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Predicting the environmental fate of Cs radionuclides in forest ecosystems is important for

the effective management and assessment of radioactively contaminated forest areas.

A large proportion of the radioactively contaminated areas in Japan consist of forest

ecosystems, and most of these areas are artificial forests that are used for timber

production [e.g., Japanese cedar (Cryptomeria japonica) and red pine (Pinus densiflora)].

Determining the long-term redistribution of 137Cs in forest ecosystems is important

for estimating human doses and understanding the ecological impacts and challenges

associated with managing contaminated forests. To facilitate the management and 137Cs

decontamination of these forests, we developed a new open-source 137Cs cycling

model, ForRothCs, that considers C cycling within forests, as well as biomass production

and soil decomposition processes. For the 137Cs inventory, this model estimates the

dynamics (Bq m−2) and activity (Bq kg−2) of 137Cs on a decadal time scale, primarily in

the leaves, branches, stems, litter layer, and the soil. This model is based on the biomass

production and the dynamics of the C cycle models. We tested the model by considering

a simple scenario of forest management, i.e., thinning and harvesting, for the first five

years following a fallout event. The results showed that these activities have a limited

impact on the 137Cs inventory due to the rapid migration of 137Cs from vegetation to

soil. Our projections also showed the examined forest management practices resulted

in reduced litterfall, which in turn reduced C input to the forest floor and increased the

concentration of 137Cs in the litterfall and soil organic layer. Although further validation

of the ForRothCs model is required using field observation data, the model can be

used to evaluate long-term 137Cs dynamics associated with commonly used forest and

decontamination management scenarios.

Keywords: rCs and C modeling, 137Cs inventory, forest management, decontamination, 137Cs dynamics

Introduction

As a result of the March 2011 accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP),
large quantities of radionuclides were released into the atmosphere and distributed over terrestrial
environments in Japan (Morino et al., 2011). The dominant land use type affected by the FDNPP
event was forest, which comprises approximately 70% of the affected area and 11 Mm3 of the
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above-ground biomass in the region (Hashimoto et al., 2012).
Although the total amount of 137Cs released into the atmosphere
was estimated to be 1.2 × 1016 Bq (Chino et al., 2011), the
extent of radioactive contamination in the forests (up to 24 Sv
h−1) produced an air dose that was well below the lethal dose
for living plants (Geras’kin et al., 2008; Steinhauser et al., 2014).
Consequently, no direct radiation damage, such as necrosis of
plant tissues, was reported in the region.

In the case of the Chernobyl nuclear power plant (ChNPP)
accident, decontamination management of forests was not
conducted over a wide area and little export of radioactive
substances from these ecosystems has been observed (e.g.,
Tikhomirov et al., 1993; Ueda et al., 2013). Therefore, a large
proportion of the radionuclides derived from fallout tend to
remain in these ecosystems for extended periods of time; for
example, 137Cs has a slow rate of decay (the half-life of 137Cs
is 30.2 years). Previous studies have shown that some of the
ecosystem components in the region affected by the ChNPP event
still have high levels of 137Cs contamination due to the long
effective half-life of itself or the active accumulation of 137Cs;
examples include the litter layer (Thiry and Myttenaere, 1993),
wild boar (Semizhon et al., 2009), andmushrooms (Yoshida et al.,
1994). Recycling of 137Cswithin the forest ecosystem is a dynamic
processes in which reciprocal transfers occur between biotic and
abiotic components of the ecosystem on a seasonal (or longer-
term) basis (Tikhomirov and Shcheglov, 1994). Accumulation,
retention, and internal cycling of radionuclides in a forest
ecosystem are dependent on a variety of different compartments,
each of which has different turnover rates and phenologies. It is
therefore considered necessary to develop radioecological models
capable of accurately clarifying 137Cs cycling dynamics in order
to support forest management and radioactive decontamination
activities. Such models could also be applied to predict ecological
impacts on decadal timescales and characterize the migration of
radioactive substances in forest ecosystems.

In Fukushima prefecture, 50% of the forested land is artificial
forest, and this amounts to an area of about 120,000 ha;
the trees range from 20 to 45 years old, and thus it might
be necessary to manage them with thinning and pruning in
order to maintain growth (Forestry Agency, 2014). In Japan,
a special management measure had been planned to promote
improvement of the forest, by thinning and pruning about 58,000
ha in the Fukushima area by 2020. However, after the fallout,
the forest management area in Fukushima prefecture rapidly
decreased (from 12,000 ha in 2010 to 7800 ha in 2012). From
the point of view of ecosystem services (MEA, 2005), plantation
forests that are not well managed (relatively low thinning and
harvesting activities) tend to have a reduced amount of ecosystem
services, such as slower C accumulation, lower runoff, and higher
leaching of N (Ooba et al., 2010). In addition, plantation forests
with less than a moderate amount of management have high
levels of soil erosion (e.g., Onda et al., 2010), and this might
promote the migration via stream flow of 137Cs from the forest
ecosystem to other ecosystems. Thus, for an artificial forest
contaminated with radioactive Cs, it is important to maintain the
natural ecosystem services in order to reduce the human dose and
to promote sustainable forest management.

Approximately 50% of the forested area in Fukushima
Prefecture comprises artificial forest (Forestry Agency, 2014).
The trees in a 120,000 ha area range from 20 to 45 years old,
which means that it is necessary to manage them by thinning and
pruning in order tomaintain growth. The act on special measures
concerning advancement of implementation of forest thinning
were drafted by the Japanese government to thin and prune about
58,000 ha of forest in the prefecture by 2020. However, after the
accident at the FDNPP, the area of forest under management
decreased from 12,000 ha in 2010 to 7800 ha in 2012. From a view
of ecosystem services (MEA, 2005), this is a problem because
poorly managed plantation forests tend provide fewer ecosystem
services and are characterized by slower rates of C accumulation
and runoff, and higher rates of N leaching (Ooba et al., 2010). In
addition, forest plantations with less than moderate amounts of
management have high levels of soil erosion (e.g., Onda et al.,
2010), which can promote the migration of 137Cs from the
contaminated forest to other ecosystems via stream flow. It is
therefore considered important to maintain natural ecosystem
services in artificial forests that have been contaminated with
radioactive Cs, as doing so can reduce the potential for human
exposure, and to promote sustainable forest management.

Given the persistence of radioactive Cs in forest ecosystems,
it is necessary to use operational models that can predict
the exposure dose and to assess the risk of exposure; this
information can also be used to assess the effectiveness of
countermeasures and to develop remediation strategies (Riesen,
2002). Fesenko et al. (2005) emphasized the importance of
optimizing the long-term radioactive Cs dynamics prior to
implementing countermeasures. Process models are important
management tools for limiting exposure to radioactivity and for
increasing forest production. There currently are several models
that could potentially be used to predict 137Cs cycling in forest
ecosystems, including FORESTPATH (Schell et al., 1996), RIFE
(Shaw and Belli, 1999), and FORSUN (Konoplev et al., 2002).
The International Atomic Energy Agency’s BIOMASS Forest
Working Group (IAEA, 2002; Shaw et al., 2005) has already
evaluated more than ten radioecological models for forest 137Cs
cycling, by performing simulations with standardized inputs. All
of the models were found to be practicable and appropriate
for evaluating remedial policies. However, most of the models
did not explicitly implement tree dynamics (IAEA, 2002) or
the C dynamics of soils, which meant that they were unable to
comprehensively forecast the 137Cs dynamics, especially under
non-steady-state conditions (e.g., due to natural disturbances or
forest management activities). In terms of radioecology, the C:Cs
ratio is important for herbivores and decomposers of litterfall
(i.e., soil animals) as they feed on plant material (Witkamp and
Frank, 1970). Consequently, the ability to implement both C and
Cs cycling in a radioecological model would allow managers to
more accurately comprehend the migration of 137Cs in forest
ecosystems.

In this paper, we present the forest Roth-C and Cs cycling
model (FoRothCs), a new open-source model for predicting the
137Cs dynamics in artificial forest ecosystems and for evaluating
the effects of forest management practices and decontamination
activities on 137Cs cycling. The model couples a forest growth
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model with the Rothamsted carbonmodel (Jenkinson et al., 1990)
and uses 137Cs transfer factors as parameters. Therefore, our
model can predict the C dynamics in forest environments, by
simultaneously considering trees, the litter layer, and soils. We
introduce the model structure and its behavior by presenting a
sensitivity analysis for a forest of Japanese cedar (Cryptomeria
japonica).

Materials and Methods

The model presented in this study is based on the Rothamsted
Carbon (Roth-C) model (Jenkinson et al., 1990; Coleman and
Jenkinson, 1999) and the diameter distribution prediction system
(DDPS; Hayashi et al., 2002; Hayashi and Yamamoto, 2006).
The Roth-C model is a carbon-cycling model for soil organic C
decomposition, and the DDPS is a self-thinning growth model
for artificial forest biomass prediction. Our model is coupled
to these two models, and it incorporates the Cs dynamics into
the C cycling by using transfer factor parameters based on the
dynamics of both C and biomass.

Based on the studies of Avila et al. (2001) and IAEA (2002),
we used a matrix representation to summarize the overall model
structure and transfer processes (Figure 1). Our model has seven
compartments, of which three are for aboveground biomass,
and the others are for soil components (litter layer, organic
soil fraction, and mineral soil fraction). Table 1 summarizes
all of the input variables and parameters that are used in
the simulation. The model requires monthly climate data
(temperature and precipitation), initial forest condition (age,
density, and basal area), soil properties, and parameters related to
137Cs dynamics (such as 137Cs deposition, initial 137Cs inventory
in each component, tree uptake constant, pullback rate, and
retranslocation rate). The code for the FoRothCs model is
provided in the Supplementary Materials.

Forest Growth Model
For the tree growth model, we used the DDPS (Hayashi et al.,
2002; Hayashi and Yamamoto, 2006) for basal area prediction
and the allometry equations for estimating aboveground biomass
(leaves, branches, and stems) in an artificial forest stand in
which all of the trees are of the same age. The DDPS calculates
the annual tree density, tree height, and total basal area in a
forest stand, based on the self-thinning theory. Using this model,
we estimated tree growth and implemented forest management
practices, such as thinning. The model is stated as follows:

G(n+1) = G(n)exp
[

a1

( 1

n+ 1
−
1

n

)][n+ 1

n

]a2[ρ(n+ 1)

ρ(n)

]a3
(1)

whereG(n) indicates the basal area of the stand at age n (m
2 ha−1),

ρ(n) is the density of the stand at age n (trees ha−1), and a1, a2,
and a3 are parameters for the shape of the growing trees.

To estimate the maximum density, we used following
equation:

lnρmax(n) = lnb0 +
1

b2
ln

[(G(n)

b3

)b1b2
+

(G(n)

ρ0

)b2]

(2)

where ρmax(n) indicates the maximum density of the stand at age
t (trees ha−1). This equation indicates maximum density line,
which determines self-thinning rate at year n. If ρmax(n) is lower
than ρ(n), then ρ(n) decreases to the previous level and G(n+ 1)
is recalculated with an updated ρ(n).

To estimate the tree height [H(n)], we used the following
empirical equation:

ah(n) = c0 + c1 ∗ Treeage(n)+ c2 ∗ ρ(1)+ c3 ∗ G(n) (3)

1

H(n)
=

1

10ah(n)
+

1

Hmax
(4)

where c0, c1, c2, and c3 are empirical coefficients; the values
used in this study are for Japanese cedar forests (Hayashi and
Yamamoto, 2006). Hmax is the maximum height allowed for the
forest stand, which is determined by the conditions at the study
site.

To estimate the aboveground biomass (kg ha−1), we used the
allometry relationships for the diameter, height, leaves (branches
and stems), and the basal area and density:

Lind(n) = dl0(DBH(n)2H(n))dl1 (5)

Bind(n) = db0(DBH(n)2H(n))db1 (6)

Sind(n) = ds0(DBH(n)2H(n))ds1 (7)

where DBH(n) is the diameter at breast height (cm) at stand
age n, which is calculated from the basal area G(n) and tree
density ρ(n). The parameters for the allometry equations (dl0,
dl1, db0, db1, ds0, and ds1) were obtained from a national survey
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FIGURE 1 | Representation matrix of the FoRothCs model. Diagonal

components (shaded) indicate variables in the model. The other components

indicate processes that are explicitly included in the model.
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TABLE 1 | Input parameters for the FoRothCs model.

Element Input variable and parameter Unit Abbreviation Memo

All Simulation duration Years Yr From 2011 (Default)

Latitude degrees Lat

Climate Mean monthly temperature Degrees T

Monthly precipitation mm P

Tree growth Initial basal area (BA) m2 ha−1 BAin

Initial tree density (rho) trees ha−1 ρin

Tree age years Nin

Monthly litterfall fraction % Litfrac

Soil Target soil depth cm Dep 20 cm (Default)

Clay content % Clay

Bulk density Mg m3 BD

137Cs cycling Root uptake rate m2 Bq−1 month−1 Tuptake

Pullback fraction from leaf to branch % Tpullback

Translocation from branch to leaf month−1 Trelocate

Migration rate from soil to litter (Bq/kglitter )/(Bq/kgsoil ) Lmig

Management Thinning rate % fthin

Thinning year year after deposition Yrthin

Thinning month month Monththin

Litter removal rate % fremove

Litter removal year year after deposition Yrrm

Litter removal month month Monthrm

conducted for general allometric equations for Japanese cedar
in Japan (Tanouchi and Utsugi, 2004). Lind, Bind, and Sind all
give the biomass of a typical tree (kg tree−1). Using the biomass
multiplied by the tree density ρ(n), we can then calculate the
biomass in each compartment for each stand (i.e., Lms, Bms,
and Sms; kg m−2). Finally, we summed the compartments to
calculate the total above-ground biomass Allms (kg m−2), as
follows:

Allms(n) = Lms(n)+ Bms(n)+ Sms(n) (8)

Carbon Cycling in Soils (Roth-C)
For carbon cycling in soils, we used the Roth-C model (Coleman
and Jenkinson, 1996), which can be formulated as the following
transition matrix equation:









cDPMt+1
cRPMt+1
cBIOt+1
cHUMt+1









=









f1 0 0 0
0 f2 0 0

a1D(1− f1) a1D(1− f2) fc+ a1D(1− f3) a1D(1− f4)
a2D(1− f1) a2D(1− f2) a2D(1− f3) f4 + a2D(1− f4)

















cDPMt
cRPMt
cBIOt
cHUMt









+









Dint
Rint
0
0









(9)

where the time step t is 1 month. In this model, there are four
different active compartments for C: decomposable plant
material (cDPM), resistant plant material (cRPM), microbial
biomass (cBIO), and humus (cHUM). In this study, cDPM
and cRPM are considered as part of the litter layer, with

factors a1 = 0.46 and a2 = 0.54, respectively. At and Bt are
the monthly inputs from vegetation litterfall. D is the clay
content, which is determined by the partitioning ratio between
CO2 in the atmosphere and the (cBIO + cHUM) formed
during decomposition. The fi are defined as the decomposition
functions for the monthly step in each compartment of the
soil C. All compartments (cDPM, cRPM, cHUM, cBIO) can be
described by first-order kinetics decomposition equations with
limitation functions, as follows:

fi = e−kifT fM fC (10)

where the decay constant ki (month−1) for each compartment
corresponds to the degree of decomposition, as follows: DPM,
10.0/12; RPM, 0.3/12; BIO, 0.66/12; and HUM, 0.02/12. fT ,

fM , and fC are regulation functions for the monthly average
air temperature, monthly average soil moisture, and the soil
coverage, respectively. fT is an exponential function. fM is the
precipitation and potential evaporation rate, which was estimated
using the Thornthwaite equation (Thornthwaite, 1948). fC is the

Frontiers in Environmental Science | www.frontiersin.org 4 September 2015 | Volume 3 | Article 61

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Nishina and Hayashi Modeling forest 137Cs and C dynamics

soil cover factor, which has only two states: bare or covered.
Details on the formulation of the regulation functions employed
in the Roth-C model are presented in Coleman and Jenkinson
(1996).

Dint and Rint are the C inputs from tree compartments to the
forest floor as litterfall, which is formulated as follows:

Dint = FD{(FS +Mt) ∗ (cLt + cBt)+MtcSt} (11)

Rint = FR{(FS +Mt) ∗ (cLt + cBt)+MtcSt} (12)

where FS is the monthly litterfall rate, which represents the
fraction of each biomass component at the corresponding
increment for each year (n). The carbon content of each of
the tree compartments (cL, cB, cS) is set to be 50% of each
of the biomass compartments (Lms, Bms, Sms; Noguchi et al.,
2009). FD and FR are the fractions of DPM and RPM in
the litterfall, respectively. For the DPM/RPM ratio of forest
vegetation, we used a value of 0.25 (Coleman and Jenkinson,
1996). In FoRothCs, the litter layer is assumed to be the sum of
DPM and RPM.Mt is the mortality rate caused by self-thinning.

Cesium-137 Cycling
In FoRothCs, the components have different descriptions for
137Cs (see Table 2); these are based on an area inventory (Bq
m−2) and activity, which is amass-based concentration (Bq kg−1)
(i.e., the activity of each compartment was divided by the mass
weight). The 137Cs activity of each compartment is indicated by a
subscript, e.g., Lact.

In FoRothCs, the 137Cs cycling in the soil and tree
compartments is formulated as follows:
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(13)

where the transition matrix in Equation (13) almost corresponds
to the matrix in Figure 1, even though the order and the number
of components are different (e.g., DPM and RPM). The dynamics
of Cs in soil organic matter were based on the decomposition
dynamics of the Roth-Cmodel, and the parameters and functions

related to the decomposition processes in Cs cycling are the same
as those used in the Roth-C model (e.g., f1 – f4). In our model,
the 137Cs in the fraction of decomposed organic materials to CO2

migrates mineral soils. In addition to decomposition processes,
Brückmann and Wolters (1994) and Fukuyama and Takenaka
(2004) described the upward migration of radioactive Cs from
the soil layer into the litter layer through litterfall decomposition
and translocation by fungi. To account for this process, we
introduced a migration parameter Lmig ((Bq/kglitter)/(Bq/kgsoil)),
which is based on the findings of Fukuyama and Takenaka
(2004).

Tuptake (m2 kg−1 month−1) is a parameter that determines

the uptake rate of 137Cs relative to the 137Cs in soil (HUM
and the soil mineral compartments). Tpullback is the translocation

parameter that determines the fraction of 137Cs that is recycled
by green leaves prior to them becoming litterfall.

RBtoL, RLtoB, RLtoS, and RStoB are the translation rates between
tree compartments and can be defined as follows:

RBtoL = TrelocateBacttLmst/Bt (14)

Trelocate determines the retranslocation rate from branches to
leaves. Thus,RBtoL is proportional to the 137Cs activity of a branch
(Bq kg−1), but not to the 137Cs inventory of a branch.

RLtoB = FsTpullbackBmst/(Bmst + Smst) (15)

RLtoS = FsTpullbackSmst/(Bmst + Smst) (16)

RLtoB and RLtoS are the translocation rates due to the pullback of
137Cs from leaves to branches and leaves to stems, respectively.
The distribution of pullback 137Cs is determined by biomass.

For translocation from stems to branches (RStoB), we used the
following equations:

{

RStoB = (Bact − Sact) ∗ Bms/St (Lact − Sact > 0)

RStoB = 0.5 ∗ (Sact) ∗ Bms/St (otherwise)
(17)

Frontiers in Environmental Science | www.frontiersin.org 5 September 2015 | Volume 3 | Article 61

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Nishina and Hayashi Modeling forest 137Cs and C dynamics

We incorporated the deposition of 137Cs from the atmosphere on
March 2011 at t = 3; the initial time t0 was defined as December
2010. In this study, the fallout of 137Cs was assumed to have been
deposited onto tree leaves and the litter layer, as follows:
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0
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(18)

where Fint is the interception ratio of 137Cs deposited in the
canopy layer. Based on Kato et al. (2012), the interception ratio
for the forest canopy of Japanese cedar is set to 62%. The 137Cs
intercepted by the forest crown is assumed to have remained
in or on the tree or its surfaces for at least a year (Nishikiori
et al., 2015). In addition, we assumed that the captured 137Cs was
chemically and biologically absorbed into the leaf tissue.

Finally, we summed the components of DPM and RPM to
form a litter layer (LT), and the components of HUM andMIN to
form a soil layer (SOIL), which we calculated based on the 137Cs
activity of each compartment, as follows:

LTactt = (DPMt + RPMt)/(cDPMt + cRPMt)/c1 (19)

SOILactt = (HUMt + MINt)/(BD ∗ 1000 ∗ Depth) (20)

Simulation Settings and Sensitivity Analysis
The initial forest and climate condition were set to match those
of the Mt. Tsukuba site, which is located approximately 160 km
southwest of the FDNPP (Nishikiori et al., 2015). The stand
age was 50 years, the mean tree height was 21.6m, the mean
DBH was 25.3 cm, and the stand density was 1600 trees ha−1.
The initial values of the soil organic C (SOC) components were
calculated by inverse estimation technique (Jenkinson et al.,
1999). We assumed that SOC was in equilibrium at the beginning
of the experiment. To achieve this, we ran the FoRothCs model
for 200 years. Inert organic matter (IOM) was estimated using
the equation of Falloon et al. (1998) with an initial total SOC
at a depth of 0–20 cm in 2011. We used the monthly average
temperature and precipitation conditions for the 30-year period
between 1981 and 2010, which we obtained from the closest
meteorological observation station . The 137Cs fallout was taken
as 11,000 Bq m−2, based on a reference level for the Mt. Tsukuba
site (Nishikiori et al., 2015).

To explore feasible transfer parameters for tree 137Cs cycling,
sensitivity analyses were conducted with different settings for
the tree uptake constant Tuptake, the pullback rate Tpullback, and
the retranslocation rate Trelocate by grid searching method. All
of the parameters were specified by range, with maximum and
minimum values, in order to ensure that the parameters were
appropriately framed. We calculated the aggregated transfer

TABLE 2 | List of components and their abbreviations in the FoRothCs

model.

Component C (Biomass) 137Cs 137Cs Memo

[kg-C m−2 inventory activity

(or kg m−2)] (Bq m−2) (Bq kg−1)

DPM cDPM DPM for LTact

RPM cRPM RPM for LTact

HUM cHUM HUM for SOILact

MIN - MIN for SOILact

BIO cBIO BIO

Leaves cL (Lms) L Lact

Branches cB (Bms) B Bact

Stems cS (Sms) S Sact

factors TFag (m2 Bq−1) for the leaves at 30 years after the fallout
event, as follows:

TFag =
Lactt

HUMt +MINt
at t = 30 years with no forest

management.
The reason why we used TFag instead of the concentration-

based transfer factor (kg Bq−1) was the availability of appropriate
values for different forest ecosystems. Importantly, in FoRothCs,
the concentration of 137Cs in the soil compartment is arbitrary
and depends on the soil depth. It is thus necessary to carefully
consider the activity of 137Cs in soils, but the model gave a robust
estimate for TFag.

In order to evaluate the impact of thinning and litterfall
removal on decontamination 30 years after the fallout event,
we conducted base-case scenario analyses with different timings
and intensities of management activities and using appropriate
parameters. In the thinning analysis, we assumed that entire trees
were removed and we considered an extreme and unrealistic case
of over 70% thinning (100% thinning is equal to clearcutting). For
the removal of litterfall, we assumed that all of the litter layers (Ol,
Of, and Oh) were removed at the same rate. For both scenarios,
management activities were performed in October of each year.

Results and Discussion

General Behavior of FoRothCs and a Sensitivity
Test for the Tree Transfer Parameters
The model presented in this paper can simulate the monthly
dynamics of the 137Cs inventory in a Japanese cedar forest over
a decadal time scale. Figures 2, 3 show the simulations that were
performed to determine the behavior of FoRothCs. The model
successfully estimated forest biomass production (kg m−2) in
Figure 2A, soil C (kg-C m−2) in Figure 2B, 137Cs inventory (Bq
m−2) in Figure 2C, and their activities (Bq kg−1) in Figure 2D

in the various forest ecosystem compartments (Figure 1). These
are the general output variables of FoRothCs. In addition, the
dynamics of tree density (trees ha−1) and mean basal area
of each individual tree (cm2) were estimated in FoRothCs
according to the self-thinning power law (Hayashi et al., 2002).
Late in each of the simulation periods, the unmanaged above-
ground biomass fluctuated due to self-thinning (Figure 2). As
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FIGURE 2 | Simulation case 1: No forest management. (A) Forest biomass (annual), (B) litter layer and soil C, (C) 137Cs inventory, and (D) 137Cs activity.

can be seen for 137Cs in the RIFE simple compartment model
(Hashimoto et al., 2013), our model also showed rapid migration
of 137Cs inventory from leaves to the forest floor (i.e., to
litterfall and soil compartments), even though the migration via
litterfall was represented as biomass- or C-based mass flow. This
rapid migration was also comparable with field observations of
Japanese cedar in Fukushima, where the 137Cs inventory in the
litter layer doubled from the autumn of 2011 to the autumn of
2012 (Kaneko et al., 2014).

The 137Cs in the litter layer showed relatively high
radioactivity and long persistence during the entire simulation
period (Figure 2D). In most forest types, most of the radioactive
Cs was observed in the fragmented litter (Of) and humus (Oh)
layers (Thiry and Myttenaere, 1993; Karadeniz et al., 2015). In
the definition of FoRothCs, the litter layer is comprised of litter
at different stages of decomposition: Ol (fresh litter), Of, and Oh.
Therefore, the high amount of 137Cs in the litter layer that was
predicted by FoRothCs is considered reasonable. Stemmer et al.
(2005) reported that the fraction of soil microbial biomass to total
137Cs inventory ranged from 2 to 3% at six forest sites in Austria.
The microbial compartments in our results are comparable with
that study, particularly in the early phase shortly after the fallout
event.

We tested the impact of 70% thinning management at 15
years after the fallout on 137Cs dynamics in FoRothCs (Figure 3).
Figure 3D show that the reduction in litterfall after intensive

thinning reduced the litter layer and consequently enriched
the concentration of 137Cs in the litter layer, even though
the inventory of 137Cs in the litter layer was not markedly
different from that in the no-thinning condition (Figure 2). This
enrichment in the concentration of 137Cs in the litter layer is due
to the low 137Cs activity in litter, its upward migration from the
soil into the litter layer, and immobilization by microbes during
decomposition (Witkamp and Barzansky, 1968; Rafferty et al.,
1997). Thus, by simulating C cycling in conjunction with Cs
cycling, FoRothCs enables us to evaluate the disturbance in the
137Cs dynamics in a forest ecosystem. However, this simulation
was restricted to the case in which all of the trees were removed.
A previous field study (Berthelsen et al., 1999) showed that
clearcutting resulted in leaf and branch slash that caused an
increase of 137Cs on the forest floor. It is considered that future
studies need to verify this phenomenon in the field during an
actual forest thinning operation.

Since little data exists for the transfer factors of 137Cs for
trees, we first reconciled the parameters associated with the
internal cycling of 137Cs in trees (Tuptake,Tpullback, andTrelocate) by
searching them against published values for the mean aggregated
transfer factor TFag (m2 g−1) of old needles in conifers (Calmon
et al., 2009) in Figure 4. The sensitivity tests revealed that these
parameters were sensitive to the TFag in FoRothCs (Figure 4),
which determines the ecological half-life of 137Cs in whole trees.
Since we avoid the effect of surface absorption of fallout occurred
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FIGURE 3 | Simulation case 2: Intensity thinning (70%) management, at 15 years after fallout event. (A) Forest biomass (annual), (B) litter layer and soil

C, (C) 137Cs inventory, and (D) 137Cs activity.
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indicates the averaged TFag values in the literature for coniferous forest (Calmon et al., 2009). Green lines indicates the values used in this study.

in the canopy, we used the values of the 137Cs inventory and
activities for 30 years after the fallout event to estimate TFag.
Calmon et al. (2009) summarizes the TFag values published to
date, although these values were likely to be for steady-state
conditions some years after a fallout event. Figure 4 shows TFag

for various ranges of Tuptake and Tpullback. In ForRothCs, instead
of mathematically fitting the data, we used a rounded figure
(see Figure 4) for estimating the average TFag for coniferous
trees; the values obtained for Tuptake, Tpullback, and Trelocate

were 4.0 ×10−5, 0.30, and 5.0 ×10−3, respectively. TFag is not
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an exact match for Japanese cedar and might vary depending
on environmental factors. The values of TFag for coniferous
needles in the literature vary widely, ranging from 2.4 ×10−4

to 1.8 ×10−3 (m2 g−1) (Calmon et al., 2009). However, some
comparable data to be found for Tpullback in previous field
observations; for example, the percentage of N and P pullback in
coniferous trees (Pinus Radiate) from senescence before litterfall
was estimated to range from 20 to 40% (Sadanandan Nambiar
and Fife, 1991). On the other hand, because of the high mobility
of 137Cs ions inside tree compartments (Goor and Thiry, 2004;
Thiry et al., 2009), 60–70% of the annual supply of 137Cs was
pulled-back into nonphotosynthetic tissues (stems and branches)
before litterfall from Scots pines contaminated by the Chernobyl
accident. Compared to that study, our values for Tpullback were

relatively small. Since more than 60% of the 137Cs in Japanese
cedar needles remains in the epicuticular wax (Nishikiori et al.,
2015), which might not contribute to the inter-tree cycling
of 137Cs, the magnitude of Tpullback employed in this study
is not considered unreasonable. However, more intensive field
validation is required in order to better clarify these aspects of
137Cs dynamics.

Impact of Thinning and Litter Removal on the
Cesium-137 Inventory of a Forest Stand
As mentioned in the introduction, thinning of the forest
trees is considered necessary for extensive areas in Fukushima.
In addition, the removal of trees and litter layers are
other important countermeasures for decontaminating forest
ecosystems (Guillitte et al., 1993, 1994), and both have been
conducted in the regions affected by the FDNPP accident.
However, the extent and timing of such countermeasures and
their effect on the long-term 137Cs dynamics remains unclear.
In this study, we used the total 137Cs inventory at 30 years
after the fallout event as a reference point for the reduction
effects of the countermeasures in 137Cs inventory. Figures 5, 6
show the reduction of total 137Cs inventory by the thinning and
litter removal timings and intensities in FoRothCs simulation.
The reduction rate under the no-management scenario was still
nearly 50%, and this was attributable to physical decay (see
Figures 5, 6).

The simulation revealed that, five years after the fallout event,
forest management practices such as thinning and harvesting
has a limited effect on 137Cs inventories, as the migration
of 137Cs from the vegetation to the soil is so rapid. This
migration rate is comparable to the values obtained in field
observations at various sites (e.g., Calmon et al., 2009) and from
modeling studies (e.g., Hashimoto et al., 2013). However, when
intensive thinning or harvesting is undertaken in an area, the
reduction of C input via litterfall to the forest floor leads to
an increase in 137Cs activity in the litter and soil organic layer
(Figure 3).

For the litter removal management, as suggested in previous
studies (Linkov et al., 1997; Hashimoto et al., 2012), our
simulation results showed that the efficiency of litter removal as
a means of reducing the total 137Cs inventory is only effective
in the first few years after a fallout event, mainly because the
137Cs rapidly migrates to the soil organic and mineral layers
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FIGURE 5 | Reduction rate in percent total 137Cs inventory, 30 years
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FIGURE 6 | Reduction rate in percent total 137Cs inventory, 30 years

after the fallout event, for litter removal at various rates and timing.

by decomposing litter layer (Figure 2). Our result also showed
that the 137C migration initially interrupted by the canopy via
litterfall lasted for at least 10 years. So, the timing depends on the
fraction of 137Cs interrupted by the canopy . The magnitude of
the reduction due to these management activities is thus highly
dependent on the vertical distribution of the initial deposition
onto the forest crown (leaves).

Uncovered Processes in FoRothCs and
Upcoming Challenges
FoRothCs does not explicitly incorporate 137Cs migration due
to throughfall precipitation. Especially during the first half
year after the fallout event, throughfall processes contributed
to the migration of 137Cs from the canopy to the forest floor
at a rate that was comparable to litterfall migration in the
area affected by the FDNPP accident (Teramage et al., 2014;
Nishikiori et al., 2015). On the other hand, in a Japanese
cedar forest, throughfall migration of 137Cs was negligible after
only a single year, even though a considerable amount of
137Cs remained in the leaves. The low rates of throughfall
were attributed to most of the 137Cs being captured (Koizumi
et al., 2013), absorbed, and cycled within the internal tissues of
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the trees (Tagami et al., 2012; Mahara et al., 2014; Nishikiori
et al., 2015). Thus, in this model, the initial deposition onto
the forest crown (leaf compartment) should be reduced, and
the actual crown interception should consider throughfall
migration.

Goor and Thiry (2004) suggested from the field observations
that the root uptake rate and translocation of 137Cs circulated
within a plant varies as a function of tree age and other
environmental factors. In addition, immobilization of 137Cs in
soils could affect uptake rate of 137Cs by the tree over the long
term (Goor and Thiry, 2004; Takeda et al., 2013). Thus, the
parameters affecting the transfer factors for the tree uptake rate
Tuptake may also change for trees of different ages (Rantavaara
et al., 2012); the parameters used in our model are constants.
Regarding the mobility of 137Cs in soils, it is possible that soil
organic matter may affect the radiocesium interception potential
(RIP) (Takeda et al., 2014), and consequently, the availability
of 137Cs in soils (Rigol et al., 2002; Rantavaara et al., 2012). In
addition, changes in the vertical profile of 137Cs by factors such
as bioturbation and the vertical distribution of roots may also
affect the uptake of 137Cs by the roots (Velasco et al., 1993,
1997).

In ForRothCs, the distribution of 137Cs in each tree
compartment was assumed to be homogeneous. However, parts
of the stem (i.e., bark, sapwood, and heartwood) showed different
levels of 137Cs activity, especially early in the contamination
period (Rantavaara et al., 2012; Ohashi et al., 2014). Although
the proportion of bark biomass to stem is about 5% in Japanese
cedar (Lim et al., 2013), the 137Cs concentration in bark was
much higher due to sorption of the initial fallout on the bark
surface (Kuroda et al., 2013; Ohashi et al., 2014). A refinement
of the model should consider 137Cs activity in the tree to
be heterogeneous, as in the other compartments. Further, the
slope of the reference site in a forested catchment on Mount
Tsukuba was 0.3% (NIES, 2012), and if our model is applied
to a steep forest stands or to a regional catchment, the soil
erosion rate should be implemented using models such as the
Revised Universal Soil Loss Equation (RUSLE; Renard et al.,
1991).

Although we did not show the results for 134Cs, because
the ratio of 134Cs to 137Cs is approximately unity in the
affected region (Tagami et al., 2011), the use of the 134Cs
decay constant in FoRothCs enables us to simulate 134Cs
cycling in the forest ecosystem affected by the FDNPP
accident.

Finally, we need to validate our model with various field
observations and data for different tree species—for both the
inventory and transfer processes—in order to fully understand
the mid- to long-term 137Cs projections of the model. FoRothCs
is highly parameterized, whereas our knowledge is limited,
especially for the transfer processes (Linkov and Burmistrov,
2003; Rantavaara et al., 2012; Nishikiori et al., 2015). For this
reason, parameterization for the various transfer processes is
essential. To reduce the uncertainties in the parameters in
process models, data assimilation is widely used in many fields.
For the 137Cs dynamics, the FORESTPATH model was applied
using Bayesian calibration for the time series analysis of 137Cs

activity in the soil organic layer (Linkov et al., 1999). As a
consequence of the parameter calibration, the uncertainties in
the prediction are expected to be reduced. However, structural
uncertainties associated with the model cannot be determined
by a single model inversion. To evaluate these uncertainties and
to make valid management decisions, it will be necessary to use
multiple models to assimilate data, especially chronosequence
observations. As shown in this study, the effects of disturbances
due to management and decontamination activities on the
137Cs dynamics have not been sufficiently considered in field
observations and previous model studies. Meeting this challenge
will improve our capacity to predict 137Cs dynamics in forest
ecosystems, and take us one step closer to the actual application
of these models.

Conclusion

We developed a new open-source model, FoRothCs, to
facilitate forest management and decontamination decisions
in radioactively contaminated artificial forest environments.
Although further validation of FoRothCs using field observation
data is necessary, the results presented here are a preliminary step
toward applying this model to evaluate and project the long-term
137Cs dynamics in artificial forests in conjunction with forest
management and decontamination activities. An advanced forest
management plan using a process-based model is recommended
for comprehending the effects of management activities on the
137Cs dynamics of forest ecosystems. The findings of this study
will be applied to a series of future field studies in which the
projections of 137Cs behavior in different forest ecosystems will
be explored.
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