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Tens of thousands of chemicals with poorly understood biological properties are released
into the environment each day. High-throughput screening (HTS) is potentially a more
efficient and cost-effective alternative to traditional toxicity tests. Using HTS, one can
profile chemicals for potential adverse effects and prioritize a manageable number for
more in-depth testing. Importantly, it can provide clues to mechanism of toxicity. The
Tox21 program has generated >50 million quantitative high-throughput screening (QHTS)
data points. A library of several thousands of compounds, including environmental
chemicals and drugs, is screened against a panel of nuclear receptor (NR) and stress
response (SR) pathway assays. The National Center for Advancing Translational Sciences
(NCATS) has organized an international data challenge in order to “crowd-source” data
and build predictive toxicity models. This Challenge asks a “crowd” of researchers to
use these data to elucidate the extent to which the interference of biochemical and
cellular pathways by compounds can be inferred from chemical structure data. The
data generated against the Tox21 library served as the training set for this modeling
Challenge. The competition attracted participants from 18 different countries to develop
computational models aimed at better predicting chemical toxicity. The winning models
from nearly 400 model submissions all achieved >80% accuracy. Several models
exceeded 90% accuracy, which was measured by area under the receiver operating
characteristic curve (AUC-ROC). Combining the winning models with the knowledge
already gained from Tox21 screening data are expected to improve the community’s
ability to prioritize novel chemicals with respect to potential human health concern.
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INTRODUCTION

Humans are exposed to many different chemicals during the
course of their lifetimes through various sources including food,
household cleaning products, and medicines. In some cases, these
chemicals can be toxic. In fact, more than 30% of promising
pharmaceuticals have failed in human clinical trials because they
were found to be toxic despite promising pre-clinical studies
in animal models (Kola and Landis, 2004). Creating rapid and
efficient methods for assessing chemical toxicity has the potential
to improve how scientists evaluate environmental chemicals,
develop new medicines, and even foster decisions made by
regulatory agencies on whether or not these chemicals should
be made available. More than 80,000 chemical compounds are
registered for use in the U.S., and for 95% of them, there is no data
on human exposure to inform society about their effects on health
(Judson et al., 2009). The use of in silico approaches, such as
quantitative structure-activity relationship (QSAR) models that
infer biological activity from chemical structure similarity, is a
viable alternative to fill in the gap where experimental data is
lacking (Muster et al., 2008; Vedani and Smiesko, 2009). These
models could be applied to all the chemicals of environmental
concern and obtain an estimate on their toxicity potential in a
matter of hours of computational time. Chemicals estimated to
have a high potential for toxicity, which would be a much smaller
number, could be prioritized for experimental evaluation and
validation. In addition, these models could also identify structural
features of a chemical that are responsible for its toxic activity,
which could serve as structural alerts for toxicity (Sanderson and
Earnshaw, 1991; Saiakhov and Klopman, 2008). Combining these
computational models with existing experimental data will make
chemical prioritization more time and cost efficient.

The U.S. Tox21 program (NRC, 2007; Collins et al,
2008; Kavlock et al., 2009; Tice et al.,, 2013), a collaboration
between the National Institute of Environmental Health
Sciences (NIEHS)/National Toxicology Program (N'TP), the U.S.
Environmental Protection Agency’s (EPA) National Center for
Computational Toxicology (NCCT), the National Institutes of
Health (NIH) National Center for Advancing Translational
Sciences (NCATS), and the U.S. Food and Drug Administration
(FDA), is aimed at developing better toxicity assessment
methods. The goal is to quickly and efficiently test whether
certain chemicals have the potential to disrupt processes in the
human body that may lead to adverse health effects. The Tox21
consortium leverages its partners resources and expertise to
predict more effectively how a collection of ~10,000 compounds
(referred to as Tox21 10K library) composed of environmental
chemicals and approved drugs will affect human health and
the environment. The Tox21 10K library has been tested in a
quantitative high-throughput screening (qQHTS) format against
a panel of nuclear receptor (NR) (Huang et al., 2011, 2014;
Hsu et al., 2014; Chen et al, 2015) and stress response (SR)
pathway assays (Attene-Ramos et al., 2015; Nishihara et al., 2016),
producing over 50 million data points to date (PubChem, 2013b).
These data can serve as a knowledge-base to correlate chemical
structures to their biological activities to develop QSAR models.
To encourage the mining and usage of these data now publicly

TABLE 1 | Tox21 assays used in subchallenges.

Assay ID Assay PubChem
AID
NR-AhR Aryl hydrocarbon receptor 743122
NR-Aromatase Aromatase 743139
NR-AR Androgen receptor, full length 743040
NR-AR-LBD Androgen receptor, LBD 743053
NR-ER Estrogen receptor alpha, full length 743079
NR-ER-LBD Estrogen receptor alpha, LBD 743077
NR-PPAR-gamma Peroxisome proliferator-activated receptor 743140
gamma
SR-ARE Nuclear factor (erythroid-derived 2)-like 743219
2/antioxidant responsive element
SR-ATAD5S ATAD5 720516
SR-HSE Heat shock factor response element 743228
SR-MMP Mitochondrial membrane potential 720637
SR-p53 p53 720552

available, NCATS launched the Tox21 Data Challenge 20141, the
goal of which was to “crowdsource” data analysis by independent
researchers to reveal how well they can predict compounds’
interference in cellular and biochemical pathways resulting in
potential toxicity by using only chemical structure data. The
Challenge’s computational models could become part of the
decision-making tools for government agencies in determining
which environmental chemicals and drugs are of the greatest
potential concern to human health.

Here, we describe the Challenge and provide an overall
summary of the results. Data from 12 assays were selected based
on data quality and public interests for this Challenge (Table 1).
The Challenge was divided into subchallenges. In subchallenges
1-12, participants were asked to model compound activity for
each one of the 12 assays. In subchallenges 13 and 14, participants
were asked to model all NR pathway assays (NR Panel Challenge)
and all SR pathway assays (SR Panel Challenge). In the final
subchallenge, 15 (Grand Challenge), participants were asked to
build models for all 12 assays. The Tox21 10K dataset was used
for model training. Data generated on part of the LOPAC!?%
(Library of Pharmacologically Active Compounds) collection was
used for testing. For final model evaluation and scoring, a new set
of compounds provided by the EPA, for which no experimental
data were available at the time of the Challenge, was screened
against the 12 assays. This new set of data together with the
rest of the LOPAC data was used to evaluate the final model
submissions. The Challenge was launched on July 16, 2014 and
closed for scoring on November 14, 2014. Participants were
encouraged to enter the competition as teams. One winning
team with the best predictive model was selected for each
subchallenge, and the winners were announced on January 26,
2015. One hundred and twenty five participants representing 18
different countries registered for the Challenge (Figure 1). Three
hundred and seventy eight model submissions from 40 teams
were received for final evaluation (Figure 1).

Uhttps://tripod.nih.gov/tox21/challenge/
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FIGURE 1 | Worldwide challenge participation. (A) Distribution of individuals registered for the challenge. (B) Distribution of teams that submitted models for final

evaluation.

METHODS

The qHTS data generated on the Tox21 10K compound
collection are publicly available (PubChem, 2013a,b). The 12
assays were selected based on data quality, active rate, and
toxicological relevance for the Tox21 Challenge and their
PubChem assay IDs (AIDs) are listed in Table1. All of the
compounds in the Tox21 10K collection went through analytical
quality control (QC) to test for their purity and identity. The
samples that failed QC were excluded from the training set for
the Challenge. Based on the concentration response data, each
compound in each assay was assigned one of three possible
activity outcomes: active, inactive, and inconclusive (Huang
et al.,, 2014; Attene-Ramos et al.,, 2015). The compounds that
showed inconclusive activity in all 12 assays were filtered out,
thus leaving 8043 samples for the training set. The LOPAC!?%
collection (Sigma-Aldrich) contained 1280 compounds, 688 of

which overlapped with the Tox21 10K compounds. The non-
overlapping 592 LOPAC compounds were randomly split into
two sets of equal size, with 296 compounds in each set.
One set was provided to the Challenge participants for model
testing and the other was held back for final evaluation. An
additional set of 345 compounds, for which no experimental
data was available at the time of the Challenge, was provided
by the EPA as an extension to the Tox21 10K collection.
The training, test, and final evaluation sets appeared to cover
similar chemical structure spaces as shown by the 3D plots
generated using principal components 1-3 generated from the
729-bit ChemoTyper? fingerprints (Supplementary Figure 1).
The chemical structures of these compounds were provided to
the Challenge participants to generate activity predictions. While
in parallel, these compounds were also screened against the 12

Zhttps://chemotyper.org/
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assays to generate experimental data. The experimental screens
were finished at the same time as the final model submission
was closed. These newly generated assay data together with the
296 LOPAC compounds (641 compounds total) were used as
the final evaluation set to score and rank the model submissions
to determine the winners. All datasets were posted online® for
registered participants to download, which are now open to the
public.

Challenge participants were asked to provide an estimate of
the probability of a chemical being active in an assay as well as an
active/inactive call. The performance of the model was evaluated
by the area under the Receiver Operating Characteristic (ROC)
curve (AUC-ROC) using the activity estimates produced by the
model. The ROC curve is a plot of sensitivity [TP/(TP+FN)]
vs. (1-specificity [TN/(TN+FP)]) (Zweig and Campbell, 1993),
where TP = true positive (number of active compounds also
predicted as active), FP = false positive (number of inactive
compounds predicted as active), TN = true negative (number of
inactive compounds also predicted as inactive), and FN = false
negative (number of active compounds predicted as inactive).
A perfect model would have an AUC-ROC of 1 and an AUC-
ROC of 0.5 indicates a random classifier. In cases where there
was a tie between the AUC-ROC scores from two teams, the
balanced accuracy (BA = (specificity + sensitivity)/2) calculated
based on the active/inactive calls was used to determine the final
ranking. Teams were expected to provide a prediction on the
activity of every compound in the final evaluation set. Missing
predictions were counted as false positive or false negative in
the scoring process. Teams were asked, in addition, to provide
a description of the prediction method they used, which should
be embodied in a set of algorithms and a software system, for
the Challenge organizers to directly use to verify the results.
Challenge rules and scoring criteria were also posted online?,
where registered Challenge participants were able to upload their
model predictions and method descriptions.

Consensus Modeling

A consensus model (Eduati et al., 2015) was built for each assay
based on all the submitted models for that assay, such that the
probability of a chemical being active in an assay is determined
by combining predictions made by all individual models. Each
individual model is also weighed by its predictive performance
on the final evaluation set, as measured by the AUC-ROC score,
such that better performing models would contribute more to the
consensus prediction. Specifically, for the consensus model, the
probability C of chemical i being active is calculated as follows:

n
Ci:ZWj'Pj (1)
=1

where 7 is the total number of models that provided predictions
for chemical i, P; is the predicted probability of chemical i being
active by model j, and w; is the weight of model j, which is
the AUC-ROC score on the final evaluation set obtained by
model j. C; is thus the consensus prediction of the activity of

3https://tripod.nih.gov/tox21/challenge/data.jsp
“https://tripod.nih.gov/tox21/challenge/submissions.jsp

chemical i in an assay. The performances of the consensus models
are evaluated by generating the AUC-ROC scores on the final
evaluation set using these consensus probabilities as predictors.

RESULTS AND DISCUSSION
Challenge Participation

The training dataset was made available to the Challenge
participants at the time of the Challenge launch in July 2014.
The test dataset was provided in early August 2014, when a
Leaderboard was also created on the Challenge website for
teams to submit their predictions on the test set. Teams were
allowed to train and test their models using the Leaderboard until
October 2014, at which point the Leaderboard was closed, the
test dataset was released to the participants to test and improve
models on their own, and the Challenge began to accept model
submissions for final evaluation. Fifty-three teams participated in
the Challenge by submitting a model either at the testing stage
or for final evaluation. Final model submission was closed in
November 2014 when the scoring started. Teams were allowed
an additional month to submit their method descriptions. Final
model performance scores and ranking were made available to
all teams who submitted a model for final evaluation on the
Challenge website in January 2015. The top ranking teams and
their scores were posted on the Challenge website®> and the
winning teams (Table 2) were announced on the NCATS website,
January 26, 2015°. For the final model evaluation, we received
378 model submissions from 40 teams (Figure 1), averaging 32
models per assay/subchallenge.

Model Performance

The performances of the submitted models measured by AUC-
ROC and BA are shown in Figure2. All winning models
performed well with AUC-ROC scores ranging from 0.81 to 0.95
(1 is the perfect score) and BAs ranging from 0.68 to 0.90. The
BA values were found generally lower than the AUC-ROC scores
because the teams were asked to decide on their own the most
appropriate cutoffs to make the active/inactive calls based on
their training and testing results. This task tested the contestant’s
ability to select the right cutoff using the ROC. If the optimal
cutoff was selected, the BA should have been very close to the
AUC-ROC value.

Subchallenges SR-MMP and NR-AhR received the best
performing models with the best AUC-ROC scores >0.9 and
average AUC-ROC scores >0.8. The models received for the
other subchallenges were comparable on average, with the
NR-AR and NR-AR-LBD models achieving the lowest average
performance scores (~0.7). A common confounding factor
that affected model performance was data quality. We checked
the reproducibility of the training and the final evaluation
datasets against the model performances (Figure 3). All datasets
used for this Challenge were found to be of high quality
with >90% reproducibility. No correlation was found between
data reproducibility and the average AUC-ROC score per
subchallenge, as all datasets were highly reproducible and the

Shttps://tripod.nih.gov/tox21/challenge/leaderboard.jsp
Shttp://www.ncats.nih.gov/news-and-events/features/tox21- challenge.html
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TABLE 2 | Tox21 challenge winners.

Team name

Challenge assay(s)

Team member(s)

Organization(s)

Bioinf@dKU

Grand Challenge (all 12 assays)
Stress Response Panel

Gunter Klambauer, Ph.D.
Sepp Hochreiter, Ph.D.

Institute of Bioinformatics, Johannes Kepler University Linz, Austria

NR-AhR Andreas Mayr, M.Sc.
SR-ARE Thomas Unterthiner, M.Sc.
Bioinf@JKU-ensemble NR-ER GuUnter Klambauer, Ph.D. Institute of Bioinformatics, Johannes Kepler University Linz, Austria
SR-HSE Sepp Hochreiter, Ph.D.
Andreas Mayr, M.Sc.
Thomas Unterthiner, M.Sc.
Herbert Zaunmair
Bioinf@JKU-ensemble3 NR-AR-LBD GUnter Klambauer, Ph.D. Institute of Bioinformatics, Johannes Kepler University Linz, Austria

Sepp Hochreiter, Ph.D.
Ulrich Bodenhofer, Ph.D.
Andreas Mayr, M.Sc.
Thomas Unterthiner, M.Sc.

Bioinf@JKU-ensemble4

Nuclear Receptor Signaling
Panel
NR-PAR-gamma

Gunter Klambauer, Ph.D.
Sepp Hochreiter, Ph.D.
Birgit Hauer

Andreas Mayr, M.Sc.
Thomas Unterthiner, M.Sc.

Institute of Bioinformatics, Johannes Kepler University Linz, Austria

AMAZIZ SR-ATAD5S Ahmed M. Abdelaziz Sayed Technical University of Munich
SR-MMP
Dmlab NR-AR Gergd Barta, M.Sc. Budapest University of Technology and Economics
Aromatase
p53
Microsomes NR-ER-LBD Yoshihiro Uesawa, Ph.D. Department of Clinical Pharmaceutics, Meiji Pharmaceutical University

best performing models were already reaching the level of assay
precision.

Active rate or data balance is another common factor that
affects model performance. Models built on less balanced data
or assays with lower active rates (e.g., <5%) are generally of
lower quality. There are different computational approaches to
balance data and enhance model performance, but if the number
of actives is too low, the information that can be retrieved from
the active chemical structures that the model is trained on will
be limited, nonetheless. Active rate was taken into consideration
when selecting assays for the Challenge such that assays with
extremely low active rates (e.g., <2%) were excluded. The
active rates of the assays used in the Challenge were compared
against the model performances as well (Figure 3), and a positive
correlation was found between the two (r = 0.63, p = 0.03), i.e.,
models built for assays with higher active rates tend to perform
better. For example, the assays with the best performing models,
SR-MMP and NR-AhR, had >10% active rates, whereas the NR-
AR assays that received the lowest average model performances
had <5% actives.

Consensus Modeling—Wisdom of the

Crowd
The goal of this Challenge was to rely on the wisdom of the
crowd to identify high quality models that could aid chemical

toxicity assessment, and previous challenges have shown that
aggregation of predictions, which leverage the collective insight
of all participants, can provide a more robust estimate than any
individual model (Marbach et al., 2012; Eduati et al., 2015). We
generated consensus models by aggregating the individual model
predictions and tested the performance of the models on the
final evaluation set. The consensus models performed on a par
with the winning models (Figure 4). We tried a few different
aggregation approaches. When we averaged all individual model
predictions to produce the consensus prediction, the consensus
model performed better than 86% of the individual models
for each subchallenge, on average. We then weighed the
predictions from each individual model by their AUC-ROC
score, such that the better performing models would contribute
more to the consensus prediction. This approach improved
the performance of the consensus models by outperforming
87% of the individual models. To further reduce the impact of
poor performing individual models, we only included the top
performing models (AUC-ROC > 0.8) from each subchallenge.
In this case, the consensus model performed better than 96%
of the individual models for each subchallenge. For 6 out
of the 12 subchallenges, the consensus model outperformed
the winning model. Interestingly, even though weighing all
individual predictions equally (including the worst individual
models) resulted in less than optimal consensus models, the
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FIGURE 2 | Performances of models received for the 12 subchallenges for final evaluation. (A) Measured by AUC-ROC (B) Measured by balanced accuracy.

consensus models still outperformed the individual models 86%
of the time, portraying the wisdom of the crowd.

In addition, we checked the compounds that were frequently
predicted correctly or incorrectly by teams, and calculated a
correct prediction rate for each compound in the final evaluation
set. We then looked at the activity outcome distribution of
each compound in the 12 assays used in the Challenge.
In each assay, there were often a number of compounds
for which no conclusive activity call could be made. Some
compounds showed inconclusive activity in more assays than
others. Based on this information, we also calculated an
inconclusive rate for each compound in the final evaluation

set. When the two parameters were compared, we found a
strong negative correlation between the correct prediction rate
and the inconclusive rate of compounds (r = —0.75, p <
10729). Inclusive outcomes were excluded when evaluating
model performances, but the compounds that tend to produce
inconclusive outcomes still appeared to be less predictable
than compounds for which the activity was often clear. This
observation suggests that there might be certain characteristics
of the frequent inconclusive compounds that make them
“unpredictable” and outliers/violators of the structure-dictates-
activity rule. These compounds and their assay activities will
be examined in more detail in a follow up study. Nevertheless,
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FIGURE 4 | Wisdom of the crowd. The best consensus models (colored in
red) outperformed 96% of the individual models (colored in gray) on average
and half of the winning models.

this type of information/insight could only be learned through a
crowdsource exercise like this Challenge.

Methods used by Winning Teams

A wide range of chemical descriptors and/or fingerprints, and
machine learning algorithms were employed by the winning
teams, including both public tools and commercial or custom
in-house software. The sources of chemical descriptors included
MOE (Chemical Computing Group Inc., Montreal, Canada),

ChemAxon (ChemAxon LLC., Cambridge, MA), Dragon (Talete
SRL, Milan, Italy), PaDel (Yap, 2011), RDKit’, PubChem
fingerprint®, GSFrag (Tetko et al., 2005), ISIDA fragments
(Ruggiu et al., 2010), ESTATE indices (Hall and Kier, 1995),
AlogPS (Tetko and Tanchuk, 2002), CDK (Steinbeck et al.,
2003), inductive descriptors (Cherkasov, 2005), Adriana.Code
(Molecular Networks GmbH, Erlangen, Germany), QNPR
(Thormann et al, 2007), MERA, and MerSy (Bartashevich
et al, 2002), to list a few. Examples of modeling algorithms
included Random Forest (Breiman, 2001), deep neural networks
(Schmidhuber, 2014), support vector machines (SVM) (Cortes
and Vapnik, 1995), Elastic Nets (Zou and Hastie, 2005),
Gradient Boosting Decision Trees (Friedman, 1999), Extra Trees
(Geurts et al., 2006), associative neural networks (Tetko, 2008),
and k-Nearest Neighbors (Altman, 1992). SVM appeared to
be a popular algorithm choice among the winning teams.
The winners commonly used multiple descriptor types and
applied feature selection to select the most relevant descriptors,
employed multiple modeling algorithms, and applied consensus
models to make the final predictions. In addition to what
the Challenge provided, the Grand Challenge winner also
used outside data, such as data from literature and public
databases including PubChem and ChEMBL (Gaulton et al,
2012).

CONCLUSIONS

The Tox21 Data Challenge produced high quality winning
models, thus confirming the ability of computational approaches

“http://www.rdkit.org/
Shttps://pubchem.ncbi.nlm.nih.gov/
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to provide meaningful predictions of toxicity responses in
terms of pathway disruption upon environmental compound
exposure using (only) chemical structure information. The
combination of the individual models from all participating
teams produced better performing consensus models, some of
which even outperformed the winning models, showing the
wisdom of the crowd. The high predictive performance of these
models also serves as a validation of the quality of datasets
produced from the Tox21 qHTS assays, which were the basis
for this Challenge. The winning models will be made publicly
available so that they can be applied to other chemical sets for
which no experimental data are available and used to prioritize
chemicals for more in-depth toxicity evaluation. All winning
models, or better performing consensus models, can be applied
in parallel to establish activity/toxicity profiles for these data
poor chemicals. Compared to the other challenge participants,
the winning teams often applied multiple descriptor types with
feature selection, and multiple modeling algorithms to reach
consensus predictions. As a follow up study, we will compare
in detail the methods used by different teams to determine if
there are specific techniques that enabled the winning models to
outperform other models.
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