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Bioturbation activity of sediment-dwelling organisms promotes the release of

contaminants across the benthic-pelagic ecosystem boundary, thereby affecting the

exposure to and uptake of sediment associated contaminants at the sediment-water

interface by themselves and the entire community around them. This way, bioturbation

activity may contribute to species specific sensitivities to sediment associated

compounds. Therefore we assessed, based on literature data, if invertebrate bioturbation

activity determines species specific sensitivities to sediment contamination. For two

metals, Ni and Cu, sufficient data were available to construct Species Sensitivity

Distributions (SSD). The position of the species in the SSDs could indeed be linked to

their bioturbation rate: the most active bioturbators being the most sensitive benthic

invertebrates. Active bioturbators thus enhance their exposure and therewith their

sensitivity to sediment associated toxicants. Moreover, active bioturbators can hence

promote the release of sediment-associated contaminants across the benthic-pelagic

ecosystem boundary, thereby stimulating delivery of contaminants from what is often the

most polluted environmental compartment in freshwater ecosystems. It is concluded that

trait based ecotoxicology offers a possibly potent tool for predicting sensitivity of benthic

invertebrates and the benthic community to sediment-associated contaminants.
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INTRODUCTION

The largest group of animals making up the species rich benthic communities of freshwater
ecosystems are invertebrates, consisting of many different taxa, like chironomids, amphipods,
tubificids, and bivalves, that all perform different ecological roles (Covich et al., 1999, 2004;
Hillebrand and Matthiessen, 2009). Accordingly, benthic invertebrates exhibit different ways of
locomotion and different ways in which they process and rework sediments, due to differences in
feeding mechanism and food acquisition (Mermillod-Blondin et al., 2002; Jonsson and Malmqvist,
2003; Nogaro et al., 2009). These ecological functional traits in turn influence the environmental
conditions and sediment properties adjacent to the organisms (François et al., 1997; Gérino
et al., 2003; Nogaro et al., 2009). In this way, benthic invertebrates alter and influence their
own environment, as well as that of the entire community around them (Covich et al., 1999).

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2017.00083
http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2017.00083&domain=pdf&date_stamp=2017-12-06
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:m.l.debaat@uva.nl
https://doi.org/10.3389/fenvs.2017.00083
https://www.frontiersin.org/articles/10.3389/fenvs.2017.00083/full
http://loop.frontiersin.org/people/489138/overview
http://loop.frontiersin.org/people/459561/overview
http://loop.frontiersin.org/people/117509/overview


van der Meer et al. Bioturbation Mediated Sensitivity to Sediment Contamination

Consequently, benthic invertebrates may also affect the exposure
to and uptake of sediment associated contaminants by the whole
benthic invertebrate community.

Sediment contamination in freshwater ecosystems is a
major environmental issue in industrialized countries. Over the
past decades, contaminants like metals, pesticides, PAHs and
pharmaceuticals ended up in water bodies. A considerable part
of such contaminants accumulates in sediments, which act as a
sink for hydrophobic compounds (Eggleton and Thomas, 2004).
While the contaminant concentrations in the water column have
decreased in many instances due to improved pollution- and
runoff management, the often persistent sediment-associated
contaminants remain (Dsa et al., 2008; De Deckere et al.,
2011). Hence, sediments nowadays play an important role in
contaminant transfer and water quality, systematically causing
partitioning of compounds back into the water column (Bilotta
and Brazier, 2008). Thus, the sediment now acts as a contaminant
source, affecting the benthic as well as the pelagic community
(Taylor and Owens, 2009).

It has been shown that sediment-dwelling organisms promote
the release of contaminants across the benthic-pelagic ecosystem
boundary, thereby affecting the exposure to and uptake
of sediment associated contaminants at the sediment-water
interface by themselves and other organisms (Pang et al., 2012).
This way, bioturbation activity may subsequently contribute to
species specific sensitivities to sediment associated compounds
(Milani et al., 2003; De Lange et al., 2005; Wang, 2013).
It is these frequently observed species specific responses in
sediment toxicity tests that indeed raise the question what
actually determines the observed sensitivity of benthic organisms
in terms of ECx values. Here we hypothesize that ecological
functional traits, especially bioturbation activity, contribute to
species specific sensitivities to sediment contamination. Clear
indications for the importance of sediment reworking on
sediment toxicity were already reported by Chandler et al. (2014),
who showed that contrasting sediment reworking intensity of
two infaunal benthic invertebrates, equally sensitive in water
only tests, caused a significantly different sensitivity in sediment
tests through increased nickel mobilization to the pore water.
Based on these results, the aim of the present desk study was
to assess if benthic invertebrate bioturbation activity determines
species specific sensitivities to sediment contamination. To this
purpose we screened available literature for sediment toxicity
data, attempting to obtain sufficient data to construct Species
Sensitivity Distributions (SSD). Next, it was evaluated if the
position of the species in the SSD could be linked to their
ecological functional traits.

MATERIALS AND METHODS

We screened the available literature for freshwater sediment
toxicity data. Since this study focused on sediment associated
toxicants and bioturbation, only sediment toxicity data for
organisms at the sediment-water interface were selected,
excluding species which mainly occur in submerged
vegetation. To assess the relationship between bioturbation
and species-specific sensitivity, we aimed to construct a SSD

for common sediment associated contaminants and benthic
invertebrates with different levels of bioturbation activity. A SSD
for benthic invertebrates was already constructed for nickel by
Vangheluwe et al. (2013), however this study did not relate the
position of species in the distribution to their bioturbation traits.
The present study selected research reporting on toxicity of other
sediment associated compounds to benthic invertebrates. The
only substance with enough data points to construct a robust
SSD was copper, with four studies reporting on the effect of
sediment associated copper on the survival of eight benthic
invertebrate species (Table 1 and references therein). The Cu
LC50 values from these papers were combined to construct a
SSD using a SSD generator (US EPA, 2016). In case a species
LC50 was reported in multiple studies, the LC50 value with the
longest exposure duration was used. If two articles had the same
exposure period, an average of the two reported LC50 values was
taken. Next it was evaluated if the position of the species in the
SSD could be linked to their ecological functional traits. To this
purpose the invertebrates were divided into three groups based
on their species-specific bioturbation activity: high, intermediate
and low. To do so, literature relevant to the bioturbation activity
of the species was consulted and summarized to attribute a
bioturbation activity classification (Table 1).

RESULTS AND DISCUSSION

Kwok et al. (2014), reporting on a workshop held in 2011,
stated that the paucity of sediment toxicity data posed the
largest obstacle to improving current, and deriving new sediment
quality guidelines (SQGs). Now, in 2017, the situation has
scarcely improved. Only for two metals, Ni and Cu, sufficient
sediment toxicity data were available to construct a SSD.
The Ni SSD was previously reported by Vangheluwe et al.
(2013), however, the link between the reported SSD and the
bioturbation rate of the examined species was not described.
Figure 1 shows the presently constructed SSD for Cu, based on
the literature derived experimental data presented in Table 1.
The position of the species in the present SSD could indeed be
linked to their bioturbation rate. The most active bioturbators,
Hexagenia sp., and A. aquaticus, appeared to be most sensitive
to sediment associated copper, followed by G. pulex, exhibiting
intermediate bioturbation activity. The species least sensitive to
sediment associated copper, C. tentans, C. riparius, T. tubifex,
H. azteca, and L. variegatus, were categorized as the least active
bioturbators.

In agreement with the present study, Vangheluwe et al. (2013)
reported that G. pseudolimneus andHexagenia sp. were relatively
sensitive to sediment bound Ni, with EC10 values all below
236 mg/kg. L. variegatus, C. riparius, C. dilitus, L. siliquoidea,
and T. tubifex were less sensitive: the EC10 for L. variegatus
was 554 mg/kg, while for the other species the NOEC was at
least 762 mg/kg (Vangheluwe et al., 2013). Thus, the sensitive
species were active bioturbating epifaunal biodiffusors, whereas
the less sensitive species were infaunal conveyor belt transporters
or gallery diffusors. L. siliquoidea is a sedentary bivalve and
therefore not an active bioturbator. Only for H. azteca this
agreement was not observed, with the amphipod exhibiting a
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TABLE 1 | Benthic invertebrate bioturbation activity and sediment associated Cu LC50 values derived from literature.

Species Bioturbation

activity

Rationale Reference LC50 Cu

(mg/kg)

References

Chironomus tentans Low - Bio irrigation with long intervals

- Low redox potential in sediment

Walshe, 1951

Hunting et al., 2012

1,026 Suedel et al., 1996

Tubifex tubifex Low - O2 collection by protruding

appendages above sediment

- Decreased O2 concentration in

sediment

Kaster and Wolff, 1982

Mermillod-Blondin et al., 2002

426 Milani et al., 2003

Roman et al., 2007

Chironomus riparius Low - Bio irrigation with long intervals

- Low redox potential in sediment

Walshe, 1951

Hunting et al., 2012

320 Roman et al., 2007

Hyalella azteca Low - Avoids contaminated sediment

- Mostly swimming, little interaction

with sediment

Call et al., 2001

Bryan, 1971

222 Milani et al., 2003

Roman et al., 2007

Lumbriculus variegatus Low - O2 collection by protruding

appendages above sediment

- Increased AVS in sediment

- Low redox potential in sediment

Gerhardt, 2007

Penttinen et al., 1996

Vandegehuchte et al., 2013

Hunting et al., 2012

211 Roman et al., 2007

Gammarus pulex Intermediate - Decreased AVS in sediment

- Minor increase of redox potential

in sediment

Vandegehuchte et al., 2013

Hunting et al., 2012

151 Roman et al., 2007

Asellus aquaticus High - Increased redox potential in

sediment, increased O2

concentration up to 5 cm

- Homogenization of sediment up to

3 cm

Hunting et al., 2012

Mermillod-Blondin et al., 2002

106 Hunting et al., 2013

Hexagenia sp. High - Continuous irrigation of burrow,

creating new burrows constantly

Gallon et al., 2008 93 Milani et al., 2003

FIGURE 1 | Species sensitivity distribution for sediment associated copper: Benthic invertebrates are categorized according to their bioturbation activity.

relatively high Cu LC50 value and being classified as having a
low bioturbation rate in the present study, while being relatively
sensitive to sediment associated Ni in the study by Vangheluwe

et al. (2013). This might be explained by the ability of H. azteca
to avoid contaminated sediment by their swimming capabilities
(Table 1). Hence, H. azteca is a facultative bioturbator, and in
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a test setup where it is able to avoid exposure by obtaining its
food away from the sediment, as was the case in the Ni test
(Besser et al., 2011), low bioturbation and thus low exposure to
sediment associated compounds may occur. Contrastingly, in a
test setup where H. azteca is compelled to obtain its food from
within the sediment, active bioturbation and thus high exposure
may ensue. This can in turn result in differences in observed
sensitivity, caused by differential bioturbation activity within the
same species, causing a shift in the position of that species in a
SSD.

Besser et al. (2013) argued that the relatively high sensitivity
of G. pseudolimneus and Hexagenia sp. was due to their specific
sediment mixing and/or bioirrigation rates. These high rates of
bioturbation and bioirrigation lead to an increase in oxygen
content of the sediment and therewith to a reduction in acid
volatile sulfides (AVS) concentration. This reduction in AVS
concentration in turn increases the bioavailability of metals in
the sediment, and promotes release of contaminants from the
sediment to the pore water and the pelagic zone (De Jonge
et al., 2012; Simpson et al., 2012). Although other infaunal
invertebrates, like chironomids and oligochaetes, also bioirrigate
their burrows, their bioirrigation rate is lower than that of
the mayfly larvae. While mayfly larvae need to pump oxygen
into their burrows almost continuously (Gallon et al., 2008),
oligochaetes collect their oxygen by protruding their appendages
above the sediment, and chironomids irrigate their burrows
with long intervals, as they contain hemoglobin that allows
them to withstand low oxygen concentrations (Walshe, 1951).
This results in low oxygen concentrations in the sediment
around oligochaetes and chironomids relative to mayfly larvae.
Chironomids can, nevertheless, increase oxygen penetration
depth or sediment oxygen consumption (De Haas et al., 2005),
but the redox values in the sediment remain generally reducing.
Hunting et al. (2012) also observed low oxygen concentrations
and reducing conditions around chironomids and oligochaetes,
thus potentially increasing AVS concentration. In contrast, the
epifaunal biodiffusor A. aquaticus increased the sediment oxygen
concentration by its bioturbation activities (Hunting et al.,

2012), which may lead to a decrease in AVS concentration. In
agreement, Vandegehuchte et al. (2013) demonstrated that the
presence of G. pulex decreased the AVS concentration in the
sediment, while the mayfly E. virgo had little effect on the AVS
concentration and the presence of the oligochaete L. variegatus
resulted in an increase in AVS concentration in the sediment.

CONCLUSION

The studies cited above all support the here presented cascade of
high bioturbation activity leading to oxygenation of the sediment
and therewith to low AVS concentration, in turn causing a
higher metal bioavailability and leading to higher exposure
and thus higher sensitivity of the test species. It is therefore
concluded that active bioturbators enhance their own exposure
to toxicants, therewith increasing the observed sensitivity
in terms of ECx. Moreover, active bioturbators can hence
promote release of sediment-associated contaminants across
the benthic-pelagic ecosystem boundary, thereby stimulating
delivery of contaminants from what is often the most polluted
environmental compartment in freshwater ecosystems (Burton,
2013; Roig et al., 2015). Although research linking traits to
toxicant sensitivity is still relatively rare, trait based ecotoxicology
offers a possibly potent tool for predicting sensitivity of benthic
invertebrates and the benthic community to sediment-associated
contaminants (Baird et al., 2008; Archaimbault et al., 2010). It is
alarming though, that the paucity of sediment toxicity data still
poses the largest obstacle to deriving reliable SQGs. We therefore
stress that future reliable sediment toxicity data derivation should
incorporate trait based ecotoxicological assessment.
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