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Hydrothermal carbonization (HTC) of microalgae biomass for the production of

triacylglycerides is a potentially valuable enabling technology for a waste water

treatment-based integrated biorefinery. Here, HTC was used to treat Phaeodactylum

tricornutum lipid-rich biomass producing a solid hydrochar from the surface of which

adsorbed lipids were removed by hexane extraction following filtration of the solid

hydrochar from the process liquid product. Approximately 7% of the input biomass was

recovered and transesterified for qualitative and quantitative GC-MS analysis for fatty

acid methyl esters. Transesterifiable lipids accounted for 94% of the material recovered

by solvent extraction. Of the transesterified fatty acids (FA) analyzed, the majority was

monounsaturated (40.4%) and saturated (37%) C-16 FA. Other FA detected included

saturated and monounsaturated C-18 (7.7 and 1.9%) and saturated C-14 (5.3%) and

C-25 (1.5%). Thermal analysis (TGA/DSC) of the hydrochar in air showed calorific values

of 10.6 MJ kg−1 (delipidated hydrochar) and 3.1 MJ kg−1 (non-delipidated hydrochar)

with the latter exhibiting the presence of volatalizable components. Germination trials

were conducted to assess the potential phytotoxic effects of these hydrochars.

Delipidated hydrochar showed a germination index of 73% suggesting the presence of

some phytotoxicity. Non-delipidated hydrochar showed high germination index results of

102% (unground) and 126% (ground). Taken together with the observation of reduced

root hair proliferation in these two test conditions, this suggests the operation of a second

phytotoxic effect that is removed by delipidation.

Keywords: hydrothermal carbonization, algal biodiesel, biodiesel, biochar, hydrochar

INTRODUCTION

As climate change and other serious environmental challenges intensify, there is a growing need
for circular-economic approaches to resource recovery and pollution prevention; the integrated
biorefinery is a promising concept in this respect. Approximately 11 million tons of waste water
are processed each day in UK, coming from a range of commercial, industrial, and public sources
(Department for Environment, Food and Rural Affairs , 2012). The treatment of such masses to
remove organic, inorganic, and anthropogenic compounds is costly, hence the recycling of such by-
products, for example ammonia, nitrogen, and phosphorus, is being explored as a potential route
to add value into the water treatment process. Microalgae grown in wastewater can remove toxic
material, produce oxygen, and reduce pH during photosynthesis, having disinfecting effects. The
presence of inorganic nitrogen and phosphorus in the wastewater stimulate microalgae growth,
resulting in a dense bloom which can subsequently be used as a biofuels feedstock (Abdel-Raouf
et al., 2012).
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The use of microalgae as a feedstock to replace existing fossil
fuels is becoming increasingly attractive due to environmental
benefits and reduced food-biofuel competition (Hannon
et al., 2010). As microalgae fix carbon during growth via
photosynthesis the subsequent combustion of the biomass is
notionally carbon neutral.

Diatoms are important in aquatic ecosystems and have broad
industrial potential (Huysmann et al., 2010; Hildebrand et al.,
2012). Phaeodactylum tricornutum is a diatomwith an oil content
of 20–30% (Khanal et al., 2010). P. tricornutum is able to
acclimate to environmental changes, undergoing modification in
its lipid metabolism. Substantial amounts of lipids in the form
of triacylglycerides (TAG) can be stored under conditions such
as photo oxidative stress and other unfavorable environmental
changes (Hu et al., 2008). Polymerized silica within the P.
tricornutum cell wall supports the accumulation of TAG. Algal
triacylglycerides are comprised of mid to long chain fatty
acids bound to glycerol and hence alcoholytic transesterification
producesmethyl esters of fatty acids which are the primary source
for biodiesel (Gupta et al., 2011).

Global biodiesel production from renewable sources has
increased substantially, and concerns have been raised regarding
the displacement of food crops for biofuels (Singh et al.,
2011). The application of microalgae for commercial biodiesel
production from wastewater is promising (Pittman et al., 2011).
However, before the application of microalgae as biofuel becomes
economically feasible and widespread, the demand of energy per
unit mass of algae harvested must be reduced (Lee and Shah,
2013). The predominant concern is that the energy required to
dewater algae is large compared to the overall energy output from
the triacylglycerides in the algae (Heilmann et al., 2011).

Hydrothermal carbonization (HTC) of microalgae has
received particular attention due to the potential to obtain
algal oils without energy intensive removal of water (Heilmann
et al., 2011). HTC produces a hydrochar to which algal
lipids are adsorbed and the process is thermodynamically
favorable as hydrogen and oxygen are removed and carbon
values are maintained (Valentas and Heilmann, 2011). Once
filtered, hydrochar-bound lipids can be solvent extracted prior to
transesterification.

The present study aims to analyse qualitatively and
quantitatively the fatty acid methyl ester yield available
via hydrochar-mediated extraction of algal lipids from P.
tricornutum. Furthermore, the co-produced hydrochar is
of potential utility as a fuel and/or as a biochar: this study
investigates the fuel properties and potential phytotoxicity (an
important limiting factor on the application of hydrochar as
biochar) of the coproduced hydrochar, particularly with a view
to investigating potential moderation of hydrochar phytotoxicity
during the delipidation process.

METHODS

Hydrothermal Carbonization of Microalgae
HTC was done in a 100ml Buchi MiniClave heated by a Julabo
HE-4 oil bath. Four replicate preparations were done using 4 g
samples of freeze-dried microalgae P. tricornutum. These were

added to 50ml of 0.1M citric acid solution and hydrothermally
carbonized at ∼210◦C for 2 h, under an average pressure of 20
bar. The four samples were filtered and washed with deionized
water.

Delipidation of HTC Char
To remove adsorbed lipids, HTC chars were stirred overnight in
hexane (40 ml), gravity filtered, and washed with hexane (40 ml
approx.). The filter paper with the delipidated char was stored in
the fridge (∼4◦C) and the filtrate evaporated by a water bath until
only non-evaporable material remained.

Transesterification
Recovered non-evaporable material (25 mg) was added to a
headspace vial and mixed with methanolic NaOH solution (0.5
M, 1.25ml). The process was repeated for triplicate C16, C18, and
C20 fatty acid calibration standards. All the samples were heated
at 100◦C for 7 min, allowed to cool, mixed with 50% BF3 (2ml),
and returned to the heat for 5 min. The samples were cooled to
30–40◦C and mixed by shaking with hexane (2ml) and saturated
NaCl (5ml) and left to separate. The top layer was collected to
a headspace vial. Hexane (2ml) was added a further two times
to the samples and each time the top layer was collected into the
headspace vial. The samples collected were evaporated to dryness
using nitrogen, followed by re-dissolution in hexane (2ml).

GC-MS Analysis
Fatty acid methyl ester yields of transesterification were analyzed
by GC-MS as follows. Samples (1µl) were injected at 300◦C into
a Perkin Elmer Elite 5 MS capillary column (30m × 0.25mm
× 0.25µm). The oven temperature was held at 60◦C for 1min
and raised to 300◦C (20◦C min−1), where it was held for 7
min. The carrier gas was helium (1.0ml min−1). Quantitative
calibration was achieved by running a series of fatty acid methyl
esters at known concentration and integrating the peak area in
the resulting chromatograms.

Fuel Properties Testing
Delipidated algal hydrochar was analyzed by thermal gravimetric
analysis (TGA) with combined differential scanning calorimetry
(DSC). Hydrochar samples were heated in air to 800◦C (10◦C
min−1).

Germination Tests
Three 50mg samples of delipidated hydrochar were washed
sequentially with acetone, ethanol, and deionized water. Six
50mg samples of non-delipidated hydrochar, three of which were
ground using a ceramic pestle and mortar, were washed with
deionized water. The filter papers holding the hydrochar samples
were transferred to petri dishes and 20 cress seeds added. Three
petri dishes containing moist filter paper and 20 cress seeds acted
as a control. Each filter paper was saturated with water and,
for 7 days, five drops of water was added daily. The number of
germinated seeds and the lengths of their shoots and radicles were
measured after 7 days and the germination index (GI; Tiquia,
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2010) calculated as:

GI =
RSG× RRG

100

where RSG (relative seed growth) is given by:

RSG =
Nhydrochar

Ncontrol

and RRG (relative root growth) is given by:

RRG =
Lhydrochar

Lcontrol

where: N, number of seeds germinated; L, mean root length.

Statistics
Testing for statistically significant difference in the germination
trials was done by ANOVA using IBM SPSS version 23 at the
95% confidence level and are reported here including the F-ratio,
the significance level, and the effect size. Unless otherwise stated,
error limits are reported as 95% confidence intervals.

RESULTS

Oil Extraction Efficiency
Over the three replicate HTC experiments 7.48 ± 0.08% of
input algal biomass was recovered as non-evaporable material
following hexane extraction of the solid hydrochar product. From
the perspective of production of algal biofuels it is important
to understand the profile of fatty acids within this extract. To
assess this, the extracted oil was transesterified and quantitatively
analyzed using GC-MS.

Fatty Acid Profile of Lipid Extract
Quantitative GC-MS analysis was performed on transesterified
extracts from the three replicateHTC preparations.Major analyte
peaks are seen at retention times of 9.02, 10.01, 10.10, 10.93,
11.06, 11.90, and 13.94 min. Mass spectra at each retention time
were characteristic of either saturated or unsaturated fatty acid
methyl esters. Representative examples from our data are shown
in Figure 1.

In the following, an abbreviation convention of fatty acid
identity is adopted in which a fatty acid with 16 carbon atoms and
no unsaturation (hexadecanoic acid; palmitic acid) is referred
to as 16:0 while a mono-unsaturated acid with 18 carbon
atoms (e.g., cis-9-octadecenioc acid; oleic acid) is referred to as
18:1 etc.

All mass spectra in the GC-MS chromatogram show the
McLafferty ion at m/z = 74 characteristic of methyl ester
β-cleavage of the molecular ion shown in Figure 2.

Furthermore, spectra display the molecular ion (M+)
characteristic of the fatty acid methyl ester chain length. On the
basis of these molecular ion signals, the spectra in Figure 1 have
been assigned to the relevant fatty acid. Further characteristic
features of the mass spectra of saturated fatty acid methyl esters
are the loss of methoxy moiety from the molecular ion ([M-
31]+) and loss of C3H7 moiety ([M-43]+) through eliminative

FIGURE 1 | Mass spectra for chromatographic peaks at (A) 9.02min; (B)

10.93min.

rearrangement at the hydrocarbon end of the molecule. As the
mass spectrometer used here is not capable of detection above
m/z = 350, molecular ions of 22:0 and heavier fatty acid methyl
esters are not detectable. The assignment of the fatty acid methyl
ester at RT = 13.94 min as methyl tetracosanoate (24:0) is made
on the basis of the characteristic M-43 ion seen at m/z = 339.
Other notable features of the mass spectra of the saturated
fatty acid methyl esters are the peaks due to [MeOCO(CH2)n]

+

starting atm/z = 87 (n= 2).
Characteristics of the mass spectra of unsaturated fatty

acid methyl esters include the McLafferty ion (m/z = 74)
and loss thereof ([M-74]+), loss of methanol ([M-32]+), and
a homologous series of fragments resulting from loss of
neutral MeOCO(CH2)nCH3, with n = 3 resulting in [M-116]+.
An homologous series of peaks representing [CnH2n−1]

+ is
also evident in the mass spectra of unsaturated fatty acid
methyl esters, beginning with the base peak at m/z = 55
(n= 4).

From these mass spectra the assignment of retention time to
fatty acid methyl ester structure can bemade with some certainty;
this is outlined in Table 1. Integrated areas of the relevant
chromatographic peak have been used to evaluate the relative
contribution of each fatty acid to the overall fatty acid profile
of the extracted triacylglycerides. This relative composition is
also shown in Table 1. The overall yield of the transesterification
reaction, based on the mass of lipid extracted from the solid char,
was 94± 10%.
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.
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FIGURE 2 | Methyl ester β-cleavage of the molecular ion.

TABLE 1 | Assignment of GC-MS retention time to fatty acid methyl ester

structure and the relative composition of each component of the extracted oil.

Fatty acid

methyl ester

m/z of M+ Retention

time/min

Relative composition

of extracted oil/%

14:0 242 9.02 5.3 ± 2.0

16:0 270 10.10 37.2 ± 0.7

16:1 268 10.01 40.4 ± 6.6

16:2 266 ND ND

16:3 264 ND ND

18:0 298 11.06 1.9 ± 0.8

18:1 296 10.93 7.7 ± 3.0

18:2 294 ND ND

18:3 292 ND ND

20:0 326 11.90 0.16 ± 0.11

25:0 382 13.49 1.5 ± 0.3

ND, not detected.

Thermogravimetric Analysis
The TGA and DSC data obtained by heating delipidated and
non-delipidated algal biochar in air are displayed in Figure 3.
During heating of the delipidated algal biochar a strong exotherm
is observed between 150 and 680◦C; integrating this exothermic
heat flow yields a calorific value of 10,600 kJ kg−1. The DSC of the
non-delipidated char shows two sudden endotherms between 300
and 420◦C but is largely exothermic. Integrating the exothermic
heat flow yields a calorific value of 3,090 kJ kg−1.

Germination Trials
Germination trial results are displayed in Figure 4. There is
no significant effect of hydrochar on the relative seed growth,
F(2, 6) = 0.50, p = 0.629. Root growth, and consequently
germination index, is supressed in the delipidated hydrochar
growth condition, being 76 and 73%, respectively. Both
these measures are >100% in the non-delipidated hydrochar
conditions, with GI = 102 and 126% for the non-delipidated
and non-delipidated, ground hydrochar growth conditions,
respectively. That is, roots from the seeds germinated on non-
delipidated hydrochar were longer than those from the control
seeds after 7 days.

These effects of hydrochar on RRG and on GI are statistically
significant, as follows. There is a significant, large effect of
hydrochar treatment on relative root growth, F(2, 6) = 7.86,
p = 0.021, ω = 0.78. Post-hoc testing (Turkey HSD) reveals
that ground, non-delipidated hydrochar significantly increased
RRG relative to delipidated hydrochar (p= 0.017). Consequently,

there is a significant, large effect of hydrochar treatment on
germination index, F(2, 6) = 7.22, p = 0.025, ω = 0.76. Post-
hoc testing (Turkey HSD) reveals that ground, non-delipidated
hydrochar significantly increased germination index relative to
delipidated hydrochar (p= 0.021).

DISCUSSION

The extraction efficiency of algae lipids is relatively low: a yield
of ∼7% of biomass compared to a lipid content of 47% ±

6% (standard error) in the original P. tricornutum biomass
(data from Swansea University—see Section Acknowledgments).
Although the focus of this study was not concerned with
extraction efficiency but with the fatty acid profiles of the
extracted lipids, it is valuable to note that, for example, Fajardo
et al. (2007) improved recovery of lipids from biomass using a
two-step extraction. The first step used ethanol to extract 77.4% of
algal lipids, then a mixed solvent second step extracted a further
18.7% of lipids.

Good quality biodiesel should have a 5:4:1 fatty acid ratio of
16:1, 18:1, and 14:0 (Schenk et al., 2008). The relative composition
of the algae oil extracted from the hydrochar resulting from HTC
of P. tricornutum has a ratio of 8:1.6:1 approximately, with 16:1
being the most abundant followed by 16:0, a saturated fatty acid.
A balance in saturated and unsaturated fatty acid maintains high
quality biodiesel standards. Saturated fatty acids such as 16:0
are, however, desirable as they have higher oxidative stability,
excellent combustion properties, such as cetane number and high
calorific value, although they impart poor melting and pouring
characteristics to the biodiesel, which can compromise quality
(Redel-Macias et al., 2012).

The range of fatty acids which are produced is limited by
the species and strain and ultimately by the genetic makeup
of an organism. A review of microalgae strains identified that
many microalgae strains do not accumulate high 16:1 and 18:1
together; instead, the production of one of these fatty acid
moieties is favored at the expense of the other (Nascimento
et al., 2013; Talebi et al., 2013). This trend is not only displayed
in microalgae strains but also in crops for biofuels (Ma and
Hanna, 1999). In the case of P. tricornutum accumulation of
18:1 has been disadvantaged. However, culture condition may
have some influence over the relative amount of individual
fatty acids (Lang et al., 2011). The effect of nutrient stress
on the fatty acid composition of P. tricornutum has been
studied previously with respect to both nitrogen and phosphorus
limitation. Reduction of nitrogen concentration increased overall
lipid recovery by 6% approximately, whereas nitrogen limitation
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FIGURE 3 | Thermogravimetric analysis (right hand axis) and differential scanning calorimetry (left hand axis) showing mass loss and heat flows for delipidated and

non-delipidated hydrochar.

FIGURE 4 | Relative seed growth (dark gray bar), relative root growth (white

bar), and germination index (light gray bar) for the three growth conditions.

Error bars are ± standard error of the mean (n = 3).

increased 16:0 and 18:1 yield (Sharma et al., 2012). Genetic
modification targeting key enzymes in lipid biosynthesis is
also a promising target to increase quality and quantity of
key fatty acids (Schenk et al., 2008). Although these nutrient
limited conditions increase the quantity and quality (from a
biodiesel production perspective) of fatty acids in P. tricornutum
they are unlikely to be met in the context of a wastewater
treatment integrated biorefinery. Nonetheless, biodiesel-quality
fatty acid compositions are available from this organism under
a range of relevant conditions and are accessible via HTC
processing. Optimization, in terms of triacylglyceride recovery
protocols, as well as genetic modification and/or culture based
bioaugmentation are accessible and viable routes for improving
the quality and quantity of lipids recovered by HTC.

The extraction of lipids results in the co-production of
a delipidated hydrochar. Hydrochar has been proposed as
a suitable soil amendment to improve soil physicochemical
properties (Titirici, 2013). However, hydrochars have been
demonstrated to exhibit phytotoxic effects (Bargmann et al.,
2013). We hypothesize that hydrochar delipidation with hexane
will moderate phytotoxicity by removal of toxic organic
adsorbates.

As seen in Figure 3, delipidated and non-delipidated chars
exhibit different thermal mass loss (TGA) and heat flow (DSC)
trends, as well as different calorific values. Previous studies
have shown hydrochar to have a range of calorific values that
are somewhat higher than those observed in this study. For
example, food-waste derived hydrochar calorific values range
between 17.0 and 33.7 MJ kg−1 (Yin et al., 2017), hydrochar
produced by HTC of the macrophyte Ceratophyllum demersum
has a calorific value between 24.11 MJ kg−1 (non-catalytic
HTC) and 29.0 MJ kg−1 (KOH-catalyzed HTC; Rather et al.,
2017). We postulate that the observed low calorific value of
delipidated P. tricornutum-derived hydrochar (10.6 MJ kg−1) is
due to the high silica content of the biomass and consequently
the enriched ash content of the hydrochar. Low calorific value,
high ash chars have been observed in a comparative study of
biomass HTC at 200◦C by Smith et al. (2016). For sewage
treatment sludge the calorific value and ash content were,
respectively, 6.0 MJ kg−1 and 78.7%, whilst the values were 9.1
MJ kg−1 and 74.8% for anaerobic digestion press cake and 24.4
MJ kg−1 and 12.9% for food waste. The ash content of the
P. tricornutum-derived hydrochar can be inferred from Figure 3

(as the residual mass at 800◦C) as ∼35%, broadly in line with
the ash content-calorific value relationship observed by Smith
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et al. The extreme low calorific value for the non-delipidated
material is an experimental artifact: exothermic heat flow from
the combustion of the volatalized organics is not measured by
the TGA apparatus.

Non-delipidated char exhibits a mass loss rate that is rapid
compared to that for the delipidated char at low temperature
(<500◦C) and two sharp endotherms at 320 and 410◦C. The
delipidated char, by contrast, shows a large exotherm in the
temperature range 200–600◦C corresponding to the combustion
of cellulosic material (<400◦C) and refractory C (500–550◦C;
Lehmann and Joseph, 2009). Since combustion of organic matter
in an oxidizing atmosphere is an exothermic process, whist the
volatalization of organic material is endothermic, we interpret
these data as follows. Mass loss as a function of temperature
occurs as the solid hydrochar undergoes combustion in both
cases. In the case of the non-delipidated material this exotherm
is off-set to a large extent by the coincident endotherm due to
volatalization of the surface adsorbed oils (Wendlandt, 1986).
No such volatilization occurs for the delipidated material. This
is a reasonable expectation as the lipids liberated from the
microalgae biomass during HTC are subsequently adsorbed onto
the surfaces of the hydrochar as it forms. It is these adsorbed
lipids that are the target of the delipidation (and subsequent
transesterification). In addition to the removal of lipids, we
suggest that delipidation (solvent extraction with a non-polar
solvent) removes potentially harmful volatile organic substances
known to be present in poorly-carbonized biochars (Ghidotti
et al., 2017) and in many hydrochars (Reza et al., 2014), based
on the indication of less rapid low-temperature mass loss and the
absence of low temperature endotherms in the TGA/DSC data
for the delipidated material.

Furthermore, volatile compounds such as these may be
associated with phytotoxic effects (Bargmann et al., 2013; Melo
et al., 2017). There is no statistically significant difference in
the relative germination number between the three conditions
tested in the growth trials—all three hydrochar conditions do
not affect the number of cress seeds germinating. However,
there is a significant difference between the non-delipidated
and delipidated chars in terms of the impact of hydrochar on
root length: for both the non-delipidated conditions (ground
and un-ground) in the germination trial, root length increased
relative to that in the controls (Figure 4). This is also reflected
in the germination indexes which, for both the non-delipidated
hydrochar conditions, are in excess of 100%. In contrast,
the delipidated hydrochar exhibits a suppressive effect on
root length, relative to the control. Furthermore, root hair
growth was sparse in the two non-delipidated conditions as
shown in the photographs of Figure 5, whilst root hairs were
clearly visible in both the control (not shown) and in the
delipidated condition: their development is evidently retarded
for those seeds treated with non-delipidated hydrochar. In
the case of the un-ground non-delipidated material, root hair
growth is retarded, with both the number-density and length
of root hairs being negatively impacted. For the ground,
non-delipidated hydrochar germination trial, the germinated
seedlings at day seven are seen to be almost devoid of root
hairs.

FIGURE 5 | Representative photographs (left hand column) and

photomicrographs (right hand column) of root hair growth pattern after 7 days

in: (A) delipidated hydrochar growth condition; (B) non-delipidated hydrochar

growth condition; (C) ground, non-delipidated growth condition.

Inhibition of root hair development can be a result of
chemical disruption of the cytoskeleton development (Park and
Nebenfuhr, 2011). Although root hairs are not crucial for plant
growth, they provide increased surface area to assist in water and
nutrient uptake. It is tentatively proposed that the increased root
length exhibited by the non-delipidated hydrochars is a response
to chemical root hair inhibition resulting from the presence
of phytotoxic agents on the surface of the non-delipidated
hydrochar (Reza et al., 2014). The growing seedlings respond
to this inhibition by lengthening the root, increasing surface
area and promoting uptake of water and nutrients in the
absence of root hairs. This effect is intensified by increased
hydrochar surface area in the ground, non-delipidated condition
and hence increased availability of surface-adsorbed phytotoxic
agents. Therefore, we observe the apparent operation of a
phytotoxic effect resulting in the retardation of root hair growth
and, furthermore, that this effect is removed by the process of
delipidation, viz., extraction with hexane.

It is likely, therefore, that there are at least two competing
effects that impact on the health of the germinating plant. In
the first place there is the presumably chemical effect described
above that suppresses root hair growth and that is mediated
by chemical species that are removed by the delipidation
process. Secondly, there is an effect—chemical, physical, or
both—that operates to suppress root length in the presence
of delipidated hydrochar. These effects presumably operate in
parallel in the non-delipidated hydrochar germination condition.
The first of these phytotoxic mechanisms is removed by the
delipidation protocol described in this work. Hence, the HTC
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of P. tricornutum biomass followed by delipidation of the
resulting hydrochar is a route to fatty acids of relevance to
biodiesel production and coproduces a hydrochar, the potential
phytotoxicity of which is at least in part mitigated in the process.

CONCLUSION

Following the work of Heilmann et al. (2011), we have
demonstrated successful extraction of biodiesel precursors by
HTC of P. tricornutum, an organism of potential relevance to
the waste-water treatment industry as a method of phosphate
removal. The concomitant production of lipids has the potential
to add significant value to this route, supporting its development
as an enabling technology for an integrated biorefinery. The
co-produced hydrochar is also a potential source of added
value in this concept and we have shown that the process
of obtaining the lipids relevant to biodiesel production also
mitigates the phytotoxicity (and potentially enhances the calorific
value) of the hydrochar, opening the possibility of its use in
soil amendment and climate mitigation. That is, removal of the

biodiesel precursors from the hydrochar has the co-benefit of

making the hydrochar more suitable for agricultural application
as biochar.
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