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Climate change can result in significant impacts on regional and global surface water

and groundwater resources. Using groundwater as a complimentary source of water

has provided an effective means to satisfy the ever-increasing water demands and

deal with surface water shortages problems due to robust capability of groundwater

in responding to climate change. Conjunctive use of surface water and groundwater is

crucial for integrated water resources management. It is helpful to reduce vulnerabilities

of water supply systems and mitigate the water supply stress in responding to climate

change. Some critical challenges and perspectives are discussed to help decision/policy

makers develop more effective management and adaptation strategies for conjunctive

water resources use in facing climate change under complex uncertainties.

Keywords: conjunctive water management, surface water, groundwater, hydrology, climate change

Introduction

Climate change can significantly affect regional and global surface water and groundwater
resources. According to IPCC (2007a), climate change can result in increased temperature,
widespread ice and snow melting, rising sea level, widespread changes in precipitation and
evaporation patterns, and increased frequency and magnitude of extreme weather events such
as flood, droughts, and heat waves (IPCC, 2007a,b; USGS, 2007; Gurdak et al., 2009; Ludwig
et al., 2014). These changes can substantially affect water resources management practices. For
examples, the observed and projected increases in temperature and evapotranspiration, decrease
in precipitation, and more intense and longer droughts caused by climate change can lead to
declined availability of water resources, aggravating the water scarcity problems (Schewe et al.,
2014). This is especially true in semi-arid and arid areas where multiple water users are competing
for limited and ever-decreasing water resources under projected future climates. It is desirable to
develop effective management strategies for decision or policy makers for mitigating or reducing
the negative impacts of climate change on water resources.

Conjunctive use of surface water and groundwater is of importance for integrated water
resources management. It has provided an effective means to satisfy the ever-increasing water
demands from different water users and deal with surface water shortage problems. Groundwater
is a vital water resource especially in the regions with limited or no surface water supplies
(Bovolo et al., 2009). Groundwater is relatively reliable and clean compared to surface water
since it can be extracted even in the dry seasons and is less polluted than surface water in most
cases (Kundzewicz and Doll, 2009). Using groundwater to compliment surface water supplies
can help reduce vulnerabilities of surface water supply systems to climate change to a certain
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extent (Taylor et al., 2013). As pointed out by de Wrachien
and Fasso (2002), properly managed integrated water resources
systems can yield more water with more economic rates than
those separately managed surface-water or groundwater systems.
Conjunctive use of surface water and groundwater has been
extensively studied and a number of methods/techniques have
been reported for supporting conjunctive water use planning
and management (Ejaz and Peralta, 1995; Başaǧaoǧlu and
Mariňo, 1999; Azaiez, 2002; Mohan and Jothiprakash, 2003;
Pulido-Velazquez et al., 2008; Matrosov et al., 2011; Shi et al.,
2012; Bejranonda et al., 2013; Khan et al., 2014). Although
the existing water resources management systems have abilities
to tackle interannual variability, they encounter difficulties in
addressing long-term trends. Evaluating such long-term impacts
of climate change on water resources is crucial to generate
effective management strategies in the future (Serrat-Capdevila
et al., 2007). Inadequacies or a lack of addressing the impacts of
climate change could lead to biases in generated management
strategies for conjunctive water use under future changing
climatic conditions due to unequivocal characteristics of climate
change. Investigation of all relevant literature is impractical and
not the aim of the short review. The objective of this short review
paper is to address some important issues in and provide insight
into conjunctive management of surface water and groundwater
resources under climate change with recent research.

Impacts of Climate Change on Water

Resources

Climate Change Impacts on Surface Water
Climate change has direct effects on surface water through
modification of long-term climate variables (Jyrkama and Sykes,
2007). Investigations of the impacts of climate change on surface
water resources have mushroomed previously (Middelkoop et al.,
2001; Zhu et al., 2005; de Wit and Stankiewicz, 2006; Burns et al.,
2007; Hagg et al., 2007; Brikowski, 2008; Matthews and Quesne,
2008; Ficklin et al., 2009; Hay and McCabe, 2010; Arnell, 2011;
Gosling et al., 2011; Kuhn et al., 2011; Georgakakos et al., 2012;
Koutroulis et al., 2013; Selek and Tuncok, 2014). Changes of
temperature and precipitation caused by climate change could
lead to increased water demand and reduced water resources
availability (Chen et al., 2001; Kamga, 2001). Recently, Milly
et al. (2005) quantitatively assessed the impacts of climate change
on global water resources availability using 12 climate models.
Their results indicated that runoff in eastern equatorial Africa,
high latitudes of North America and Eurasia, and the La Plata
basin of South America would increase by 10–40%, while that
in southern Europe, the Middle East and mid-latitude western
North America, and southern Africa would decrease by 10–
30% in 2050. Lee and Chung (2007) studied the impacts of
climate variability, groundwater withdrawal and land use on
dry-weather streamflows in a small Korean watershed located
in Gyeonggi province by using SWAT. The study watershed
had a monsoon climate cycle with strong seasonality, similar to
many East Asian river systems. The increases of temperature
and solar radiation could significantly decrease streamflows in

the dry period. The increased groundwater withdrawal would
result in the decreased streamflows, while the effects of land use
changes on streamflows in the dry period were not significant.
Serrat-Capdevila et al. (2007) investigated the climate change
impacts on water resources in the San Pedro River Basin, a semi-
arid transboundary basin in southeastern Arizona and northern
Sonora. Their multi-model projections predicted a decreased
recharge and a decreased mean net stream gain (i.e., base
flow) across the Basin. Brikowski (2008) predicted a continued
decline of streamflow at historical rates on the Great Plains
under future climate change. Such a decline would worsen the
imbalance between water supply and demand. Chiew et al. (2009)
used 15 GCMs (General Circulation Models) for future climate
projections corresponding to 0.9◦C increase in global average
surface air temperature, most of which predicted less runoff
in southeast Australia. However, their results were associated
with a number of uncertainties since the modeled mean annual
runoff averaged in the whole study area would vary from a
reduction of 17% to an increase of 7%. Ficklin et al. (2009)
investigated the effects of climate change on a highly agricultural
San Joaquin watershed in California. Their studies showed that
the watershed hydrology was highly sensitive to climate change.
Local water yield, evapotranspiration, irrigation water use, and
stream flow would be significantly affected by projected changes
of atmospheric CO2, temperature, and precipitation. Young et al.
(2009) evaluated the hydrological effects of climate change on
snow pack and initiation of snowmelt in the Sierra Nevada in
California, covering watersheds from the Feather River in the
north to the Kern River in the south. A reduction in snow pack
was found, resulting in a shift in runoff center of mass to earlier
dates. Manning et al. (2009) pointed out that water availability
in the Thames watershed would be substantially reduced based
on an ensemble of climate models. Zhang et al. (2011a)
evaluated hydrological responses of the Assiniboia watershed, an
isolated small one in the Canadian Prairies, to climate change.
Two regional climate models, two weather generators and a
distributed hydrological model were incorporated into a general
research framework. Annual reservoir storage would be reduced
while annual water yield and evapotranspiration in 2050s would
keep unchanged.

More recently, Candela et al. (2012) reported a maximum
of 56% reduction of water resources availability in the Siurana
catchment in Spain under climate change. Kienzle et al. (2012)
used five different GCMs to simulate the effects of climate
change on water yield, streamflow extremes, and streamflow
regimes in the Cline River watershed which accounted for over
40% of the North Saskatchewan River streamflows in Alberta,
Canada. All of the five climate models predicted the increases
in mean annual potential and actual evapotranspiration,
soil moisture, groundwater recharge, and streamflow due to
increased temperature and precipitation. Koutroulis et al. (2013)
quantified the impacts of climate change on water availability
in the Crete Island in Greece using three GCMs and 10 RCMs
(Regional Climate Models) with three emission scenarios (i.e.,
B1, A2, and A1B) for future precipitation and temperature
projections. A trend of decreasing water availability was
predicted considering the combinations of emission, demand and
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infrastructure scenarios. In the investigation of climate change
impacts on water availability in the snow-glacier dominated
Mendoza river watershed in Argentina by Schwank et al.
(2014), a reduction of water availability due to climate change
was projected, intensifying future water resources management
stress. Future water management strategies are suggested by
adjusting and balancing the needs of different water users such
as irrigation, industrial, and domestic ones during the long-term
planning periods. Changes of availability of water resources will
considerably affect future water resources planning, management
and adaptation strategies, and policies to climate change.

Climate Change Impacts on Groundwater
Studies on impacts of climate change on groundwater are
relatively limited compared to surface water (Allen et al., 2004;
Brouyère et al., 2004; Hsu et al., 2007; Bates et al., 2008). Surface
water shortages caused by future climate change stress more
on groundwater (Brikowski, 2008). Groundwater can alleviate
the stress on surface water by complimenting surface water
supplies under climate change in the regions with sufficient
and unpolluted groundwater resources or where groundwater
recharge will not decrease significantly due to changing climate
(Kundzewicz and Doll, 2009). Groundwater is relatively more
robust in responding to climate change than surface water due to
its higher storage capacity in most cases (Kundzewicz and Doll,
2009). Climate change will directly affect groundwater mainly
through changing groundwater recharge, resulting in changing
groundwater tables or levels (Chen et al., 2004; Scibek and
Allen, 2006; Dzhamalov et al., 2008; Aguilera and Murillo, 2009;
Kundzewicz and Doll, 2009; Mileham et al., 2009; Allen et al.,
2010; Taylor et al., 2013). In addition, changes in land use and
land cover have indirect effects on groundwater through changes
in groundwater use (Taylor et al., 2013).

Recently, Croley and Luukkonen (2003) analyzed the potential
effects of climate change on groundwater levels in Lansing,
Michigan by using GCMs, hydrological, and groundwater flow
models. The GCMs developed by the Canadian Climate Centre
and the Hadley Centre were used. Depending on the GCMs
used, different results were generated: predicted groundwater
levels would decline under the Canadian GCM, but increase
under the Hadley GCM in the Saginaw aquifer in the Lansing
area. Chen et al. (2004) studied the relationships between climate
variability and groundwater levels in an upper carbonate aquifer
in Manitoba, Canada, and concluded that groundwater levels
would decline as a result of decreased net recharge caused by
increased temperature predicted from GCMs. Brouyère et al.
(2004) simulated the direct impacts of climate change on
groundwater levels and reserves in the Geer Basin, Belgium
by using an integrated hydrological model (MOHISE). Holman
(2006) addressed the direct and indirect impacts of climate
change together with socio-economic changes on groundwater
recharge. Scibek and Allen (2006) incorporated climate and
groundwater models to evaluate the impacts of climate change on
groundwater recharge and levels in an unconfined aquifer near
Grand Forks in south central British Columbia, Canada. More
recharge to this unconfined aquifer was found from spring to
summer based on future climate projections. Hsu et al. (2007)

analyzed the effects of climate variability on groundwater in the
Pingtung Plain in Taiwan. The groundwater model, MODFLOW
SURFACT, was used to characterize the groundwater flow
system, and a linear regression model was established for future
precipitation predictions based on the historical data. Their
regression results showed that groundwater levels would decrease
(decreased groundwater availability) so that conflicts of water
supply and demand would be aggravated. Tapoglou et al. (2014)
simulated the variations of groundwater levels in the area of Agia
in Crete, Greece using neural network under three climate change
scenarios representing small, medium, and severe changes in
precipitation and temperature. Their studies predicted negative
effects such as increased possibility of drought under the scenario
of high precipitation decreases only (reduction by over 10%), but
neutral to positive effects under the other two scenarios.

Climate Change Impacts on Surface and Ground

Water Interactions
Surface water and groundwater are inextricably linked;
understanding of their interactions is essential for developing
effective conjunctive water resources management strategies,
especially for adaptation to future climate change (Sophocleous,
2002; Allen et al., 2004; Woldeamlak et al., 2007). Some
researchers have conducted studies related to surface-water and
groundwater interactions under climate change. For example,
Eckhardt and Ulbrich (2003) investigated the impacts of climate
change on streamflow and groundwater recharge using a
conceptual eco-hydrologic model based on a revised SWAT.
Their results indicated that streamflows and groundwater
recharge would be reduced by over 50% in summer. Scibek
et al. (2007) simulated the impacts of future climate change on
groundwater-surface water interactions and groundwater levels
in the unconfined Grand Forks aquifer in British Columbia,
Canada using a three-dimensional transient groundwater
flow model. Under future climate scenarios, differences of
aquifer water levels would vary from less than 0.5m away from
floodplain to over 0.5m near the river. More studies can be
found in Hatch et al. (2006); Ferguson and Maxwell (2010);
McCallum et al. (2013); Taylor et al. (2013).

Interannual Climate Variability
Interannual variability of climate such as temperature and
precipitation is vital to assess the climate change impacts
and develop corresponding adaptation strategies effectively
(Andersson et al., 2011; Fatichi et al., 2012). The variability
between years can result in direct or indirect effects on
hydrological, ecological, and biogeochemical processes (Fatichi
et al., 2012). In general, the standard deviation is applied
to measure interannual variability of temperature, and the
coefficient of variation expressed as a ratio of standard
deviation and the mean is used to measure the variability
of precipitation (Räisänen, 2002; Coppola and Giorgi, 2010).
Since the research by Rind et al. (1989), many studies
have been reported to examine the interannual variability
of temperature and precipitation. Recently, (Räisänen, 2002)
conducted a comprehensive investigation of CO2-induced
interannual variability of temperature and precipitation using
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19 model experiments. Most of his models showed a reduced
variability of temperature in winter in the extratropical Northern
Hemisphere and the high-latitude Southern Ocean, and a slight
increase of temperature variability over land in low latitudes and
northern mid-latitudes in summer. They also pointed out an
increased interannual variability of precipitation in most areas,
especially in the regions with a reduced mean precipitation.
Consistent conclusions were drawn in the studies by Giorgi and
Bi (2005). Coppola and Giorgi (2010) evaluated climate change
projections over the Italian peninsula at four IPCC emission
scenarios by using the CMIP3 and PRUDENCE ensembles.
Their results further demonstrated the previous findings that
interannual variability of precipitation would increase in all
seasons, while interannual variability of temperature would
increase in summer and decrease in winter. Andersson et al.
(2011) assessed possible changes of water availability and
extreme hydrological events under future changing climatic
conditions until 2050 in the Pungwe basin in the Southern
Africa. The Rossby Centre Regional Climate Model (RCA3)
was employed for future climate projections and a river
basin hydrological model (HBV) was used for identification
of hydrological responses to climate change. Their simulation
showed a significant increase of interannual variability of rainfall
by 10–50% in 2050, although the interannual variability of mean
annual rainfall would be less affected. There would also be an
increase of interannual variability of dry season streamflow. In
assessment of interannual variability of precipitation, selecting
the suitable correction methods such as scaling or bias correction
methods is also crucial since it will significantly affect the
associated uncertainty estimation (Johnson and Sharma, 2011).
This should be paidmore attention to in future climate variability
and impacts assessment studies.

Conjunctive Surface-groundwater

Optimization Management

Optimization models and methods are effective tools for
allocating water resources and providing decision supports.
A number of optimization management models have been
proposed for conjunctive use of surface water and groundwater
(Sethi et al., 2002; Vedula et al., 2005). These models are mainly
for the purposes of cropping patterns planning and irrigation
water management (Singh, 2014). Irrigation is the largest water
use in the world, accounting for about 70% of global water
withdrawals and about 90% global consumptive water use (Döll
et al., 2012). Azaiez and Hariga (2001) presented a single-
period planning model for conjunctive use of surface water and
groundwater for a multi-reservoir system, with stochastic inflow
to the main reservoir and irrigation water demand. de Wrachien
and Fasso (2002) pointed out that conjunctively coordinated
management of surface water and groundwater could achieve
the maximum benefits of efficient use of total water resources.
Barlow et al. (2003) developed a conjunctive management model
through coupling numerical simulationwith linear programming
optimization model into a general framework to determine
sustainable yield of the alluvial-valley stream-aquifer systems.

Tradeoffs between groundwater withdrawals and streamflow
depletion were analyzed. Karamouz et al. (2004) proposed a
simulation-based dynamic programming optimization model
for conjunctive surface water and groundwater planning and
management in Iran. Management objectives of minimization of
irrigation water supply shortages and pumping costs, and control
of average groundwater table fluctuations were considered. Rao
et al. (2004) developed a macro-level conjunctive use planning
model for surface water and groundwater allocation in the
deltaic regions. Syaukat and Fox (2004) presented an integrated
surface water and groundwater management model to meet
urban water demand in the Jakarta region, Indonesia. Khare et al.
(2006) developed a linear programming model for conjunctive
use management of surface water and groundwater resources
in the Sapon irrigation command area in Indonesia. Net
benefits from cropping activities were maximized considering
water demand and availability. An increase of groundwater
development was suggested to handle the surface water
shortage problems. Pulido-Velázquez et al. (2006) formulated an
integrated hydrologic-economic optimization model to identify
the optimal water system operation and water allocation
alternatives for maximizing net economic benefits.

More recently, Cheng et al. (2009) advanced a linear
programming model to optimize the conjunctive use of
surface water and groundwater for irrigation planning in
Taiwan. Yang et al. (2009) presented an integrated multi-
objective planning model for conjunctive surface water
and groundwater management in Taiwan by considering
multiple objectives of simultaneous minimization of fixed and
operating costs. The model integrated a multi-objective genetic
algorithm, constrained differential dynamic programming,
and groundwater simulation model named ISOQUAD into
a general framework. Montazar et al. (2010) presented a
non-linear programming model for irrigation water planning
through optimal allocation of surface water and groundwater for
maximizing the net benefits. Application of their model to an
agricultural water system in Iran demonstrated the feasibility of
conjunctive use and effectiveness in enhancing the total benefits.
Safavi et al. (2010) proposed a simulation-optimization method
for conjunctive use of surface water and groundwater on a
basin-wide scale in Iran. The method incorporated an artificial
neural network to simulate the variations of groundwater levels,
and then used a genetic algorithm to solve the simulation-based
optimization model. Chang et al. (2011) used system dynamics to
examine the performance of planning alternatives of conjunctive
surface water and groundwater use, and evaluated the long-term
effects of these alternatives on reduction of water shortage
risks. Chang et al. (2013) developed a fuzzy inference system
for conjunctively managing surface water and groundwater use
by incorporating expert knowledge and operational policies
with the fuzzy rules. Safavi and Esmikhani (2013) presented a
simulation-optimization model for conjunctive use of surface
water and groundwater in the Zayandehrood river basin in
Iran. Surrogate models were developed by using support vector
machines to replace surface water and groundwater simulation
models in the optimization management model with the
objective of minimizing water shortages for satisfying irrigation
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demands, subject to a series of water-related constraints such as
controlling cumulative water-table drawdown and maximizing
irrigation system’s capacity.

Systems analysis methods are highly desirable to handle water
use conflicts among different parts of water management systems
(Wu et al., 2015).

Conjunctive Water Management under

Climate Change

The abovementioned optimization methods and models for
conjunctive surface water and groundwater management
didn’t consider the impacts of future climate change. This
lack hampered their applicability to generate effective water
management strategies in future changing climatic conditions
since climate change is inevitable. Recently, many researchers
attempted to incorporate climate change impacts into the
planning and management issues in conjunctive water use
(Hoekema and Sridhar, 2013; Pingale et al., 2014). Hanson
and Dettinger (2005) investigated the impacts of climate
variations on conjunctive management of groundwater and
surface water resources through a GCM and a RCM named
RGWM. Simple statistical techniques were used to downscale
the outputs such as precipitation rates from the GCM for
providing the inputs for RGWM. Results from a case study of
a coastal aquifer system in Southern California demonstrated
that useful alternatives could be generated for guiding water
planning and management practices. Wurbs et al. (2005)
extended the Texas water availability modeling (WAM) system
by incorporating a climate model and a watershed hydrology
model to evaluate the effects of climate change on the capabilities
of water supply. Their application in the Brazos River Basin
in Texas showed a general decrease in the mean streamflow
due to decreased precipitation and increased temperature-
induced greater evapotranspiration. The significantly-varying
effects of climate change on water availability were found in
various regions and among various water users. Water supply
shortage would increase from 4.0 m3/s under the historical
climate scenario to 8.9 m3/s under the 2050 climate scenario.
Hanson et al. (2010) used an extended MODFLOW with Farm
Process (MF-FMP) to analyze conjunctive surface water and
groundwater use management. Application to two representative
case studies was presented, including the Pajaro Valley (micro-
agricultural scale) and the Central Valley (macro-agricultural
scale). Their results demonstrated the capability of MF-FMP in
forecasting future water demand and constrained water supply,
and evaluating the effects of potential mitigation or adaptation
policies/projects on future water supply-demand patterns.
Kingston and Taylor (2010) evaluated climate change impacts on
river discharge and groundwater in a tropical catchment in the
Upper Nile Basin in Uganda where different uncertainties were
considered. Teegavarapu (2010) investigated the climate change
impacts on water resources management by using fuzzy sets
theory to address decision makers’ preference toward climate
change. Sulis et al. (2011) coupled hydrological model named
CATHY and the Canadian Regional Climate Model (CRCM)

for investigating the impacts of climate change on surface
water and groundwater management in a catchment in Quebec,
Canada. The sensitivity of the hydrological responses including
aquifer recharge, soil water storage, and river discharge to future
climate change was analyzed. Hanson et al. (2012) presented
a supply-demand modeling framework to assess the potential
effects of climate change on conjunctive surface water and
groundwater resources management in the Central Valley in
California. Their study linked a GCM called Geophysical Fluid
Dynamics Laboratory Climate model to a mountain hydrologic
watershed model (MHWM) and a Central Valley hydrologic
model (CVHM) within a general framework. Their results
indicated that water supply pattern would shift from surface
water predominantly to groundwater for meeting agricultural
irrigation needs. The secondary effects such as land subsidence
caused by increased groundwater withdrawals may restrict the
extent which additional groundwater pumping would be a viable
option to compensate for reduced surface water availability. Also,
urbanization could hinder the sustainability of conjunctive water
resources use. Pingale et al. (2014) developed an integrated urban
water management model to optimize water resources allocation
under climate change. Multiple water sources including surface
water and groundwater, as well as treated wastewater were
considered. A stochastic weather generator (LARS-WG) was
used to project future climate scenarios based on the Canadian
GCM with various IPCC emission scenarios; a rainfall runoff
model (SWMM) was employed to simulate future surface water
availability; a groundwater model (MODFLOW) was used to
forecast the groundwater under climate change. The applicability
of the proposed model was demonstrated through its application
to a real-world water supply system in India, providing optimal
water resources planning strategies under various climate change
scenarios.

Among all the countries, China is facing severe water shortage
and water use conflict problems. Climate change and human
activities such as urbanization and land use have significantly
affected and will continue to affect water resources, aggravating
water crisis in China (Lu et al., 2013). Although total amounts
of water resources in China are huge, the amounts per capita
are very limited. In China, the primary challenges are the
imbalance between water supply and ever increasing water
demand, uneven spatial distributions of water resources, and
inter-regional water use conflicts (Cui et al., 2009; Cheng
and Hu, 2012). Wang et al. (2014) suggested an increase of
water shortage in Tuwei river basin in Northwest China by
up to 80% in 2030 with current management practices or
using water supply management strategy. Although upgrading
water infrastructure or add alternative sources may temporarily
alleviate water shortage problems, water demand management
including improvement of water use efficiency, establishment of
market-oriented water allocation patterns, effective enforcement
of regulations and laws, and effective control of water is the
best to improve water resources management over a long
time, especially under future climate and land use changes
(Arnell, 1998; Cheng and Hu, 2012). China should shift the
strategies from water supply management to water demand
management pollution, or both. Integrated sustainable water
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resources management should be based on both supply- and
demand- management to meet the ever increasing water demand
with the limited water supplies under future changing climatic
conditions (Cheng and Hu, 2012; Wang et al., 2014).

Challenges and Perspectives in

Conjunctive Water Management under

Climate Change

One main challenge in conjunctive surface water and
groundwater management under climate change is mismatch
between large-scale global or regional climate models and
small-or medium-scale hydrological processes (Arora and Boer,
2001; Merritt et al., 2006; Young et al., 2009). This can limit the
effectiveness of climate models in supporting conjunctive water
management. In order to transform the coarser outputs of GCMs
to match the smaller scales of hydrological systems, effective
downscaling techniques and methods are desirable (Hanson and
Dettinger, 2005; Mileham et al., 2009).

Uncertainty is another challenging problem in climate
change impact studies. A variety of uncertainties are inherently
associated with GCM structure and its initial conditions,
greenhouse gas emission scenarios, downscaling methods,
hydrological model structures and parameters, and conjunctive
water use optimization management (Serrat-Capdevila et al.,
2007; Kay et al., 2009; Chen et al., 2011; Kienzle et al., 2012).
Uncertainty can significantly affect the accuracies of forecasting
hydrological responses to climate change and consequently
the effectiveness of conjunctive water management strategies
(Candela et al., 2012). Effective reflection and quantification of
these uncertainties are critical for making appropriate climate-
change mitigation strategies for conjunctive water management
(Brekke et al., 2004). The largest source of uncertainty in climate
change impacts studies is GCM structure and selection due to
high sensitivity of water resources systems to future climate
change projections (Dessai and Hulme, 2007; Kay et al., 2009;
Prudhomme and Davies, 2009; Lespinas et al., 2014); even for
the same GCM, different downscaling techniques/methods can
generate different prediction results (Manning et al., 2009).
Not only uncertainty associated with GCMs can result in large
differences in future climatic scenarios, but also selection of
different hydrological models with various modeling structures
can affect hydrological responses to climate change (Jiang et al.,
2007; Lespinas et al., 2014). This was demonstrated by Jiang
et al. (2007) in their analysis of climate change impacts on
water availability in the Dongjiang basin in South China.
Six hydrological models were used in their study, leading to
significant differences in forecasting future hydrological impacts
of climate change. In order to avoid possible inadequateness
and potential misleading of analysis of climate change on
water resources management, multi-model approaches are
recommended to reduce the impacts of uncertainty since a
single GCM and/or downscaling method and/or hydrological
model could lead to moderate to severe bias of climate change
impacts results (Prudhomme and Davies, 2009; Kingston and
Taylor, 2010; Chen et al., 2011; Zhang et al., 2011a; Hagemann

et al., 2013). It is also desired to improve the regional climate
simulations with reduced uncertainties (Piao et al., 2010). More
details on regional investigations and more reliable projections
of climate change scenarios are highly desirable (Viviroli et al.,
2011).

In development of conjunctive use optimizationmanagement,
uncertainty also exists in a number of modeling parameters,
management objectives, operational policies, and decision
makers’ preferences toward climate change on water resources
management (Teegavarapu, 2010). These will affect the
effectiveness of future conjunctive water resources management
strategies under climate change. Limited availability of long-term
groundwater data and information impaired our abilities to
investigate the responses of groundwater systems to climate
variability and change (Taylor et al., 2013). It is thus desired
for more intensive groundwater monitoring efforts and/or
effective methods for dealing with the scenarios with limited or
scarce data sets. Most of the previous climate change impacts
studies used stochastic methods for handling the uncertainties.
When the available data and information are insufficient for
generating probability distributions or subjective knowledge and
information such as decision makers’ preferences are involved,
these stochastic methods can become incapable. Methods of
interval analysis and fuzzy sets theory have provided effective
tools for handling the non-random uncertainties (Zhang et al.,
2009a,b, 2011b,c). It will be helpful to enhance the ability to
tackle multiple forms of uncertainties in evaluation of climate
change impacts on future water resources management through
integration of these random and non-random methods. In
addition, more complex uncertainties such as interactional
relationships among the uncertain parameters should be
effectively reflected and quantified due to their impacts on
adaptation and mitigation results.

In general, small unconnected water supply sources are
more sensitive to climate change than large connected ones
(Arnell, 1998). There are needs for considering the unique
characteristics of small and large sources to make sure the
generated management and adaptation strategies more effective
to meet their specific requirements. The integrated water
resources management strategies should be capable of dealing
with not only local-scale but also basin-sale issues (López-
Moreno et al., 2014). In addition, the activities related to
enhancement of social awareness and public attitudes to water
resources and their management, capacity building, community
involvement should be promoted (Vargas-Amelin and Pindado,
2014).

Non-climatic factors such as land use changes and water
use practices can also affect sustainability of water resources
significantly under future climate change (Merritt et al., 2006;
Hagemann et al., 2013). An important assumption in assessment
of climate change impacts on water resources is that land use
would remain unchanged in the future (Blanc et al., 2014).
Whether such an assumption can hold in the future needs
to be justified in specific regions and problems. In addition
to climate change, changes in land use may impact the water
resources through changes of infiltration, evapotranspiration,
groundwater recharge, and water quality in receiving water
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bodies (Anderson et al., 2008; Tong et al., 2012). However, most
of the previous studies either considered climate and land use
changes separately, or were limited to single impact such as
flow or water quality; even for the limited number of reports
on their combined effects, scenarios were also very limited. In
order to generate more effective climate change adaptation and
mitigation strategies, the combined effects of climate and land
use changes as well as other factors such as population changes
on flow and water quality on a basin scale should be incorporated

into the integrated water management framework (Parajuli, 2010;
Tong et al., 2012; López-Moreno et al., 2014). Understanding and
incorporation of these non-climatic factors into climate change
scenarios will be beneficial to decision makers and planners for
development of more realistic and feasible water management
policies and climate-change mitigation measures (Woldeamlak
et al., 2007; Tong et al., 2012). More detailed studies are desired to
address the abovementioned issues in development of imperative
conjunctive water management strategies under climate change.
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