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Toxicity evaluation of newly synthesized or used compounds is one of themain challenges

during product development in many areas of industry. For example, toxicity is the

second reason—after lack of efficacy—for failure in preclinical and clinical studies of

drug candidates. To avoid attrition at the late stage of the drug development process,

the toxicity analyses are employed at the early stages of a discovery pipeline, along with

activity and selectivity enhancing. Although many assays for screening in vitro toxicity are

available, their massive application is not always time and cost effective. Thus, the need

for fast and reliable in silico tools, which can be used not only for toxicity prediction of

existing compounds, but also for prioritization of compounds planned for synthesis or

acquisition. Here I present the benchmark results of the combination of various attribute

selection methods and machine learning algorithms and their application to the data

sets of the Tox21 Data Challenge. The best performing method: Best First for attribute

selection with the Rotation Forest/ADTree classifier offers good accuracy for most tested

cases. For 11 out of 12 targets, the AUROC value for the final evaluation set was =0.72,

while for three targets the AUROC value was = 0.80, with the average AUROC being

0.784 ± 0.069. The use of two-dimensional descriptors sets enables fast screening and

compound prioritization even for a very large database. Open source tools used in this

project make the presented approach widely available and encourage the community to

further improve the presented scheme.

Keywords: toxicity prediction, machine learning, molecular descriptors, molecular fingerprints, Tox21 Data

Challenge 2014

INTRODUCTION

Toxicity evaluation of newly synthesized or used chemicals (pharmaceuticals and its metabolites,
cosmetic ingredients, biocides, or anthropogenic pollutants) is one of the main challenges during
product development in many areas of industry. For example, it has been estimated that in
the pharmaceutical industry the toxicology and clinical safety is accounting for 30% of failures
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in clinical trials (Kola and Landis, 2004). The risk of attrition can
be substantially reduced by the introduction of toxicity testing
at the early stages of product development. Such evaluation,
especially when performed on a large scale, is neither time/cost
effective, nor—in case of tests performed on animals—ethically
justified. It is estimated that the introduction of a new pesticide
to the market requires testing on 7000 animals and costs tens of
millions of dollars (Erickson, 2011). Moreover, animal models are
frequently poorly correlated with response on humans (Knight,
2007; Shanks et al., 2009). Although in vivo testing seems
to be inevitable at the late stage of a product development,
many efforts to shift from traditional in vivo tests to higher-
throughput and less expensive cell-based assays have been made.
For example “The Toxicology in the 21st Century” (Tox21)
program, is aimed at developingmore reliable toxicity assessment
methods as well as developing and validating cellular (in vitro)
toxicity assays. The Tox21 10K chemical library consists of
∼10,500 plated compound solutions, consisting of 8311 unique
chemical substances, including pesticides, industrial chemicals,
food-use additives and drugs (Huang et al., 2014). Acquired
activity data can serve not only as in vitro signatures that
could be used to predict in vivo toxicity endpoints (Martin
et al., 2011; Sipes et al., 2011) and to prioritize chemicals for
extensive toxicity testing (Judson et al., 2010), but also to provide
the scientific community with training data sets for developing
reliable in silico toxicity models (Sun et al., 2012). Also, many
attempts toward development of new computational methods
for high-throughput toxicity prediction have been made and
many techniques and algorithms have been proposed (Deeb
and Goodarzi, 2012; Bakhtyari et al., 2013; Cheng et al., 2013;
Valerio, 2013; Low et al., 2014; Omer et al., 2014; Toropov et al.,
2014; Rouquie et al., 2015). In recent years, machine learning
methods are gaining more attention as robust and accurate
tools for Quantitative structure–activity relationship (QSAR) and
Quantitative structure–property relationships (QSPR) modeling
(Durrant and Amaro, 2015; Freitas et al., 2015; Liu, 2015). The
key to success in building predictive models are: (a) the quality
of a training data set, (b) the descriptive power of molecular
descriptors, and (c) selecting and tuning machine learning
algorithms. Here I present a detailed description of creating
activity prediction models using the Tox21 Data Challenge data
set (Subchallenges 1–12). It consists of activity data for two
panels playing important roles in toxicological pathways. Nuclear
Receptor Signaling Panel (nr) included activity data for seven
targets: aryl hydrocarbon receptor (ahr), androgen receptor—
full length (ar) and Ligand Binding Domain (ar-lbd), aromatase,
estrogen receptor alpha—full length (er) and Ligand Binding
Domain (er-lbd) and peroxisome proliferator-activated receptor
gamma (ppar-gamma). Stress Response Panel (sr) included
data for five targets: nuclear factor (erythroid-derived 2)-like
2/antioxidant responsive element (are), ATAD5, heat shock
factor response element (hse), the disruption of mitochondrial
membrane potential (mmp) and p53. Great emphasis is laid upon
the initial performance benchmark of the various combinations
of attribute selection methods and classification algorithms.
Two-dimensional molecular descriptors set and dictionary-based
fingerprints enable fast screening and compound prioritization

even for very large databases. All software used during this
study is freely available and open source, making the presented
approach widely available for the scientific community.

MATERIALS AND METHODS

The training dataset provided by the Challenge organizers
(https://tripod.nih.gov/tox21/challenge/data.jsp) consisted of the
activity data for ∼10 k compounds (Tox21 10 K compound
library, structures provided as SMILES) on 12 targets, with the
activity class assigned “Active” or “Not active” (for discussions
of activity call procedures, see Shockley, 2012; Tice et al.,
2013). The Testing dataset, provided later by the Challenge
organizers consisted of activity data for 269 compounds. The
final predictions were performed on the evaluation set of 647
compounds with unknown activity.

All calculations were performed on the desktop computer with
Intel Core i7-4770 K CPU processor (eight cores) and 16 GB
RAM, running Ubuntu 12.04.5 LTS.

Structures Standardization and
Preprocessing
The chemical structures in the provided Tox21 Challenge data
sets were standardized using the LyChI (Layered Chemical
Identifier) program (version 20141028, https://github.com/ncats/
lychi). Compounds with ambiguous structure (compound
identifier with more than one chemical structure assigned) or
activity (compound identifier with activity labels “Active” and
“Not active” on a single target) were excluded using KNIME
GroupBy node (KNIME 2.10.4, http://www.knime.org/; Berthold
et al., 2007). For each compound, only the biggest component
was preserved (KNIME component Separator node). For each
target, data set was downsized such that the activity values were
evenly distributed—all records from the minority class were
retained and a random sample from the majority class was added
(KNIME Row Sampling node). Standardized and downsized
datasets used for modeling are available as Supplementary
Materials.

Descriptors Generation
For standardized data sets, two-dimensional molecular
descriptors were calculated using KNIME nodes: RDKit (http://
rdkit.org/, 117 descriptors), CDK (Beisken et al., 2013; http://
sourceforge.net/projects/cdk/, 97 descriptors) and fingerprints
[PubChem (881 bits) and MACCS (167 bits)], giving 1262
descriptors for each compound. For the list of used descriptors
and literature references see Supplementary Table S5. For each
target, Arff weka file was created using KNIME Arff Writer
node.

Classification Algorithms Screen
Preprocessing and classification algorithms screen was
performed in the Weka Experiment Environment (Weka
3.6.6, Hall et al., 2009), with 10-fold cross validation with 10
repetitions. In each run, data was preprocessed with Remove
Useless filter (all constant attributes are deleted, along with

Frontiers in Environmental Science | www.frontiersin.org 2 December 2015 | Volume 3 | Article 77

https://tripod.nih.gov/tox21/challenge/data.jsp
https://github.com/ncats/lychi
https://github.com/ncats/lychi
http://www.knime.org/
http://rdkit.org/
http://rdkit.org/
http://sourceforge.net/projects/cdk/
http://sourceforge.net/projects/cdk/
http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Stefaniak Prediction of Compounds Activity

any that exceed the maximum percentage of variance, set to
99%) and Standardize filter (standardizes all numeric attributes
to have zero mean and unit variance). Attribute selection was
performed with two search methods: Best First and Rank Search,
with CfsSubset attribute evaluator. Machine learning algorithms
tested were: ADTree (alternating decision tree), FT (functional
trees), FURIA (Fuzzy Unordered Rule Induction Algorithm),
IBk (k-nearest neighbors), J48, Naïve Bayes, REPTree, and SMO
(sequential minimal optimization for training a support vector
classifier). Ensemble methods tested in the second step of the
screen were: Rotation Forest, Decorate, Dagging, Bagging and
AdaBoost M1. Unless otherwise stated, all algorithms were
used with default settings. The performance of the models was
measured using area under the receiver operating characteristic
(ROC) curve metrics (AUROC).

Predictions
The final models were built in KNIME with Weka 3.6 nodes,
using the Best First attribute selection method with Rotation
Forest/ADTree classifier (for parameters of the classifier see
Supplementary Table S6). For each target, 10 models were built
using randomly selected subset of 95% of training set. Each
model was evaluated on the remaining 5% of the training set and
on the testing set. The model with the best AUROC value was
selected for the final predictions. The estimation of probability of
a chemical being active was rounded to three decimal places.

RESULTS AND DISCUSSION

The data processing workflow is shown in Figure 1. It involved
six main steps: data preprocessing, descriptors calculation,
feature selection and classification algorithms screen, training,
testing, and predictions.

Data Preprocessing
The first stage of data preprocessing included data sanitization.
First, SMILES were standardized with the LyChi program. For
the training dataset, out of 11,764 unique input compounds,
9231 (78%) had fixed structure. Among the most frequent
modifications were: unifying aromaticity model, neutralization
and small counterions removal. Next, structures containing

more than one component were separated and only the biggest
component was preserved. This was the most vague reduction of
the initial data, but this step was necessary for proper descriptors
calculations. Also, an analysis of the most frequently removed
components showed that these were mainly inorganic acids,
metal ions and water molecules (see Table 1), which are frequent
components of pharmaceutical mixtures and should not be
treated as a factors determining activity on investigated targets.
Finally, each subset of the training data set was downsized such
that the activity values are equally distributed. The selection
of the majority class members (inactives) was random (see
Sections Structures Standardization and Preprocessing: Materials
and Methods), which means that the output from this step could
influence the results of further predictions. Here, the downsizing
was a single-time procedure and the influence of various sets of
majority class on models’ performance was not investigated. For
the initial and final compositions of the training data set (see
Table 2).

Molecular Descriptors Calculation
Generation of higher-dimensional molecular descriptors (3D,
4D, 5D) is time consuming and may be prone to conformer
generation errors. To avoid these shortcomings, low-dimensional
(0D, 1D, 2D) descriptors and dictionary-based fingerprints were

TABLE 1 | Top 10 most frequently removed minor components from an

initial training data set.

Removed component Count % of all removed components

HCl 955 32.6

Na+ 533 18.2

H2O 254 8.7

Cl− 157 5.4

Br− 110 3.8

Sulphuric acid 83 2.8

Methylsulfonic acid 54 1.8

K+ 50 1.7

Maleic acid 47 1.6

I− 41 1.4

FIGURE 1 | Activity prediction workflow.
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TABLE 2 | Initial and final training data sets composition.

Target Initial training data set Preprocessed training data set

Data set size Actives count % actives Data set size Actives count % actives

nr-ahr 8169 950 11.6 1900 950 50.0

nr-ar 9362 380 4.1 756 378 50.0

nr-ar-lbd 8599 303 3.5 604 302 50.0

nr-aromatase 7226 360 5.0 712 356 50.0

nr-er 7697 937 12.2 1866 933 50.0

nr-er-lbd 8753 446 5.1 882 441 50.0

nr-ppar-gamma 8184 222 2.7 442 221 50.0

sr-are 7167 1098 15.3 2188 1094 50.0

sr-atad5 9091 338 3.7 674 337 50.0

sr-hse 8150 428 5.3 850 425 50.0

sr-mmp 7320 1142 15.6 2246 1123 50.0

sr-p53 8634 537 6.2 1064 532 50.0

used here. It was shown earlier that such descriptors may
carry the similar information-level to higher dimensional ones
(Estrada et al., 2001; Oprea, 2002; Roy and Das, 2014) and can be
successfully used in building predictive QSAR models (Roy and
Roy, 2009; Garcia et al., 2011; Chavan et al., 2014; Su et al., 2015).

Feature Selection and Classification
Algorithms Screen
Various attribute selection, data preprocessing and classification
algorithms are available (Witten et al., 2011). It is not known a

priori which combination of the above is optimal for the problem
under consideration, as for different data sets the accuracy of
algorithms varies (Smusz et al., 2013). This is why an initial
methods assessment was conducted, evaluating the performance
(expressed as the AUROC value) of the combination of:

• Attribute selection methods: two search methods were
evaluated: Best First and Rank Search

• Classifiers: 14 classifiers setups were evaluated

Most classifiers were used with default settings. For IBk, four
values of k were probed (1, 3, 5, and 10), as this parameter
may significantly influence the performance of this classifier.
SMO algorithm was probed with three kernels (RBF kernel,
polynomial kernel, and normalized polynomial kernel). To
validate various modeling approaches, a 10-fold cross validation
with 10 repetitions was used. In each run, training data were
preprocessed independently (removal of a constant attribute,
data standardization, attribute selection). This allowed an
estimation of how the procedures under the investigation will
generalize to an independent data set. Results of the initial
evaluation are summarized in Figure 2 (for values obtained in
the initial methods evaluation see Supplementary Table S1).

As expected, the performance of evaluated classifiers varied.
For the tested set of the descriptors, among the best performing
ones were ADTree, IBk, and Naïve Bayes. Performance of
IBk classifier varied slightly for various values of k, with
better AUROC values for the higher k (5 and 10). The
worst performance was observed for SMO (Sequential Minimal

Optimization). However, the parameters for these methods (C,
gamma) were not optimized and certainly such optimization
would increase their performance. As for the attribute selection
methods, in most cases there were no significant differences in
performance between algorithms. The exception is the Naïve
Bayes classifier, where the differences are substantial. Generally,
the Best First method was slightly better than Rank Search (mean
AUROC for all experiments: 0.778 ± 0.056 and 0.768 ± 0.055,
respectively). In the studied descriptors space, the overall “target
predictability” also varied. The sr-mmp and nr-ar-lbd are “the
most predictable” targets while sr-hse and nr-er are “the least
predictable” ones. The latter observation may be caused by the
insufficient descriptive power of calculated molecular features to
describe the nature of binding small molecule ligands to these
targets.

After initial algorithms screen, the four best performing
methods (Naïve Bayes, ADTree, and IBk) were evaluated in
combination with ensemble methods: Rotation Forest, Decorate,
Dagging, Bagging, and AdaBoost. The SMO classifier was treated
as the “negative control.” The Best First attribute selection
method was used. Results are summarized in Figure 3 (for
AUROC values obtained in this experiment see Supplementary
Table S2).

The application of the ensemble methods in most cases caused
increase of the obtained AUROC values. The average AUROC
for all targets for Naïve Bayes classifier increased from 0.79
to 0.80 (when combined with Bagging, Dagging, Decorate and
Rotation Forest) but decreased to 0.78 in case of AdaBoostM1.
For ADTree, the AUROC values increased from the initial 0.79–
0.82 (in combination with Decorate) and 0.83 (for Rotation
Forest). For comparison of the performance of the selected
ensemble classifiers see Supplementary Table S4. The best and
most stable performance for all targets was observed for Rotation
Forest ensemble method with two classifiers: ADTree and IBk
(k = 10) (Mean AUROC for all experiments: 0.831 ± 0.038
and 0.820 ± 0.038 respectively). Based on these results, the Best
First attribute selection method with Rotation Forest/ADTree
classifier was used for the final activity predictions for all targets.
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FIGURE 2 | Heat maps presenting results of the initial methods evaluation. Color coded AUROC values are presented for 14 classifiers (Y axis) in combination

with two attribute selection methods (top X axis), grouped by the target (down X axis). Additional group presenting mean AUROC values is added for classifiers

comparison.

FIGURE 3 | Heat maps presenting results of the ensemble methods

assessment. Color coded AUROC values for 12 classifiers (Y axis) for each

challenge target (X axis) are shown. Aditional column presenting mean AUROC

values is added for classifiers comparison.

Training, Testing, and Final Predictions
For each target, 10 models were built using randomly selected
subsets of 95% of the training set. Each model was tested on two
sets: the remaining 5% of the training set and the provided testing
set. The use of the 5%-random subset, apart from the constant
testing set, helped to assure that the performance of the selected
model is obtained not due to chance, but by merit inherent to the

TABLE 3 | AUROC values obtained for the best models selected for final

predictions.

Target AUROC testing AUROC evaluation set

Training set 5% Testing set

nr-ahr 0.92 0.84 0.89

nr-ar 0.76 0.50 0.73

nr-ar-lbd 0.91 0.82 0.79

nr-aromatase 0.92 0.79 0.78

nr-er 0.85 0.67 0.77

nr-er-lbda 0.95 0.70 0.78

nr-ppar-gammaa 0.97 0.71 0.67

sr-are 0.87 0.80 0.72

sr-atad5a 0.91 0.65 0.76

sr-hse 0.90 0.74 0.80

sr-mmp 0.92 0.86 0.93

sr-p53 0.88 0.72 0.79

aThese models were not submitted to the final evaluation of the Tox21 Challenge.

method. The model with the highest AUROC value was selected
for the final predictions on the evaluation set. The performance
on the testing and evaluation data sets of selected best models
is summarized in Table 3. For AUROC statistics of all generated
models see Supplementary Table S3.

The average AUROC value for the final predictions for all 12
targets was 0.784 ± 0.069. The best results were obtained for nr-
ahr and sr-mmp (AUROC values: 0.89 and 0.93, respectively).
The lowest AUROC value was obtained for nr-ppar-gamma
(0.67), despite good performance of the model on the testing
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sets. As stated earlier, lower performance for some targets may
be caused by the insufficient descriptive power of calculated
molecular features to describe the complex nature of binding
small molecule ligands to these targets.

In general, one can observe the correlation between AUROC
values for testing and evaluation data sets. Most prominent
examples include sr-mmp and nr-ahr (good performance in both
testing and final evaluation) and nr-ar (moderate performance in
both cases). On the other hand, for nr-ppar-gamma, the results
obtained on the testing data sets are very good, while the final
performance is moderate. In this case, one of the reasons could
be that the chemical space of the evaluation set is out of the
applicability domain of the selected model.

Computational Performance
Descriptors Calculation

The choice of low-dimensional descriptors guaranteed a high
speed of calculations. A test run, carried for randomly selected
50 k clean drug like compounds fetched from ZINC database,
showed a calculation rate at 12.65 s/1000 compounds (±1.33 s).
The workflow for the descriptors calculation may be further
optimized by applying a better parallelization scheme and by
using all available CPUs on all stages of calculations.

Classification Performance

The biggest influence on the training time has the attribute
selection step. Results from initial algorithms assessment (10-
fold cross validation with 10 repetitions) shows that, for Best
First, the average time of a single run was 10.197 ± 6.359 s,
while for Rank Search it was 80.983 ± 66.302 s. Although the
differences between these algorithms are high, in many cases
training is a one-time procedure and training time is not a main
factor for consideration. The average testing time for Best First
method was 0.034± 0.063 s, while for Rank Search it was 0.119±
0.242 s. For the setup used for final evaluation (Best First attribute
selection method with Rotation Forest/ADTree classifier) the
average training time for all targets was 13.084 ± 8.627 s, while
the testing time was 0.042± 0.033 s. For training and testing time
values see Supplementary Tables S1, S2).

Related Works
Recently, a few papers describing various classification methods
applied to the Tox21 dataset have been published. Drwal
et al. described a successful approach of applying similarity
comparison and machine learning for activity prediction (Drwal
et al., 2015). These authors also used two dimensional descriptors
sets in the form of 2929 bit-long bitvector, encoding molecular
features, properties and connectivity information. The training
dataset was enriched by adding activity data fetched from the
literature (when available). Various parameters of similarity
searching (Tanimoto fingerprint similarity to active or inactive
compounds), of machine learning (Naïve Bayes) and of the
combination of these methods were evaluated. The established

methodology applied to the Tox21 dataset gave comparable
results to the ones shown in this work (for four targets, the
methods presented here gave better AUROC values, for two, the
values were equal).

Deep learning methods were also applied to the Tox21
classification challenge. Unterthiner et al. used deep neural
network with 40,000 input features describing molecules
(Unterthiner et al., 2015). The presented scheme allowed
the team to get the highest AUROC values in most of the
Tox21 sub-challenges. The drawback of this methodology is the
high demand for computational resources. Ramsundar et al.
used simple two-dimensional descriptors and fingerprints in
connection with Massively Multitask Networks (Ramsundar
et al., 2015). Comparison to other classification algorithms
(logistic regression, random forest) showed better performance
for the deep learning method. Again, this methodology is
computationally very expensive.

CONCLUSIONS

The presented method uses fast to calculate, two-dimensional
descriptors and, in most cases, shows good predictive
performance. Moreover, the use of free and open source
tools makes the presented approach widely available for the
community. To further improve the described workflow, a
wider set of descriptors may be used, including fingerprints
basing on connectivity information (like ECFP4 or Morgan
fingerprints) or recently presented ToxPrint fingerprint, which
cover substructures associated with toxicity (Yang et al., 2015).
Also, other classification methods, including ensemble methods
and deep learning techniques, should be investigated.

The Tox21 Data Challenge 2014 has offered the opportunity
to compare and benchmark various approaches for toxicity
prediction. The results clearly show that the very accurate in
silico methods are now, or soon will be, at our fingertips.
However, there is still a lot of work to be done to improve
the quality of models to fully supersede traditional, in vitro
assays.
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