemicals (Chen et al., 2014), as well as the aryl
hydrocarbon receptor (AhR), a nuclear receptor involved in the
mediation of tumorgenesis induced by dioxin (Murray et al.,
2014). Similarly, mechanisms related to cellular stress also play
a role in toxicological pathways. For example, recent studies
have shown that the impairment of mitochondrial function
is associated with drug-induced adverse effects on the liver
and cardiovascular system (Nadanaciva and Will, 2011; Attene-
Ramos et al., 2015).

To assess the risks of new chemical entities, in vivo animal
studies are required by regulatory agencies to evaluate various
toxicological endpoints. However, in silico toxicology is gaining
acceptance as an alternative method which can help to reduce
the number of animal experiments performed. Computational
predictions often rely on the observation or assumption that
similar molecules manifest a similar biological effect. Similarity-
based methods have been successfully applied to solve various
research questions including predictions of targets (Campillos
et al., 2008), therapeutic indications (Nickel et al., 2014) or
side-effects (Lounkine et al., 2012). In particular, machine
learning approaches such as k-nearest neighbors, naïve Bayes

Abbreviations: 2D, two-dimensional; AhR, aryl hydrocarbon receptor; AR,

androgen receptor; ARE, antioxidant response element; ATAD5, genotoxicity

induction; AUC, area under the curve; BAC, balanced accuracy; ER, estrogen

receptor 1; HSE, heat shock response; LBD, ligand binding domain; MMP,

mitochondrial membrane potential; PPAR, peroxisome proliferator-activated

receptor; ROC, receiver operating characteristic; Tox21, U.S. Toxicology in the

twenty-first century initiative.

models, support vector machines, random forests or ensembles
of different classification methods can use the similarity defined
the molecular structure and properties to make predictions
for novel compounds. This concept has also been frequently
and successfully applied to predictions of various toxicological
endpoints (Drwal et al., 2014; Gadaleta et al., 2014; Li et al., 2014;
Liu et al., 2015).

Here, we describe the development of a fast and successful
method for the prediction of different outcomes of the nuclear
receptor and stress response pathway screening from the
Tox21 Data Challenge 2014. The method is based on the
combination of a simple molecular similarity calculation with
a naïve Bayes machine learning algorithm. Three different two-
dimensional (2D) molecular representation methods as well as
their combination were compared and the prediction methods
were optimized individually for every target. The evaluation
of each model showed that all models can achieve good
performance and prediction accuracies as well as rank among the
top submissions among the Tox21 challenge participants.

Materials and Methods

Overview
An overview of the workflow used in this study is given
in Figure 1. In the first step, all molecular structures were
standardized and the duplicates as well as compounds with
ambiguous activity values were removed. The training and test
set provided by the Tox21 Data Challenge 2015 organizers
were merged and used in a 13-fold cross-validation to optimize
parameters for the classification algorithms. The optimized
models were then used to predict the activities of the evaluation
set compounds. All steps are described in detail in the following
sections. For the majority of tasks, the open pipeline generation
platform KNIME v.2.10.0 (Knime.com AG) was used.

Data Preparation
Standardization
All molecular structures were downloaded from the Tox21 Data
Challenge 2014 website (https://tripod.nih.gov/tox21/challenge/
index.jsp) and their molecular structures were standardized
using the Instant JChem software (version 6.2, Chemaxon)
with the following settings: Water molecules were removed,
molecules were aromatized, adjacent positive and negative
charges transformed into double/triple bonds, explicit hydrogens
were added and the 3D conformation was generated and cleaned.
After the standardization, InChIKeys were calculated using
RDKit (http://www.rdkit.org) nodes in KNIME in order to
identify and remove duplicates. In case duplicate molecules were
found to have different activities (1 and 0) for a particular target,
they were marked as ambiguous and removed from the training
set of this target.

Additional Data
For each target, a search for additional known ligands was
performed in the ChEMBL bioactivity database v.19 (Bento et al.,
2014). A search was performed for the target name and EC50

or IC50 values in case of agonists or antagonists, respectively.
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FIGURE 1 | Workflow overview.

Additional datasets were standardized and checked for duplicates
as described above.

Calculation and Combination of Fingerprints
Different types of molecular representations were calculated for
each compound: ToxPrint fingerprints were calculated using
the ChemoTyper software (version 1.0, Molecular Networks
GmbH). Extended-connectivity fingerprints (Rogers and Hahn,
2010) of the ECFP4 type were calculated using RDKit nodes
in KNIME. 960-bit MACCS keys were calculated using the
Discovery Studio 3.1 program (Accelrys Inc./BIOVIA). In
addition, several topological properties indicating the three-
dimensional (3D) structure were calculated using RDKit and
CDK nodes in KNIME. The use of topological descriptors has
been previously reported in a structure-toxicity relationship
study (Pasha et al., 2009). Furthermore, topological descriptors
have several advantages compared to 3D descriptors, including
conformational independency, simplicity and low computational
resources. A number of topological descriptors were calculated,
but only those displaying values with considerable difference
between active and inactive molecules were used further.
These included the Chi0V, Chi1N, Kappa1 and HallKierAlpha
descriptors (Hall and Kier, 1991) as well as the topological polar
surface area. The descriptors were transformed into a binary
vector by binning. For each descriptor, a number of “bins”
(and bits in the fingerprint) was defined, representing different
descriptor value ranges. Whenever the descriptor value was
found in a specific range, the bit at the respective position was
set to 1. Therefore, it was ensured that close values exhibited high
fingerprint similarity. The combined fingerprint consisted of a
concatenation of all four binary fingerprints with a length of 2929
bits—960 bits for MACCS keys, 1024 bits for ECFP4, 729 bits
for ToxPrint and 216 bits for the property-based fingerprint, as
indicated in Figure 2.

Toxicity Prediction Methods
Cross-validation
In order to validate the prediction models, a 13-fold cross-
validation was implemented in KNIME. The KNIME workflows
are presented in Supplementary Figures S1, S2. A 13-fold
validation was chosen in order to produce a test set similar
in size to the final validation set of the Tox21 challenge. It
was investigated whether the addition of external data (known
ligands from the ChEMBL database, see Section Additional
data) was able to improve the prediction rate. Different activity
cut-offs for the ChEMBL compounds were considered for this
purpose. Furthermore, it was also investigated whether reducing
the actives in the training set to the most diverse compounds
was able to increase the performance of the model. In this
case, the RDKit Diversity Picker node was used using different
thresholds. Finally, the effect of the removal of highly correlated
fingerprint bits on the model performance was explored using
the Correlation Filter node. To determine the best settings,
the performance was evaluated using a receiver operating
characteristic (ROC) analysis. The area under the curve (AUC)
was calculated using the ROC curve node.

Naïve Bayes Learning
Naïve Bayes is a commonly applied stochastic classifier based on
the Bayes theorem of conditional probability (Nidhi et al., 2006).
The major characteristic of the classifier is the naïve assumption
that all input features are independent. Main advantages of
the method compared to other machine learning algorithms
are fast computational time during training and prediction
as well as a low parameter complexity and insusceptibility to
irrelevant features. Furthermore, it has been suggested that
the combination of molecular fingerprints with descriptors can
be beneficial in the context of Bayesian modeling (Vogt and
Bajorath, 2008).
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FIGURE 2 | Molecular representation. For every input molecule from

the Tox21 data set, different 2D-fingerprints are calculated and

combined. The concatenation consists of MACCS keys (960 bits), the

extended-connectivity fingerprint ECFP4 (1024 bits), ToxPrint (729 bits)

and a fingerprint developed from topological descriptors (216 bits). Both

MACCS as well as ToxPrint fingerprints encode the presence of specific

substructures. Examples of MACCS and ToxPrint substructures are

shown in boxes. Substructures present in a sample molecule taken

from the Tox21 dataset are highlighted in orange boxes. ECFP4

encodes the connections of each atom within a 4-atom radius. The

property-fingerprint encodes the presence of descriptor values in specific

bins representing value ranges.

Thus, we implemented a naïve Bayes predictor with the
Tox21 training sets. The Fingerprint Bayesian Learner and
Predictor nodes in KNIME were used for this purpose. The
predictor received an input of active and inactive molecules and
their fingerprints. The output consisted of two scores for each
molecule, a score for being active (B1) and a score for being
inactive (B0).

Molecular Similarity
The Tanimoto index is one of the most common metrics
for fingerprint-based molecular similarity calculations and has
recently been shown to be among the best choices for this purpose
(Bajusz et al., 2015). For the comparison of molecular similarity,
three Tanimoto coefficients were computed: the maximum
Tanimoto coefficient to actives in the training set (T1), the average
Tanimoto coefficient to actives in the training set (T2), and the
maximum Tanimoto coefficient to all inactives in the training
set (T3).

Combination of Methods
All scores and Tanimoto coefficients were normalized in KNIME
using Z-score normalization to obtain scores following a
Gaussian distribution and MinMax-normalization to obtain
values between 0 and 1. Different combinations of the naïve Bayes
scores B1 and (1-B0) as well as the Tanimoto scores T1, T2 and
(1-T3) were examined, including the minimum, maximum and
mean of the scores.

Determination of Score Threshold
For every target, a threshold of the final score was determined
which was used to classify the compounds into active
and inactive molecules. The score threshold was determined
by choosing the threshold which resulted in the maximal
balanced accuracy ((sensitivity+specificity)/2) over all rounds of
cross-validation.

Results

The Tox21 Data Challenge 2014 consisted of the prediction
of 12 different screening outcomes (targets): the activation or
inhibition of nuclear receptors AhR, PPARγ, aromatase, ER
and AR (full length and ligand binding domain, LBD) as well
as the effect on stress response pathways consisting of the
activation of the antioxidant response element (ARE), heat
shock response (HSE) and p53 signaling, the disruption of
mitochondrial membrane potential (MMP) and the induction
of genotoxicity (ATAD5). Before building predictive models, all
chemical structures were normalized as described in theMethods
section and duplicates were removed. Only compounds explicitly
marked as active or inactive were used for model development.
Wherever available, additional active molecules were extracted
from the ChEMBL database (Bento et al., 2014) and used for
model development. As summarized in Supplementary Table S1,
the proportion of unique active and inactive molecules as well
as the presence of external actives differed considerably between
targets.
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Choice of Molecular Representation
How well a prediction model performs does not only depend
on the underlying algorithm, but also the features used as
input. In the case of predictions of small molecule toxicities
and other biological activities, the performance thus depends
on the molecular representation which ultimately influences
the computed similarity between molecules (Floris et al.,
2014). Here we compared the performance of three common
molecular fingerprints as well as their combination. ECFP4
is a member of the extended-connectivity fingerprint type
often used to analyze structure-activity relationships of small
molecules (Rogers and Hahn, 2010). MACCS keys are another
frequently used fingerprint type which encodes the presence
of specific substructures and has been successfully used for
predictions of acute oral toxicity (Li et al., 2014). The ToxPrint
fingerprint (Yang et al., 2015a) is based on a library of more than
700 chemotypes which represent molecules in public chemical
and toxicity databases and cover substructures associated with
toxic effects and thus may be of particular importance for in
silico toxicity predictions. We also evaluated the addition of a
property-based fingerprint as has been suggested previously (Xue
et al., 2003). Here, descriptors encoding the topology of the
Tox21 compounds were calculated and translated into a binary
fingerprint.

In order to determine the optimal fingerprint for the
prediction, fingerprints were used individually as well as in
combination and evaluated in cross-validation on one of the
targets, namely ER-LBD. As summarized in Table 1, all three
types of fingerprints showed a good performance using both the
Bayesian classifier as well as the similarity search approach. In
the majority of cases models built with individual fingerprints
exhibited AUC values above 0.75 and a concatenation of all
three fingerprints led to a slight increase in performance.
Furthermore, a combination of the concatenated fingerprints
with a property-based fingerprint encoding the topology of the
molecules demonstrated the best prediction results and was thus
used as a descriptor for all targets of the challenge.

Model Optimization and Validation
In the preliminary evaluation of descriptors for ER-LBD, a
common observation was that a consensus score consisting of
a machine learning score and a similarity coefficient usually
resulted in the best model performance (Table 1). Therefore,
it was investigated which combination of scores led to the
best prediction. In particular, the scores from the Bayesian
classifier and the similarity search were combined into a
consensus score using either a mean, maximum or minimum
value. Since the optimal settings might differ depending on
the target and its active and inactive molecules, the best
parameters were determined individually for every target in a
cross-validation study. The optimization involved the variation
of the following parameters: the addition of active molecules
from external sources (ChEMBL database) using different
activity value thresholds, the addition of a correlation filter
to remove highly correlated fingerprint features as well as the
incorporation of a diversity picker to restrict the number of
active to train a naïve Bayes model to the ones with highest
diversity.

The best settings found for every Tox21 target are shown in
Table 2. As indicated, similarity search gave the best performance
for 4/12 targets when an average Tanimoto was calculated
from the T1, T2, and (1-T3) scores indicating the similarity
to active as well as the dissimilarity to inactive molecules (see
Methods). For all other targets, a combination of the machine
learning algorithm and a similarity scoring showed the best
results. In most cases, a mean function was used to generate
a consensus score combining the naïve Bayes and Tanimoto
coefficients.

The performance of each model was evaluated using
ROC-AUC values as well as balanced accuracies. The cross-
validation results for the best settings as well as the external
validation results provided by the challenge organizers are
summarized in Figure 3. In cross-validation, all models exhibited
excellent performance with AUC values between 0.78 and
0.9, with the best three models obtained for the targets

TABLE 1 | Performance of different fingerprints in cross-validation of predictions for ER-LBD.

Scorea ROC-AUC

MACCS ECFP4 Toxprint Combinedb Allc

naïve Bayes B1 0.7664 0.7870 0.7744 0.7833 0.7874

naïve Bayes 1—B0 0.7720 0.7716 0.7818 0.8031 0.8021

Similarity T1 0.7805 0.7773 0.7840 0.7957 0.8008

Similarity T2 0.6660 0.6873 0.7223 0.6697 0.7023

Similarity 1—T3 0.5455 0.6228 0.5751 0.5831 0.6299

Mean Bayes score 0.7718 0.7823 0.7813 0.7968 0.7991

Mean tanimoto 0.7752 0.8014 0.8034 0.7901 0.8173

Mean consensusd 0.7951 0.8145 0.8148 0.8134 0.8240

aScores have been calculated as follows: B1, naïve Bayes score for actives; B0, naïve Bayes score for inactives; T1, maximum Tanimoto score to actives; T2, average Tanimoto score

to actives; T3, maximum Tanimoto score to inactives.
bCombination of MACCS, ECFP4 and Toxprint fingerprints.
cCombination of all fingerprints with property-based fingerprint calculated from topological descriptors.
dMean of the average Bayes score and the average Tanimoto score.
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TABLE 2 | Parameters of the most successful prediction models.

Target External compounds Correlation filter Diversity Picker Naïve Bayesa Similarityb Consensus score

AhR ≤ 5000 nM – 19% actives Mean Mean Mean

AR ≤ 5 nM – – Mean Mean Mean

AR-LBD ≤ 5 nM – – – Mean –

Aromatase – – 58% actives – Mean –

ER ≤ 5 nM – – Max Mean Mean

ER-LBD ≤ 5 nM 0.9 44% actives Min Mean Mean

PPARγ – – 47% actives Max Max Min

ARE – – – – Mean –

ATAD5 ≤9200 nM – 9% actives 1−B0 T1 Mean

HSE ≤160 nM – 43% actives Max Mean Mean

MMP – – 17% actives 1−B0 T1 Mean

P53 – 0.9 54% actives – Mean –

aCombination of the Naive Bayes scores for active (B1 ) and inactive (1-B0 ) compounds.
bCombination of the Tanimoto similarity scores: maximum Tanimoto score to actives (T1 ), average Tanimoto score to actives (T2 ), 1—maximum Tanimoto score to inactives (T3 ).

FIGURE 3 | Performance of models predicting the outcome of the

Tox21 screening outcomes. (A) Area under the curve (AUC) calculated in a

ROC analysis. (B) Balanced accuracies (BAC). Results are shown for our

models in cross-validation (dark red) and external validation (yellow) as well

as the average external validation results among the top 10 challenge

participants.
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AhR, AR-LBD, and MMP. For AhR, MMP, and p53, the
results of the external validation set showed a very similar
performance to the cross-validation, indicating good and
universal models and scores. In the cross-validation, the
balanced accuracies of the individual models ranged between
70 and 82% (see Figure 3). For several targets, including AhR,
HSE, and p53, the balanced accuracy obtained in external
validation remained constant or increased in comparison
to the cross-validation results, illustrating broadly applicable
models.

Comparison to Other Challenge Participants
All models submitted to the challenge were evaluated by the
challenge organizers and ranked according to their AUC values
for the external validation set. The prediction values for the top 10
participating teams are publicly available (https://tripod.nih.gov/
tox21/challenge/leaderboard.jsp) and summarized in Figure 3,
Supplementary Tables S2, S3. Taken together, 7 out of 12
models we submitted were found in the top 10 leaderboard.
While our models were not nominated as the sub-challenge
winners, in many cases their AUC value was found very close
to the winning model. This was for instance observed for the
target HSE, where the top 9 ranking models showed AUC
values differing only by 0.02, suggesting that similarly good
models can be obtained with various approaches. As indicated
in Figure 3, our models for the targets AhR, ER-LBD and p53
were also very close to the average AUC of the leading models.
Although most leaderboard models showed AUC values within a
small range, large differences were observed for the prediction
accuracies (between 49 and 90%). Interestingly, four of our
models (targets: AR-LBD, ER-LBD, aromatase, and HSE) were
the determined to be the most accurate amongst all submissions
(see Figure 3 and Supplementary Table S3). Four additional
models, developed for the targets AhR, ARE, ATAD5, and p53,
displayed accuracies higher or equal to the average of the top 10
submitted models.

Discussion

Here, we describe a successful machine learning method
for the prediction of different outcomes of the nuclear
receptor and stress response pathway screening from the
Tox21 Data Challenge 2014. The key to our method is the
combination of different molecular fingerprints and descriptors
as well as the integration of two different algorithms, a
similarity-based approach and a naïve Bayes machine learning
technique.

Combination of Features and Algorithms
The selection of features is a crucial and non-trivial part
of development of predictive models. The features should be
able to describe the differences between actives and inactives
in the training set and allow extrapolating to other, yet
untested compounds. Although several molecular fingerprints,
such as extended-connectivity, substructure-based or path-based
fingerprints are standards in the chemoinformatics field and
have been successfully applied to prediction tasks, the results

are dependent on the data and none of the methods is able
to clearly outperform the others (Duan et al., 2010). To
avoid the choice of the wrong descriptor, the combination of
(independent) fingerprints has been suggested (Duan et al., 2010)
and several studies have successfully applied combinations of
path- and substructure-based fingerprints (Drwal et al., 2014;
Banerjee et al., 2015). As we report here, the combination of
different fingerprint types has also been of advantage for the
prediction of estrogen receptor ligands. An associated problem,
however, is that a combined fingerprint is likely to contain
highly correlated features. We have thus investigated the use
of a correlation filter to remove fingerprint bits with high
correlation, but the filter was able to increase the prediction
performance only for two targets. A more effective approach
proved to be the use of a diverse subset of active molecules in
the training set, though the size of the diverse subset giving the
best results had to be optimized individually for every target.
As the active molecules of the different Tox21 sub-challenges
might contain different important molecular characteristics,
the use of extensive cross-validation to optimize the feature
selection for every sub-challenge could further improve the
prediction performance. Automated feature selection using deep
neural networks, as suggested by one of the other teams
participating in the Tox21 challenge (Unterthiner et al., 2015),
offers an alternative way to determine the most relevant
features in the input molecules which can be advantageous for
large sets of molecules, but is obviously associated with large
computational costs.

Combinations of multiple machine learning algorithms,
also referred to as hybrid or ensemble learning, are a well-
described approach and have been applied to solve diverse
research questions (Yang et al., 2015b). It is usually assumed
that the use of multiple models can increase the prediction
accuracy as compared to the use of a single model and help
to manage high-dimensional and complex data sets. Similarly
to our approach, several other studies have proven that
merging a naïve Bayes classifier with a similarity-based approach
such as k-nearest neighbors can result in highly predictive
models for various applications including the prediction of
molecular targets (Ferdousy et al., 2013; Liu et al., 2013).
Future investigations could focus on the evaluation of other
classification methods (logistic regression, random forests, etc.)
and larger model ensembles for the purposes of toxicity
prediction.

Conclusions

Our models use a combination of molecular fingerprints and
algorithms and show consistently good performance for the 12
outcomes of the Tox21 screen, four of the models being the most
accurate amongst the challenge participants. We are planning to
make our models publicly available by incorporating them into
our toxicity prediction platform ProTox (http://tox.charite.de) in
the future.

The Tox21 Data Challenge 2014 has provided an excellent
opportunity for academic and industrial groups to assess
and directly compare the quality of their toxicity prediction
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methods. The results will be of great value to the scientific
community and can help to pave the way toward the use
of more in silico toxicity models as decision-making tools to
evaluate potential health hazards of environmental chemicals
and drugs.
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