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As air pollution poses a great challenge around the globe, it is essential to fashion out a

way of efficiently degrading the air pollutants. Vacuum Ultraviolet (VUV)-based processes

are an emerging and promising technology for environmental remediation such as

air cleaning, wastewater treatment, and air/water disinfection. When VUV irradiation,

photolysis, photocatalysis, and ozone-assisted oxidation are involved at the same time,

it results in the fast degradation of air pollutants because of their strong oxidizing

capacity. The mechanisms of how the oxidants are produced and how they react are

discussed in this review. This paper focuses mainly on the three VUV-based oxidation

processes including VUV photolysis, VUV combined with ozone-assisted oxidation, and

VUV-PCO with emphasis on their mechanisms and applications. Also, the outlook of

these processes are proposed in this paper.
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INTRODUCTION

Common Air Pollutions
With the rapid development of industry and increasing population, air pollutions presently poses a
more serious challenge. Solving the problem of air pollution is one of the most difficult challenges
faced by a number of governments around the world (Spigno et al., 2003). Air pollutants, including
biological and gaseous substances exist in ambient as well as in indoor environments and require
simultaneous removal for better air quality (Yu et al., 2009). Gaseous pollutants can be classified
into organic and inorganic, and among them organic compounds take a majority of the emission
category. Inorganic pollutants mainly refer to sulfur dioxide, nitric oxide, hydrogen sulfide, and so
on, while organic pollutants mainly consist of Volatile Organic Compounds (VOCs) with boiling
points between room temperature and 260◦C (Huang et al., 2015b) including alkanes, aromatic
hydrocarbons, aromatics, olefins, alcohols, aldehydes, ketones, halogenated hydrocarbon, and so
on. Among the list of 25 toxic gaseous pollutants listed by U.S. EPA, 18 of them are organic
compounds (Lee, 1991). The generation, transportation and storage processes of the raw chemicals
and industries, such as pharmaceutical chemicals, printing, and petrochemical industries produce
most of the VOCs (Li et al., 2009; Brito et al., 2015). VOCs cause great harm to the human health.
Long time exposure to VOCs may cause health problems, such as Sick Building Syndromes (SBS)
(Järnström et al., 2006), cancer, genetic mutation, and so on. It can also cause air pollution like
PM2.5, photochemical smog, ozone, and global warming (McGwin et al., 2010; Wu et al., 2012).
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In the past, most of the studies focused on the degradation
of single pollutant but not on multiple air pollutants
(Thiruvenkatachari et al., 2008). VUV-based processes are
advanced oxidation processes (AOPs) without selectivity, which
is of a great advantage for the degradation of multiple air
pollutants.

Common Air Purification Methods
Air purification process can be generally divided into physical,
chemical, and biological methods.

Physical Methods
In physical methods, pollutants can be separated from waste
gas due to the different physical properties like boiling point
and solubility. It can be divided into absorption, adsorption,
membrane separation, and condensation. Moretti et al. (Moretti,
2002) tried to absorb the organic gas by Nonpolar mineral oil
such as light diesel and engine oil with a removal efficiency
of 90%. Noll (Standeker et al., 2009), Moura (Moura et al.,
2011), Daifullah (Daifullah and Girgis, 2003), and Kwong
(Kwong and Chao, 2010) adopted the silica aerosol, alumina,
activated carbon, and fly-ash in order to adsorb VOCs. High
removal rate of VOCs can be achieved under membrane
separation (Xing et al., 2000). Baker et al. (1994) recycled VOCS
from waste gas by compression, condensation, and membrane
separation.

However, there are some disadvantages that tend to limit the
application of physical methods. For example, most of the VOCs
are insoluble in water which reduces the absorption efficiency.
In addition, the solution after absorption needs further disposal.
Although the adsorption process is simple and it can also recycle
the useful compounds of the waste gas, secondary pollution will
occur during the desorption process which may increase the cost.
The high cost also greatly restricts the application of membrane
separation.

Biological Methods
In biological treatment, pollutants are generally decomposed into
carbon dioxide, water, and cytoplasm by microbial metabolism
(Deshusses and Johnson, 2000). Biological degradation has many
operational and cost advantages over the conventional physico-
chemical methods (Aizpuru et al., 2001). Niu et al. (2014)
discovered that a bio-tricking filter can be used to remove
inorganic pollutants such as NO from air stream using bacteria
extracted from waste water sludge. Lu et al. (2000) used bio-
trickling to destruct BTEX vapor and they found that more than
90% BTEX could be achieved. Rene et al. (2009) discovered that
removal efficiencies of benzene is higher than 90% in a laboratory
scale bio-filtration. However, this system needs a large area and
long start-up time (Wang et al., 2008).

Chemical Methods
Chemical methods can remove pollutants by a series of reactions
like neutralization and redox reactions. The processes include
incineration and catalytic combustion (Barbero et al., 2008),
plasma treatment (Daniels, 2002), and acid-base spray (Dulin and
Rosar, 1975). Harmful substances can be degraded completely

into non-toxic substances by chemical methods. However, the
cost is higher than physical and biological methods as special
chemicals are needed in the processes, thus, it is highly necessary
to reduce their cost. The required temperature of VOCs catalytic
combustion can be greatly decreased by developing efficient
catalysts, thereby reducing the energy consumption. Wang et al.
(Wang, 2004) adopted γ-Al2O3 supported transition-metal
oxide catalysts in order to oxidize methylbenzene which can be
degraded completely under a temperature of 360◦C. Wang et al.
(2006) also used CuO/CeO2 for catalytic oxidation of toluene
which can be completely degraded at temperature lower than
240◦C.

As shown above, the application of traditional technology is
limited by some disadvantages such as byproducts, cost, and
degradation capacity. Therefore, it is essential to develop a cost-
effective and environmental-friendly treatment method under
increasingly complicated air pollution problems and stringent
air quality standards. As such AOPs have been studied for
air pollution control because of its high efficiency and mild
reaction condition (Zhu et al., 2015). Among them, VUV-based
processes are emerging processes for the degradation of air
pollutants that can provide an efficient solution for air pollution
control.

Introduction of UV and VUV Irradiation
UV irradiation refers to the electromagnetic radiation with
wavelength from 1 to 380 nm. It can be categorized into UV-
A (380–315 nm), UV-B (315–280 nm), UV-C (280–200 nm),
vacuum-UV (VUV, 200–100 nm), and extreme UV (100–1 nm)
(Oppenländer, 2003). The main method used to produce
UV radiation is through the discharge from low pressure
mercury lamp. Medium pressure mercury lamp can also be
used to produce UV-A, UV-B, and UV-C. However, UV-
B and UV-C can be absorbed by the glass tube and it
needs special material like quartz to avoid loss of UV light
(Thiruvenkatachari et al., 2008). As for the VUV lamp, it
required a quartz with high purity in order to prevent the
absorption of the shorter wavelength’s UV irradiation. Therefore,
barrier discharge (Masschelein and Rice, 2002) and Xe-excimer
radiators (Wang et al., 2010) are generally used to produce VUV
irradiation.

Recently, among the different AOPs, VUV-based processes
have attracted much attention in the degradation of air
pollutants. Yang (Yang et al., 2007), Huang (Huang et al., 2011),
and Jiang (Jiang et al., 2015) have tried to eliminate the air
pollutants with VUV photolysis. Compared with UV, VUV can
degrade air pollutants more efficiently due to the following
reasons: (1) VUV can directly destruct the compounds due to its
energetic photons; (2) With certain humidity, VUV irradiation
can interact with water vapor and produce hydroxyl radicals
that can degrade compounds; (3) Oxygen species like O(1D),
O(3P), and O3 can be formed from the reaction between VUV
irradiation and oxygen (Bergonzo and Boyd, 1993; Hashem et al.,
1997; Fu et al., 2011). When degradation capacity and cost are
put into consideration, the application of VUV becomes more
attractive. However, it also has some disadvantages such as the
formation of residual ozone that will cause secondary pollution.
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GENERATION OF THE OXIDANTS

General VUV-based processes include the VUV photolysis
(Alapi and Dombi, 2007a), VUV–PCO (Huang et al., 2011),
VUV combined with Ozone-assisted Catalytic Oxidation
(VUV–OZCO) (Huang, 2015). The sections below will focus on
the oxidants generated from these three processes.

Hydroxyl Radicals Formation
Photolysis
As the wavelength of VUV spectral domain (100–200 nm,
mainly at 185 nm) is shorter than that of normal UV (Gonzalez
et al., 2004), it can produce photons with higher energy level.
Therefore, many studies have been carried out to achieve
photo-degradation of pollutants by VUV photolysis alone (Ye
et al., 2014). Energetic photons play an important role in the
degradation process because they can result in direct degradation
of the pollutants and in the formation of oxidizing species
like hydroxyl radical and ozone that can oxidize pollutants
(Bergonzo and Boyd, 1993; Kutschera et al., 2009; Zoschke
et al., 2014). Hydroxyl radical is highly reactive for the
oxidation of the pollutants in gaseous or aqueous phase with no
selectivity.

In the VUV photolysis of aqueous reaction systems, photolysis
of water is the main pathway to produce hydroxyl radical
(Gonzalez et al., 2004; Zoschke et al., 2014). Water absorbs
light strongly at wavelengths lower than 190 nm. However, due
to the high absorption rate, the VUV irradiation is absorbed
within a narrow layer around the lamp (approx. 300mm at
185 nm) (Kutschera et al., 2009). The ionization of water occur
via the homolysis (Equation 1) and photochemical (Equation 2;
Zoschke et al., 2014) reactions. The oxidants formed are mainly
hydroxyl radicals, hydrogen atoms, and solvated electrons all of
which initiate manifolds of reduction and oxidation reactions
(Oppenländer, 2003). The quantum yields (ϕ) of the hydroxyl
radical and the solvated electrons are 0.33 and 0.045, respectively
(Lopez et al., 2000; Kutschera et al., 2009).

H2O
hv(185 nm)
−→ · OH+ ·H ϕ = 0.33 (1)

H2O
hv(185nm)
−→ · OH+H+

+ e−aq ϕ = 0.045 (2)

In the same way, the photolysis of moisture gas takes place
in gaseous phase and hydroxyl radicals are generated with the
VUV irradiation. In addition, another way to form · OH is in
a humidified O2 stream which can open up another pathway
for the decomposition of pollutants. With wavelengths under
220 nm, oxygen can be dissociated into two O atoms (Equation
3; Atkinson et al., 1996). The O atom does not only interact with
water to produce hydroxyl radicals (Equation 4), it also reacts
with oxygen to produce ozone (Equation 5; Alapi and Dombi,
2007b). Therefore, there is a competition between the generation
of hydroxyl radicals and ozone. It was reported that humidity
inhibits O3 formation in an O2 stream and ·OH will be formed
due to the reaction of O atom and water (Atkinson et al., 1996).
Further reactions in the system will lead to the formation of
hydrogen peroxide (Ye et al., 2013; Equations 7–9). Also, the

generated H2O2 will also be decomposed into hydroxyl radicals
(Equation 10) under the irradiation of 185 and 254 nm UV light
(Atkinson et al., 2004).

O2
hv ≤ 220 nm

−→ 2O (3)

2O +H2O
hv ≤ 220 nm

−→ 2 ·OH (4)

O+O2 +M → O3 +M (5)

·H+O2 +M → ·HO2 +M (6)

· OH+ · OH+M → H2O2 +M (7)

·HO2 + ·HO2 → H2O2 +O2 (8)

·HO2 + ·HO2 +M → H2O2 +O2 +M (9)

H2O2
hv(185 nm and 254 nm)

−→ 2 ·OH (10)

Overall, hydroxyl radicals are generated in gaseous phase via four
pathways: (1) homolysis of water, (2) photochemical ionization of
water, (3) reactions between O atom and water, and (4) photolysis
of hydrogen peroxide.

Photocatalysis of Semiconductor
Hydroxyl radicals produced by photolysis are mainly attributed
to the 185 nm UV irradiation. However, VUV lamp can only
emit <10% 185 nm irradiation while the majority 254 nm UV
irradiation has not been fully utilized in photolysis (Alapi
and Dombi, 2007a). Therefore, semiconductor like TiO2 was
used to produce more hydroxyl radicals via photocatalysis. The
mechanism of photocatalytic oxidation (PCO) is similar to that
of UV/TiO2, which is shown in Figure 1.

As one of the semiconductor catalysts, TiO2 photocatalytic
material has special electronic structure. Unlike metals which
have a continuum of electronic states, semiconductors possess
a void energy region where low energy levels are available to
promote recombination of electrons and holes produced by
photo-activation within the material. The void region which
extends from the top of the filled valence band to the bottom of
the vacant conduction band is called the band gap (Linsebigler
et al., 1995). With the irradiation of UV light, TiO2 absorbs
the energy of photon. When the energy of photon is higher
than the width of the semiconductor’s void band, the electron
of valence band will transfer to the conduction band. Therefore,

FIGURE 1 | Scheme of photocatalysis of TiO2 (Tompkins et al., 2005).
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the pairs of electron-holes are created in the semiconductor,
and the charge will be transferred between electron-hole pairs
and adsorbed species (reactants) on the semiconductor surface,
photo-oxidation will then occur (Zhao and Yang, 2003).

The photo-generated electron (e−) has strong redox potential
and is able to reduce the electron acceptor of the semiconductor’s
surface. The photo-generated hole (h+) generated by activation is
a strong oxidant. It reacts with absorbed water (H2O) or surface
hydroxyl ion chemically (OH−) and produces hydroxyl radical
with strong oxidizing property (Schwitzgebel et al., 1995).

O2 and H2O will interact with the electrons and photo-
generated holes in humid air. The overall reaction is as
follows (Konstantinou and Albanis, 2004): First, O2 and H2O
are absorbed on the surface of the TiO2 and then form
adsorbed oxygen and adsorbed water, respectively (Equations
11, 12). Subsequently, the surface of the TiO2 produces photo-
generated electron (e−) and photo-generated hole (h+) under
UV irradiation (Equation 13).

O2 (g) O2 (ads) (11)

H2O (g) H2O (ads) (12)

TiO2
hv
−→ TiO2(e

−
+ h+) (13)

Afterwards, the photo-generated hole is captured by the surface
of adsorbed water and hydroxyl ion, producing hydroxyl radicals
(Equations 14, 15).

h+ +H2O → ·OH+H+ (14)

h+ +OH−
→ · OH (15)

Furthermore, the addition of O2 leads to an increase in the
upward band bending, and therefore, suppresses the electron-
hole recombination process, leading to a more efficient photo-
activity (Linsebigler et al., 1995). Meanwhile, further reaction will
continuously produce hydroxyl radical (Equations 16–19).

e− +O2 (ads) → ·O−

2 (ads) (16)

· O−

2 (ads)+H+
→ ·HO2 (17)

2 ·HO2 → O2 +H2O2 (18)

H2O2 + · O−

2

(

ads
)

→ · OH+O2 +OH− (19)

Generation of Ozone
The VUV irradiation at 185 nm can be used for the generation of
ozone using oxygen. As shown in Equations (3) and (5), O atom
will be generated by the photolysis of oxygen when absorbing
VUV irradiation and then reacted with an oxygen molecule,
forming ozone. This reaction takes place in the presence of a
moleculeM which absorbs the excessive kinetic energy (Bolton
and Denkewicz, 2008). Meanwhile, ozone can be decomposed
by 254 nm UV irradiation, forming an O atom and an oxygen
molecule, as shown in Equation 20.

O2
hv ≤ 220nm

−→ 2O (3)

O+O2 +M → O3 +M (5)

O3
hv (254 nm)

−→ O2 +O(1D) (20)

The yield of ozone from VUV irradiation is very low. About
9 g/kWh and 7.2 g/kWh of ozone can be produced from oxygen
and air, respectively (Hashem et al., 1997). Two reasons might
be responsible for the low ozone generation. First, the emission
intensity at 185 nm constitutes only 8% of all UV irradiation.
Also, partial ozone could be decomposed by 254 nm UV light.
In addition, VUV irradiation can be easily absorbed by the water
vapor. The generated O3 increases with the decreasing water
content. Ye et al. (2013) studied the effect of the operating
parameters on ozone formation. It was found that H2O and
O2 contents, as well as flow rate, could significantly affect O3

production. The increased H2O content led to the decreased O3

production, whereas O2 content had an opposite effect.
Despite the low ozone yields of low-pressure mercury vapor

lamps, ozone generation and photolysis of pollutants can be
simultaneously achieved by a single irradiation source (Hashem
et al., 1997). The VUV systems with internal ozone generation
has been used for the disinfection of micro-pollutants (Bolton
and Denkewicz, 2008; Zoschke et al., 2012), as shown in Figure 2.
The air or oxygen go through the annular space between the UV
lamp and the quartz sleeve which can absorb the VUV radiation
at 185 nm to generate ozone. The gas containing ozone is injected
into the water on the other side of the quartz sleeve. In addition,
the UV/VUV radiation passes directly through the quartz sleeve
into water to achieve the photolysis of an aqueous phase.

Ozone is a strong oxidant and has a great potential to be
utilized for the degradation of pollutants. It was reported that
high efficiency of degradation of benzene (Einaga and Futamura,
2004a; Einaga et al., 2009), ethanol (Shayan and Vahedpour,
2013), and acetone (Reed et al., 2006) can be achieved by ozone
catalytic oxidation treatment.

The key of ozone catalytic oxidation technology is the
preparation of catalysts with high CO2 selectivity, stability,
and removal efficiency. Ozone decomposition catalysts consist

FIGURE 2 | Schematic cross-section of a VUV reactor with internal

ozone generation (Zoschke et al., 2012).
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of precious metals (such as palladium, silver) and transition
metal oxides, and so on. The application of precious metals
is greatly limited by its high cost and the difficulty of
regeneration. In recent years, transition metal oxides have
attracted much attention. Among the transition metal oxides,
the supported catalysts are more attractive because of its lower
cost and better catalytic stability. The supports include Al2O3

(Einaga and Futamura, 2004b, 2005; Konova et al., 2006),
TiO2 (Radhakrishnan and Oyama, 2001), SiO2, and molecular
sieve (Einaga et al., 2013). Einaga (Einaga and Ogata, 2009)
investigated the performance of ozone catalytic oxidation of
benzene over Mn catalysts with different carriers such as SiO2,
Al2O3, TiO2, and ZrO2. The results showed that the increased
specific surface area of the support can enhance benzene
degradation. The high specific surface area does not only facilitate
the absorption of pollutants but also prolongs the reaction time
between ozone and pollutants.

Transition metals including Mn, Fe, Co, Cu, Ni, and Ag were
generally used as active components.Among different Al2O3

supported transition metals, Mn has excellent catalytic activity
toward both ozone decomposition and benzene degradation
(Einaga and Ogata, 2010). Ebrahim et al. (Rezaeia et al., 2013)
studied the effect of Mn loading on ozone catalytic degradation
of toluene and found that high Mn loading is detrimental
for ozone decomposition and benzene degradation. Despite
its potential for efficient pollutant degradation, ozone catalytic
oxidation technology is still faced with some problems like
the deactivation of catalyst, emission of residual ozone, and
generation of byproducts.

VUV-BASED PROCESSES FOR AIR
POLLUTANTS DEGRADATION

Direct VUV Photolysis
Direct photolysis by Ultraviolet (UV) and Vacuum Ultraviolet
(VUV) have been intensively studied for removing both organic
and inorganic compounds from water or air. VUV lamp has its
main emission at 254 nm with a small (around 6%) intensity
of irradiation at 185 nm, while UV lamp has its output only at
254 nm (Alapi and Dombi, 2007a). VUV photolysis is known
for better performance on the removal of pollutants based on
the following reasons: (1) the high-energy photons generated
by 185 nm irradiation can degrade organic compounds; (2) in
the presence of water, 185 nm irradiation can produce strong
oxidants such as hydroxyl radical (•OH); (3) 185 nm irradiation
can generate ozone in the presence of O2 (Yang et al., 2007).
Oxygen species [for example, O(1D), O(3P), and O3] and
hydroxyl radicals (•OH) are generated by the dissociation of
oxygen and water molecules under VUV with high-energy
photon according to the following reactions (Bergonzo and Boyd,
1993; Hashem et al., 1997; Fu, 2011; Equations 21–25):

H2O
hv(185 nm)
−→ H+ · OH (21)

O2
hv(185 nm)
−→ O(1D)+O(3P) (22)

O(1D)+M → O(3P+M) (M = O2 or N2) (23)

O(3P)+O2 +M → O3 +M (24)

O(1D)+H2O → 2 ·OH (25)

These energetic oxidants can be utilized to improve removal
efficiencies of the pollutants. It has been proven that VUV
photolysis is a more efficient and economical process than the
UV photolysis (Huang et al., 2013).

VUV photolysis has also been used in the treatment of
wastewater. It has proven to be effective for the treatment of
certain types of wastewater pollutants such as fluorescence of
phenol, nitrobenzene, SDBS surfactants, Methylene Blue (MB),
and other pollutants (Imoberdorf andMohseni, 2011a,b; Zoschke
et al., 2014). Alapi et al. (Alapi and Dombi, 2007a) compared
the UV and VUV photolysis of phenol and revealed that the
rate of degradation of phenol in the VUV process is about 2
times faster than that in the UV-irradiated process, as shown in
Figure 3. Phenol decomposition is initiated by direct photolysis
via a biphotonic process in the UV-irradiated solutions, while it
can also take place by ·OH-based reactions in VUV-irradiated
solutions (Alapi and Dombi, 2007a).

Recently, much attempt was made using VUV to degrade
air pollutants, such as benzene (Huang H. B. et al., 2014),
methylbenzene (Jeong et al., 2006), chlorinated methanes (Alapi
and Dombi, 2007b), gaseous α-pinene (Chen et al., 2010).
Cheng (Cheng, 2011) investigated the photo-degradation of

FIGURE 3 | Time dependences of concentrations of phenol (•), the

overall concentrations of 1,2- and 1,4-dihydroxybenzene (�), the

overall concentrations of malic, maleic, and tartaric acids (◦);

concentrations of oxalic acid (N), the overall concentrations of the

hydroperoxide (�) and total organic carbon (TOC) concentrations (×)

in (A) UV/VUV, and (B) UV-irradiated solutions saturated with oxygen at

1.5 × 10−3mol·dm−3 initial concentration (Alapi and Dombi, 2007a).
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gaseous α-pinene by a VUV light. It was discoveredthat most
efficient conversion was obtained under the moderate humidity
condition. As shown in Figure 4, nearly 100% conversion
efficiency of α-pinene was achieved in about 70 s under moderate
humidity condition.

Meanwhile, Alapi et al. (Alapi and Dombi, 2007b) investigated
the effect of relative humidity and pollutant concentration on
the degradation of chlorinated methanes and their mixtures
in an oxygen stream under direct VUV photolysis. Chen
et al. (2010) used VUV photo-degradation to improve the
removal capacity of gaseous α-pinene which is hydrophobic
and poorly biodegradable. ? investigated the effect of relative
humidity, residence time, initial benzene concentration, and
reaction temperature on photo-oxidation of gaseous benzene by
185 nm VUV irradiation. It was discovered that benzene removal
efficiency can be greatly improved in the presence of vapor
and the formation of hydroxyl radicals is mainly responsible
for the degradation. The abovementioned experiments indicated
that VUV photolysis is a promising approach to degrade air
pollutants.

However, VUV photolysis alone is not effective enough
for the total oxidation of organic compounds because of the
limited efficiencies that may lead to the formation of organic
intermediates (Zhao and Yang, 2003; Alapi and Dombi, 2007a).
More importantly, VUV photolysis will generate much toxic O3

(Alapi and Dombi, 2007b; Yang et al., 2007), which is harmful to
human health as it causes headaches, throat dryness and damage
to mucus membranes at levels as low as 0.1–1 ppm (Huang et al.,
2011). Thus, the residual O3 will cause secondary pollution if not
removed before emission.

VUV Photolysis-Ozone Catalytic Oxidation
(VUV-OZCO)
Apart from the VUV photolysis, there is another process in the
VUV-based processes which has great potential to deal with air
pollution. Ozone used for ozone-assisted catalytic oxidation was

FIGURE 4 | Effect of different humidity on the conversion efficiencies

of α-pinene photo-degraded in the air (Cheng, 2011).

generally generated from high voltage discharge. The cost of this
is high and the system is relatively complex. In addition, the
degradation efficiency of VUV photolysis alone is low and the
residual ozone brings new pollution (Bergonzo and Boyd, 1993;
Hashem et al., 1997; Fu, 2011). To avoid the above problems,
VUV photolysis can be combined with ozone-assisted catalytic
oxidation to make use of the residual ozone and eliminate it.
Such a novel process is called VUV-OZCO, in which VOCs
would be initially destructed by the VUV photolysis and then
be further oxidized by the OZCO using the residual O3 from
the VUV photolysis. VUV-OZCO would not only save the
cost but also improve the pollutants removal efficiency and
eliminate the problem of residual ozone. A possible system of the
abovementioned process is shown in Figure 5.

As mentioned above, VUV-OZCO degrades pollutant via
two path ways: (1) VUV photolysis; (2) Ozone-assisted catalytic
oxidation. Themechanism of VUV photolysis has been described
above. The mechanism of catalytic oxidation of ozone varies
under different reaction conditions. Under low temperature
and low humidity condition, catalytic decomposition of ozone
involves two irreversible reactions, that is, the adsorption of
ozone and desorption of oxygen atom on the surface of catalyst.
The specific processes are as follow (Dhandapani and Oyama,
1997; Li and Oyama, 1998; Equations 26–28):

O3 + ∗ → O2 +O∗ (26)

O3 +O∗
→ O2 +O2

∗ (27)

O2
∗
→ O2 + ∗ (28)

where ∗ is the symbol of the catalyst surface active site.
Under high humidity, the catalyst surface will form a

layer of liquid membrane and generate active site by the
interaction between metal ions and adsorption liquid membrane.
Besides, the liquid film will react with intermediate O∗ to
generate hydroxyl radicals, which can be used to degrade ozone
and pollutants. Some studies have shown that the increased
humidity is beneficial to improve the removal efficiency of ozone
decomposition and air pollutants. Specific processes are shown
in Equations (29–34) (Dhandapani and Oyama, 1997; Einaga and
Futamura, 2004b):

O3 + ∗→ O2+O∗ (29)

O3 +O∗
→ 2O2 (30)

H2O+ O∗
→ 2OH∗ (31)

OH∗
+O3→ HO∗

2 +O2 (32)

HO∗

2 +O3→ OH∗
+ 2O2 (33)

HO∗

2 +OH∗
→ H2O+O2 +∗ (34)

Under certain humidity, ozone catalytic oxidation uses highly
reactive intermediates O∗, O∗

2, and ·OH to degrade organic
pollutants (Equations 35–37).

R+ ∗ → R∗ (35)

R∗
+O∗

→ CO+ CO2 (36)

R∗
+OH∗

→ H2O+ CO2 (37)
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where R represents the pollutant to be degraded.
Huang et al. (Huang, 2015) firstly developed this system to

degrade VOCs and studied its performance and mechanism. The
results show that both benzene andO3are completely removed by
VUV-OZCOwithMn/ZSM-5 catalysts. As a new technology, few
studies have been carried out using VUV-OZCO for air pollution
control. However, it provides an efficient and promising process
for the degradation of VOCs. This VUV-OZCO process would
not only improve the degradation and the mineralization rate,
but it will also remove residual ozone.

Photocatalytic Oxidation under VUV
Irradiation (VUV-PCO)
VUV-PCO without Ozone Oxidation
Besides the emission of by-products such as ozone, VUV
photolysis alone will cause wastage of the UV energy since only
185 nm VUV irradiation can be directly used to destruct the
air pollutants while the 254 nm UV irradiation, which is the
main emission of the VUV lamps, is not utilized. To fully make
use of the UV irradiation, photocatalysts were introduced into
the VUV photolysis process. Such process is called VUV-PCO

process. A possible installation of the VUV-PCO system is shown
in Figure 6.

It is well known that conventional PCO has some
disadvantages, such as catalyst deactivation (Peral and Ollis,
1997; Cao et al., 2000), low degradation rate (Mo et al.,
2009), formation of toxic byproducts (Huang and Li, 2011),
recombination of electron-hole pair, and low efficiency (Mo
et al., 2009; Huang and Li, 2011). It has proven that VUV-PCO
can obviously improve the efficiency and stability performance
of PCO of pollutants and reduce the generation of intermediates
(Zhang and Liu, 2004; Yu and Lee, 2007; Huang et al., 2009;
Huang and Li, 2011). Huang et al. (2011) compared the VUV,
VUV-PCO, UV-PCO processes for toluene destruction. Results
showed that the toluene removal efficiency in the VUV-PCO
process was 7 times more than that in the UV-PCO process, and
no obvious deactivation was observed in the former, as shown in
Figure 7.

Compared with VUV photolysis, toluene removal was
greatly improved. Meanwhile, both the organic compounds
and ozone were significantly reduced. In contrast with the
UV-PCO, the VUV-PCO can destruct pollutants with more
pathways, besides UV-PCO and UV photolysis (Huang et al.,

FIGURE 5 | The schematic diagram of VUV-OZCO system (Huang, 2015).

FIGURE 6 | Schematic diagram of a VUV-PCO system (Huang et al., 2015a).
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FIGURE 7 | Toluene removal efficiency in different processes (Huang

et al., 2011).

2011, 2015a). Ozone has a strong electro-negativity, which
improves the ability to capture the photon-generated electrons
to produce hydroxyl radicals (Huang et al., 2009; Huang and Li,
2011). Meanwhile, ozone can inhibit the combination between
electronics and electronic acupuncture point to improve the
photoluminescence efficiency (Huang et al., 2009; Huang and
Li, 2011). O3 is a byproduct from the VUV lamp, which is
also a strong oxidizing agent. Although ozone alone cannot
directly oxidize refractory VOCs such as benzene and toluene,
it can be decomposed into highly active oxygen through
catalytic decomposition for VOCs oxidation (Huang et al.,
2015a).

VUV-PCO with Ozone Oxidation
Despite the fact that ozone can help to decompose the VOCs,
it can only be partially decomposed and utilized since most of
the photocatalysts developed have limited activity toward ozone
decomposition (Jeong et al., 2004). The residual ozone still posesa
great challenge to achieve a good solution of free secondary
pollution. Recently, modified photocatalysts were studied to
further eliminate O3 efficiently while enhancing the removal
performance of VOCs.

In the study of Fu (2014), Pt modified TiO2 was used to
degrade gaseous formaldehyde and O3 byproduct under the
UV, UV+O3, and VUV-PCO processes. The FE-SEM image
of TiO2 film modified with Pt nanoparticles is shown in
Figure 8. It was discovered that ∼4–8 Pt nanoparticles (NPs)
were deposited onto each TiO2 particle and this uniform
dispersion of Pt(NPs) was beneficial for increasing the amount of
reactive sites and metal-TiO2 contact area, which result in better
performance of HCHO degradation. The above experiments
showed that the degradation rate of HCHOdecreases in the order
of VUV>O3+UV254 nm>UV254 nm for both photocatalysts
studied, as indicated in Figure 9. In addition, in the VUV-PCO
process, O3 is utilized to strengthen the efficiency of PCO of
VOCs.

FIGURE 8 | Ultra high-resolution FESEM image of TiO2 film modified

with Pt nanoparticles (Fu, 2014).

Meanwhile, Kim (Kim et al., 2014) deposited palladium
nanoparticles onto TiO2 film for simultaneous removal of
toluene and ozone byproduct. Compared with the direct
VUV photolysis and the TiO2/VUV photocatalytic processes,
Pd–TiO2/VUV process exhibited a better performance toward
toluene degradation and 90% of the ozone generated by the
185 nm VUV photolysis was simultaneously degraded, as shown
in Figure 10. Immersion time reflects to the time that he
immersed the TiO2 film into a palladium colloid solution in order
to deposit palladium nanoparticles onto the TiO2 film.

Huang et al. (2015a) prepared TiO2 modified by transition
metals (Mn, Co, Cu, Ni, and Fe) for studying the PCO of gaseous
benzene under VUV irradiation. They found that the PCO
efficiency of benzene under VUV irradiation reached 58%, which
is over 20 times higher than that under 254 nm UV irradiation,
as shown in Table 1. In addition, ozone can be completely
eliminated by MnO2/TiO2.

Compared to UV-PCO and VUV, VUV-PCO showed
higher performance, less byproducts and better stability during
VOCs oxidation. Among the multiple pathways in VUV-PCO,
photolysis, and catalytic ozonation played a dominant role
in VOCs destruction while the contribution of UV-PCO is
relatively low, as shown in Table 1 (Huang et al., 2015a).
More efforts should be made to develop efficient materials
with excellent photocatalytic activity and superior capacity for
ozone decomposition. Although the stability of VUV-PCO was
greatly increased compared to UV-PCO, VUV-PCO still faces
the challenge of catalytic deactivation due to the accumulation
of organic intermediates and water vapor on the surface (Quici
et al., 2010). Thus, how to inhibit catalyst deactivation and
increase the stability poses another challenge in the VUV-PCO
process.

The porous support may be a way to solve the deactivation
problem and increase the efficiency of degradation. Yuan et al.
(2013) have used H-ZSM-5 as the photocatalyst support to
generate the TiO2/M-ZSM-5 catalyst (M = Zn, Cu, Mn). The
prepared samples were used as catalyst for degradation of gaseous
acetaldehyde in the presence of UV light irradiation, O3 or
UV–O3. TiO2/Mn-ZSM-5 presents the highest activity with
acetaldehyde degradation rate of 78.9%, as shown in Figure 11.
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FIGURE 9 | Degradation rate of formaldehyde as a function of irradiation time under UV254, O3+UV254, and UV254+185nm irradiation over pure TiO2

(A) and Pt-TiO2 films (B) (Fu, 2014).

FIGURE 10 | Effect of the immersion time on the activity of Pd–TiO2

films to degrade toluene and ozone under VUV irradiation (Kim et al.,

2014).

TABLE 1 | Contribution of various sub-processes to benzene removal

(Huang et al., 2015a).

Mn/TiO2 Cu/TiO2 Co/TiO2 Ni/TiO2 P25 Fe/TiO2 TiO2

VUV-PCO, % 58 50.9 51.5 50.3 50.2 45.3 45.7

VUV, % 38 38 38 38 38 38 38

UV-PCO, % 2.4 1.2 2.1 1.5 2 0.8 1.6

Catalytic

ozonation, %

17.6 11.7 11.4 10.8 10.2 6.5 6.1

The superior performance results from the coupling effect of
photocatalytic and ozone oxidation.

Porous material like ZSM-5 can adsorb the pollutants so
that it can prolong the reaction time of photocatalysis and
ozone catalytic oxidation thereby improving the efficiency
of degradation of pollutants. With its intensive oxidation
performance, it will accumulate less intermediates thereby
solving the problem of deactivation. Therefore, further research

FIGURE 11 | Degradation of acetaldehyde on M-ZSM-5 and

TiO2/M-ZSM-5 under UV–ozone (UV main wavelength, 254nm; inlet

concentration of CH3CHO, 269 ppm; space velocity, 67,000 h−1; inlet

concentration of ozone, 131ppm) (Yuan et al., 2013).

on VUV-based process in the future should adopt this catalyst
and find out its potential.

OUTLOOKS IN VUV-BASED PROCESSES
FOR AIR POLLUTANTS DEGRADATION

To increase the utilization of VUV irradiation and the residual
ozone, VUV-OZCO, and VUV-PCO with ozone oxidation
should be focused on, in further study. More attention should be
paid on:

(1) Catalytic deactivation. Catalyst deactivation is mainly caused
by water deposition and the accumulation of intermediates
on the surface of catalysts (Gandhi et al., 2012). It may
be solved by hydrophobic catalysts (Zhao and Lu, 1998;
Kuwahara et al., 2009) and by metal doping on the catalysts
to improve the rate of mineralization and oxidation ability
(Qi and Yang, 2004; Wang et al., 2012; Yang et al., 2014).
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(2) Mechanism study. VUV-PCO is an emerging process for
VOCs degradation and few works were carried out. The
mechanism of it is still unclear, which prevent making
the best use of it for air pollution control. Therefore,
further study should be continued to find out the
relationship between VUV photolysis, photocatalysis, and
ozone oxidation.

(3) Immobilization of the catalysts (Lei et al., 2009). Most of
the catalysts developed are powder or particle catalysts. They
cannot be widely used in the industry since it is hard to be
reused and regenerated. It is necessary to develop supported
catalysts such as honeycomb.

SUMMARY

VUV-based process is an emerging technology. It is very efficient
for pollutants degradation as compared with conventional
process. The development of VUV-based processes has provided
new direction for the generation of reactive hydroxyl radicals for
pollution degradation (Chih-Ming et al., 2011).

The technology mainly involves three processes that can
efficiently degrade organic compounds: direct photolysis,
photocatalysis, and ozone oxidation produced by the by-product
ozone. In this paper, the generation of the active groups and
the effect of active group are reviewed. By producing hydroxyl
radicals, these three kinds of effects can all result in fast
degradation of organic matter, despite they act alone or together.
The combination of the three processes enhances the oxidation
and offers many opportunities in the air pollution treatment.

Although, only a few practical applications of VUV-based
processes have so far been carried out this technology has

great potential for air pollution control. Unlike water treatment,
there is no need to worry about the low penetration of
the VUV light, which is the main technical limitation on
waste-water treatment. VUV irradiation will not be strongly
limited by the pollutant molecules and the particles compared
with the wastewater treatment. Therefore, it can improve the
efficiency of the VUV lamp. In addition, existing problems of
the VUV-based processes include the catalyst deactivation and
the unclear degradation mechanism and the immobilization
of catalyst. It is anticipated that these problems can be
solved in future for efficient utilization of the process in
the industry.
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