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Sustainable supply of food and energy without posing any threat to environment is the

current demand of our society in view of continuous increase in global human population

and depletion of natural resources of energy. Cyanobacteria have recently emerged as

potential candidates who can fulfill abovementioned needs due to their ability to efficiently

harvest solar energy and convert it into biomass by simple utilization of CO2, water

and nutrients. During conversion of radiant energy into chemical energy, these biological

systems produce oxygen as a by-product. Cyanobacterial biomass can be used for the

production of food, energy, biofertilizers, secondary metabolites of nutritional, cosmetics,

andmedicinal importance. Therefore, cyanobacterial farming is proposed as environment

friendly sustainable agricultural practice which can produce biomass of very high value.

Additionally, cyanobacterial farming helps in decreasing the level of greenhouse gas, i.e.,

CO2, and it can be also used for removing various contaminants from wastewater and

soil. However, utilization of cyanobacteria for resolving the abovementioned problems is

subjected to economic viability. In this review, we provide details on different aspects

of cyanobacterial system that can help in developing sustainable agricultural practices.

We also describe different large-scale cultivation systems for cyanobacterial farming and

discuss their merits and demerits in terms of economic profitability.

Keywords: biofertilizers, bioenergy, biotechnology, cyanobacterial farming, nutraceuticals, sustainable

agricultural practices

INTRODUCTION

The human population of our planet is projected to reach ∼9.7 billion by 2050, and majority of
this increased population would be contributed by developing countries of Asia and Africa (DESA
UN, 2015). This increase in global population is associated with increased demand of food security
in future. To overcome this challenge, the World Health Organization has suggested a doubling of
food production by 2050, while the United Nations have suggested a 50% increase in global food
production by 2030. The productivity gains resulted from the “Green Revolution” have essentially
reached a plateau, and feeding the increased global population is further challenged by limited
availability of agriculture land. The range of non-conventional biotechnological measures involving
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improvement in CO2 fixation efficiency of crop plants can
be used to enhance the food productivity per hectare of
agricultural land (Parry and Hawkesford, 2010; Parry et al.,
2011). Nevertheless, a production system which has a higher
productivity but requires a small land area and time for
cultivation would be the requirement of the future agriculture.

Several factors such as haphazard nutrient mining, water
limitation, accumulation of noxious xenobiotic compounds in
the soil, soil corrosion and climate change have deteriorated
the quality and fertility of agricultural land (Singh, 2014).
Additionally, soil salinity is a well-known stressor which affects
the plant growth and crop production globally (Upadhyay
et al., 2011). The social and economic activities have resulted
in reduction of the cultivable area, and hence, in addition to
conservation of fertile land, enhancement of the coverage of
cultivable land should be one of the focused areas to feed the
human population (Singh et al., 2016; Pathak et al., 2017).
Modern green technologies such as biofertilizers consisting of
cyanobacteria, fungi (arbuscular mycorrhizal fungi, AMF) and
bacteria (plant growth promoting rhizobacteria, PGPR) could
improve and restore the soil fertility and ensure the sustainable
agricultural production. Moreover, these microorganisms can
reduce the energy demand in the form of synthetic fertilizers,
and have the capability to mitigate stressed agroecosystems and
wastelands.

Microbial biotechnology plays an important role particularly
in secondarymetabolites, biofertilizers, bioenergy, bioprocessing,
biopesticide production, waste treatment, and bioremediation
(Du et al., 2007; Mohammadi and Sohrabi, 2012). The sustainable
agriculture involves soil, water and pest management, crop
selection, soil preservation and processing. These sustainable
agricultural practices together with biotechnology have the
potential to increase the productivity by developing new
transgenic plants, microbes and animals (Singh, 2000). Over
the last decade, biotechnology has significantly contributed to
sustainable agriculture by the development of stress resistance in
microbes and plants, bioremediation of polluted soils, enhanced
nitrogen fixation and increased nutrient uptake efficiency
(Singh, 2000). However, the cultivation of genetically modified
organisms in an open area is still a matter of debate all over the
world.

In recent years, microalgae, including cyanobacteria,
have emerged as potential candidates for their application
in development of environment friendly and sustainable
agricultural practices (Singh et al., 2016, 2017). These oxygen-
evolving photosynthetic organisms do not compete for arable
land for their cultivation. Cyanobacteria, which can be cultivated
using seawater, require residual nutrients for high areal
productivity and have high protein and reasonable amount of
carbohydrate as well as lipid contents per gram of their biomass
(Williams and Laurens, 2010; Milledge, 2011; Hoekman et al.,
2012). Globally about 25 Gt a−1 of carbon can be fixed into
energy-dense biomass by cyanobacteria using atmospheric
CO2 and solar energy (Pisciotta et al., 2010). Therefore,
generation of microbiological energy through massive solar
energy transformation permits harvesting various forms of
eco-friendly energy reserves (Hall et al., 1995; Paumann et al.,

FIGURE 1 | Various outcomes of cyanobacterial growth that can be utilized for

the development of sustainable agricultural practices.

2005). The aforementioned characteristics make cyanobacteria
potential microorganisms for their application as feedstocks
for sustainable production of food and non-food commodities,
including valuable chemicals and bioenergy (Wase and
Wright, 2008; Sarsekeyeva et al., 2015; Rajneesh et al., 2017).
Cyanobacteria produce a number of valuable compounds such
as ethanol, butanol, fatty acids, and other organic acids, and
therefore, are promising candidates for fulfilling our energy
demands in a sustainable manner (Rajneesh et al., 2017). In
addition, cyanobacteria have potential applications in agriculture
as biofertilizers and in the food industry as food supplements
(Figure 1). Recent developments in the techniques of genetic
engineering, culturing and screening of cyanobacteria have
enabled novel ways to utilize the potentials of available wealth of
these ancient microorganisms. Genetic manipulation techniques
are well developed for several cyanobacteria, and therefore, a
synthetic biology approach provides an opportunity to exploit
these organisms as green factories for the production of new
lines of commodities. In this paper, we review various ways of
cyanobacterial farming that could be utilized in the development
of sustainable agriculture practice in an eco-friendly manner
(Figure 1).

SUSTAINABLE AGRICULTURE AND
MICROBES

Among various streams of life sciences, agricultural
biotechnology could potentially help in developing the
sustainable agriculture practices. In modern agriculture,
microbial intervention further strengthens the impact of
transgenic organisms. Microbes play a vital role in determining
the fertility and structure of soils (Vaishampayan et al., 2001;
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Singh, 2014; Singh et al., 2016), in processing and preservation
of crops, and in recycling the residues of crops (Saddler,
1993; Hanson, 1996). Microbial activity in soil fertility,
bioremediation and biocontrol requires the introduction of
genetically engineered or natural microbial inoculants; however,
mere inoculation of microbes in soil is not sufficient. The
monitoring of survival and establishment of inoculants in
the soil, and their negative or positive interactions with other
indigenous microbial population are very crucial (Molin and
Molin, 1997; Van Veen et al., 1997). Maintenance of soil fertility
with renewable resources is the prime requirement of sustainable
agriculture in order to reduce the need for synthetic fertilizers.
Among such resources, natural and transgenic N2-fixing
microbes are the most promising candidates. In the rhizosphere,
the N2-fixing microorganisms can be directly inoculated in soil
or can be used as coating on seeds, however, in both cases their
survival need to be assured. Several living biosensors have been
developed which can be used for monitoring, management and
manipulation of interacting microbial consortia (Burlage and
Kuo, 1994).

The various metabolites produced by microbes have
the potential to aid in the development of sustainable
agriculture practice, and the best example is biocompatible
microbial polymers which can be used in coating of fertilizers,
pesticides, and nutrients. This will help in targeted delivery
of fertilizers, pesticides, and nutrients for agriculture by
preventing their application in other industry or antisocial
activities. Microbial polymers can also be used in food processing
units (Vandamme et al., 1996; Sutherland, 1998). One of
the sustainable ways to convert wastelands to agricultural
practices is bioremediation of contaminated soils and waters.
For bioremediation of contaminated soils, natural, or transgenic
microbes in mixed culture are used (Atlas, 1995). However, for
effective bioremediation of contaminated terrestrial or aquatic
ecosystem, the chemical and microbial interactions along with
biogeochemical and ecological balances of concerned ecosystem
should be considered (Anderson and Lovley, 1997; Tiedje, 1997).
Among various beneficial microbes, cyanobacteria can be used in
nutrition, energy and agriculture sector because of their ability to
fix atmospheric N2 and CO2, and produce energy rich biomass
containing myriad of metabolites of economic importance.
Furthermore, recent developments in cyanobacterial screening,
cultivation, and gene manipulation techniques have enabled new
ways to utilize the potential of these photosynthetic microbes to
deal with socio-economic problems (Sarsekeyeva et al., 2015).

CYANOBACTERIA AND SUSTAINABLE
AGRICULTURE

Cyanobacteria contribute significantly to the biogeochemical
cycles of carbon, nitrogen and oxygen (Karl et al., 2002; De
Ruyter and Fromme, 2008). They have undergone a series of
functional and structural modifications during their evolution
that permit their current distribution in diverse ecological niches
(Olson, 2006). Cyanobacteria can tolerate various stresses such
as ultraviolet radiation (UVR; 280–400 nm), desiccation, high

or low temperatures and salinity, which contribute to their
advantages over different competitors/neighbors in their natural
habitats (Gröniger et al., 2000; Herrero and Flores, 2008). For
example, Spirulina maxima is known to survive under high
alkaline conditions (pH 11) and high salinity which provide
advantage and protection from other competitors and grazers
(Habib et al., 2008). The nitrogen fixing ability of cyanobacteria
aids their successful growth and survival in habitats where no or
little combined nitrogen is available. This trait of cyanobacteria
makes them agronomically and economically important as
biofertilizers (Singh, 1961, 2014; Vaishampayan et al., 2001; Singh
et al., 2016).

Several cyanobacteria are known to establish symbiotic
associations, and this ability could be exploited in developing
the consortia of microorganisms for their application in
bioremediation of affected soils or aquatic systems (Rai et al.,
2000; Subashchandrabose et al., 2011; Hamouda et al., 2016).
Strains of cyanobacteria which are native and adapted to local
climatic conditions have a capacity to survive in wet soils. This
significantly affects the nutritional status, structural stability and
crop productivity of such soils (Nisha et al., 2007). Twenty five
percent of the total biomass of cyanobacteria is contributed by
the exopolysaccharides (EPS) (Nisha et al., 2007). The upper
crust of the soil is the site of cyanobacterial activities and the
EPS act as a gluing agent on soil particles. The EPS can hold
soil particles together which leads to soil aggregation, organic
content accumulation and increase in water holding capacity
of the top layer of soil (Malamlssa et al., 2001). This increase
in soil moisture and organic content can support the survival
and growth of plant-growth promoting rhizobacteria (PGPR).
Thus, cyanobacterial growth positively alters the chemical
and physical property of soils, and PGPRs along with EPS-
producing cyanobacteria may contribute to an improvement and
reclamation of infertile soils (Flaibani et al., 1989; Verrecchia
et al., 1995; Zulpa et al., 2003; Paul and Nair, 2008). The
consortium of PGPR and cyanobacteria increases the plant
growth by improving the soil fertility and nutrient utilization.
In additions, this consortium also enhances the tolerance of
plants against environmental stresses such as drought and salinity
(Singh et al., 2011; Prasanna et al., 2012; Singh, 2014). However,
community structure and diversity of cyanobacteria should be
studied in depth particularly in reference to environmental
conditions and ecosystem functions before devising application
of a consortium under field conditions. In following sections,
different properties of cyanobacteria are presented that can be
utilized for the development of sustainable agriculture practice
in environment friendly manner.

Cyanobacteria as Bioremediators
Cyanobacteria can be used for the bioremediation of several
contaminants such as heavy metals, pesticides, crude oil,
phenanthrene, naphthalene, phenol, catechol, and xenobiotics
(Kesaano and Sims, 2014; Hamouda et al., 2016; Kumar et al.,
2016; Singh et al., 2016). Synechococcus elongatus, Microcystis
aeruginosa and Anacystics nidulans have shown potentials to
remove organo-chlorine and organo-phosphorus insecticides
(Vijayakumar, 2012). Cyanobacterial genera such as Oscillatoria,
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Synechococcus, Nodularia, Nostoc, Anabaena, and Microcystis
break down lindane residues (El-Bestawy et al., 2007). Anabaena
sp., Lyngya sp., Microcystis sp., Nostoc sp. and Spirulina sp. can
utilize glyphosate as the source of phosphorus, and therefore,
helps in removal of this herbicide from contaminated soil
(Forlani et al., 2008; Lipok et al., 2009). Thus, an above
mentioned cyanobacterial strains are potential candidates for
their application in developing sustainable agricultural practice
where they can be used for removing various contaminants from
soil as well as water.

The consortia of cyanobacteria and chemotrophic bacteria
have been effectively used to bioremediate wastewaters and oil-
contaminated sediments (Abed and Köster, 2005). Cyanobacteria
can oxidize oil components as well as other complex organic
compounds such as herbicides and surfactants (Mansy and El-
Bestway, 2002; Subashchandrabose et al., 2013). The consortium
ofOscillatoria-Gammaproteobacteria can degrade phenanthrene,
dibenzothiophene, pristine and n-octadecane (Abed and Köster,
2005). Similarly, consortia of Microcoleus chthonoplastes with
organotrophic bacteria can fix atmospheric nitrogen and
degrade aliphatic heterocyclic organo-sulfur compounds and
hydrocarbons such as alkylated monocyclic and polycyclic
aromatic compounds (Sánchez et al., 2005). An artificially
designed biofilm consortium of hydrocarbon-degrading bacteria
and cyanobacteria on gravel particles and glass plates has
been developed that can be used for cleaning up crude-oil
contamination of sea water samples (Al-Awadhi et al., 2003).
The consortium of Anabaena oryzae and Chlorella kessleri can
be used to biodegrade crude oil under mixotrophic condition
(Hamouda et al., 2016). Cyanobacteria are also capable of
removing heavy metals from water bodies and can reduce the
excess of nitrate and phosphate from agricultural fields (Kesaano
and Sims, 2014; Kumar et al., 2016). Consortia of cyanobacteria
and bacteria have shown positive results in wastewater treatment.
Cultures of Aphanocapsa sp. BDU 16, Oscillatoria sp. BDU
30501 and Halobacterium US 101 can be utilized for minimizing
the amount of calcium and chloride in wastewater to a level
that can support the survival of fishes (Uma and Subramanian,
1990). Similarly, Phormidium valderianum BDU 30501 and
Oscillatoria boryana BDU 92181 can be utilized to remove phenol
and melanoidin, respectively, from the effluents of distillery
(Shashirekha et al., 1997; Kalavathi et al., 2001). Desertification
is another challenge for sustainable agriculture practices which
can be reversed by the application of cyanobacterial inoculums.
Cyanobacteria together with bacteria, mosses, algae, lichens
and fungi forms biological soil crusts (BSCs) in semiarid and
arid areas of various geographical regions (Rossi et al., 2017).
These BSCs play an important role in stabilization and primary
colonization of desert soil surface by increasing the nutrient and
moisture contents (Rossi et al., 2017). Thus, cyanobacteria can be
ideally utilized for removing the various contaminants. However,
for bioremediation of polluted sites, focus should be given to
utilization of indigenous consortia that could potentially reduce
the need of adding newmicroorganisms or fertilizers to the target
site. Further improvement in bioremediation property can be
achieved by genetic engineering of parent strains which can help
in developing a maintenance-free and economical remediation

technology while producing the biomass of high value for other
purposes (Kuritz andWolk, 1995; Cuellar-Bermudez et al., 2017).

Cyanobacteria as Bioenergy Resource
First and second generations of biofuels have utilized feedstocks
such as rapeseed, soybean, sunflower, wheat, switchgrass,
peanuts, and sesame seeds. These raw materials have been
used to produce different energy sources such as ethanol,
propanol, butanol, and vegetable oils (Quintana et al., 2011).
However, energy crops, which are used in first and second
generations of biofuels production, compete with conventional
food sources for water, nutrients and fertile land. Therefore,
the third generation of biofuel production using microalgae has
emerged as an alternative to avoid the competition between food
crops and energy crops for available resources, and furthermore,
cyanobacteria are one of the most promising feedstocks for
the production of third generation biofuels (Quintana et al.,
2011; Al-Haj et al., 2016; Rajneesh et al., 2017). Rapid
growth rate and cultivation in suitable in-house bioreactors
and/or on non-arable land gives cyanobacteria an advantage
over plants (Singh, 2014; Sarma et al., 2016). Furthermore,
cyanobacteria show higher photosynthetic efficiency (∼10%), as
compared to land plants (∼3–4% maximum efficiency) (Lewis
and Nocera, 2006; Melis, 2009). Cyanobacteria can be easier
genetically manipulated than other algae, and hence, serve as
a better candidate in comparison to eukaryotic algae for the
production of targeted chemicals and fuels. The genome size
of cyanobacteria is relatively small and till date genomes of
several genera have been sequenced (Rajneesh et al., 2017).
Therefore, cyanobacteria provide an exceptional opportunity to
conduct genetic and metabolic engineering studies for improved
biomass production which is comparatively difficult to do
with eukaryotic algae (Rittmann, 2008). Cyanobacteria contain
considerable amounts of lipids; primarily located in the thylakoid
and plasma membranes, and show higher rates of growth
and photosynthesis. Enhanced production of biofuel from
cyanobacteria utilizing genetic engineering has been attempted
mainly on Synechocystis sp. PCC 6803 and S. elongatus PCC 7942,
whose genomes are fully sequenced and molecular techniques
are well-established (Kaneko et al., 1996). Genetic engineering
can be used for the production of various fuels such as 2,3-
butanediol, acetone 1-butanol, ethylene, ethanol, fatty acids,
isobutyraldehyde, isobutanol, 2-methyl-1-butanol, and isoprene
in cyanobacteria. Therefore, genetically modified cyanobacteria
might play a crucial role in reduction of crude oil dependency
and CO2 emissions, owing to direct photosynthetic fixation of
CO2 to biofuel and other valuable secondary metabolites (Ducat
et al., 2011; Oliver et al., 2016).

However, cyanobacteria have some limitations for their
application in biofuel production. The production of valuable
chemicals in photoautotrophic cyanobacteria is always less
than sugar-utilizing systems such as S. cerevisiae and E. coli
(Savakis and Hellingwerf, 2014). Generally, photoautotrophic
cyanobacterial chassis can produce only ∼100mg of
biochemicals per liter of cell culture (Gao et al., 2016),
which is far too low for any commercially viable application.
Theoretical yields under heterotrophic and autotrophic growth
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conditions for production of several chemicals have been
computed for cyanobacterial chasis to find out the limiting
factors in cyanobacterial metabolic network (Gudmundsson and
Nogales, 2015). However, study suggests that low yield is not
due to the topology of the photosynthetic metabolic networks in
cyanobacteria. Therefore, it is important to optimize the inherent
biological chassis for enhancing the yield of biochemicals from
cyanobacteria. In recent years, several groups have emphasized
on construction, designing, and expression of the biosynthetic
pathways along with development of the toolboxes for metabolic
engineering in cyanobacteria which could lead to economic
profitability by increasing the production of existing and novel
chemicals and biofuels (Wang et al., 2012; Berla et al., 2013; Desai
and Atsumi, 2013; Oliver and Atsumi, 2014; Gudmundsson and
Nogales, 2015; Markley et al., 2015).

Cyanobacteria as Biofertilizers
It is very expensive to produce inorganic nitrogen fertilizers
due to the requirement of large amount of fossil-fuel energy.
This necessitated the development of alternate, sustainable and
cost-effective biologically available nitrogen resources which can
fulfill the nitrogen demand of agriculture in sustainable manner
(Mahanty et al., 2017). For this purpose biological systems have
been identified which can fix atmospheric dinitrogen (Hegde
et al., 1999; Vaishampayan et al., 2001). Biological nitrogen
fixation contributes∼2× 102 Mt of nitrogen annually (Guerrero
et al., 1981). According to Metting (1988), the total nitrogen
fixation can be ∼90 kg N ha−1 y−1. Symbiotic and free-living
eubacteria, including cyanobacteria, are two groups of nitrogen-
fixing organisms. The free-living cyanobacteria fix <10 kg of
N ha−1y−1, however, annually ∼10–30 kg of N ha−1 is fixed
by dense mats of cyanobacteria (Aiyer et al., 1972; Watanabe
et al., 1977). Therefore, cyanobacteria constitute an important
component of naturally available biofertilizers (Vaishampayan
et al., 2001; Prasanna et al., 2013). Rice production in
tropical countries mainly depends on biological N2 fixation by
cyanobacteria which are a natural component of paddy fields
(Vaishampayan et al., 2001). In these cultivated agriculture
systems, annually ∼32 Tg of nitrogen is fixed by biological
nitrogen fixers (Singh et al., 2016), and cyanobacteria add
about 20–30 kg fixed nitrogen ha−1 along with organic matter
to the paddy fields (Subramanian and Sundaram, 1986; Issa
et al., 2014). Cyanobacteria also make symbiotic associations
with different photosynthetic and non-photosynthetic organisms
such as algae, fungi, diatoms, bryophytes, hornworts, liverworts,
mosses, pteridophytes, gymnosperms, and angiosperms (Rai
et al., 2000; Sarma et al., 2016).

Several heterocystous cyanobacterial genera such as
Nostoc, Anabaena, Nodularia, Scytonema, Cylindrospermum,
Mastigocladus, Calothrix, Anabaenopsis, Aulosira, Tolypothrix,
Haplosiphon, Camptylonema, Stigonema, Fischerella,
Gloeotrichia, Chlorogloeopsis, Rivularia, Nostochopsis,
Westiellopsis, Wollea, Westiella, Chlorogloea, and
Schytonematopsis have been shown to be efficient N2 fixers
(Venkataraman, 1993). Table 1 contains a list of potential
cyanobacteria which can be used as biofertilizers in agricultural
fields (Vaishampayan et al., 2001). For the first time, Fritsch

TABLE 1 | List of nitrogen-fixing cyanobacteria important for their application in

biofertilizer industry (adapted from Vaishampayan et al., 2001).

Filamentous Unicellular

Heterocystous Non-heterocystous

Anabaena, Anabaenopsis,

Aulosira, Calothrix, Camptylonema,

Chlorogloea, Chlorogloeopsis,

Cylindrospermum, Fischerella,

Gloeotrichia, Haplosiphon,

Mastigocladus, Nodularia, Nostoc,

Nostochopsis, Rivularia,

Scytonema, Scytonematopsis,

Stigonema, Tolypothrix, Westiella,

Westiellopsis, Wollea

Lyngbya, Microcoleus

chthonoplastes,

Myxosarcina,

Oscillatoria, Plectonema

Boryanum,

Pseudoanabaena,

Schizothrix,

Trichodesmium

Aphanothece,

Chroococcidiopsis,

Dermocarpa,

Gloeocapsa,

Myxosarcina,

Pleurocapsa,

Synechococcus,

Xenococcus

(1907) studied the abundance and importance of cyanobacteria
with respect to maintenance of soil fertility of paddy fields
through biological nitrogen fixation, which was afterwards
recognized by several other workers (Singh, 1950; Fogg and
Stewart, 1968; Holm-Hanson, 1968). Generally, for algalization
of the rice fields, mixed cyanobacterial cultures of free-living
forms are used (Venkataraman, 1972; Roger and Kulasooriya,
1980). The water fern Azolla harbors Anabaena azollae in its
fronds and the cyanobacterium releases ammonium into the
water when paddy fields are inoculated with foam-immobilized
A. azollae strains (Kannaiyan et al., 1997). Significant increase
in grain yield, biomass and nutritive value of rice can be
achieved by inoculating Anabaena doliolum and A. fertilissima
in paddy fields with or without urea (Dubey and Rai, 1995).
Several cyanobacterial species such as Anabaena iyengarii
var. tenuis, A. fertilissima, Nostoc commune, N. ellipsosporum,
N. linckia, and Gloeotrichia natans are known to contribute
to the productivity of rice fields in Chile (Pereira et al.,
2009). Generally, application of 12.5 kg ha−1 of cyanobacterial
biofertilizer has been recommended for quantitative and
qualitative improvements in rice production (Dubey and Rai,
1995).

In addition to rice crop, cyanobacterial biofertilizers can
also enhance the yield, shoot/root length, and dry weight of
wheat crops (Spiller and Gunasekaran, 1990; Obreht et al.,
1993; Karthikeyan et al., 2009). Inoculation of soil with
various cyanobacterial strains like Nostoc carneum, N. piscinale,
Anabaena doliolum and A. torulosa results in significantly higher
acetylene reducing activity (Prasanna et al., 2013). Additionally,
the acetylene reducing activity is highest at harvest stage when
wheat fields are inoculated with an Anabaena-Serratia biofilm
along with rock phosphate (Swarnalakshmi et al., 2013). The
cyanobacteria based biofertilizers are cost-effective as they cost
one third to that of chemical fertilizers (Prasanna et al., 2013).
In addition to nitrogen fixation, cyanobacteria also contribute
to mobilization of inorganic phosphates through excretion of
organic acids and extracellular phosphatases (Bose and Nagpal,
1971; Rai and Sharma, 2006). Cyanobacteria solubilize and
mobilize the insoluble organic phosphates and improve the
availability of phosphorus to the crop (Dorich et al., 1985;
Cameron and Julian, 1988). The humus content generated
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after death and decay of cyanobacteria creates strong reducing
condition in soil which improve the soil structure and fertility
(Abdel-Raouf et al., 2012). Different cyanobacterial strains are
known to produce plant growth hormones and siderophores,
and therefore, cyanobacteria can affect the development and
productivity of crops (Rodriguez et al., 2006; Rastogi and
Sinha, 2009). The EPS secreted by cyanobacteria induces
aggregation of soil particles which improve the soil structure
and fertility by enhancing the accumulation of organic content
and water accumulation. These findings collectively support the
importance of cyanobacteria as biofertilizers, and methods have
been developed for their cultivation and utilization in fertilizer
industry (Brouers et al., 1987; Shi and Hall, 1988; Vaishampayan
et al., 2000).

Cyanobacteria in Nutrition and Health
Sector
Cyanobacteria are a well-known non-conventional source of
protein, healthy lipids, minerals, antioxidants, and vitamins
(Pulz and Gross, 2004; Singh et al., 2005; Gantar and Svircev,
2008; Rosenberg et al., 2008). The cyanobacterium Spirulina
(Arthrospira) has been used by the Aztec population as food
supplement for a long time (Pulz and Gross, 2004). The
various strains of Nostoc, Spirulina, and Anabaena are used
as food supplements in Peru, Mexico, Philippines, and Chile.
Cyanobacteria generally have low lipid content but 6–13% lipid
on dry weight basis has been reported in Spirulina (Cohen, 1997).
Spirulina is a good source of rare polyunsaturated fatty acid, i.e.,
gamma-linolenic acid (GLA), which has several pharmaceutical
properties. GLA is 170 times more effective than linoleic acid,
which is the main constituent of majority of polyunsaturated oils
(Huang et al., 1982).

Arthrospira platensis is a best example of non-conventional
source of food supplement which is mass cultivated in outdoor
ponds or bioreactors, and commercially available in the form
of flakes, powder, capsules or pills. It is very nutrient rich,
containing more than 60% of proteins. Arthrospira is a rich
source of thiamine, riboflavin, beta-carotene, and it is also
considered as an excellent whole-food source of vitamin E and
vitamin B12 (Abed et al., 2009). Arthrospira (∼20 g) can provide
the required regular doses of vitamin B12 and 50% of vitamin
B2 (riboflavin), 70% of B1 (thiamine) and 12% of B3 (niacin)
in humans (Switzer, 1981). It also contains a fair amount of
tocopherol (vitamin E), which is almost three times that of pure
wheat germ (Hudson and Karis, 1974). The native population
of the lake Chad region of Africa uses Spirulina (Arthrospira)
as hardened, sun dried mat (Dihé) as a food supplement rich
in proteins, minerals, carotenoids, vitamin E, folate and lipids
containing essential unsaturated fatty acids (Carcea et al., 2015).
Spirulina (Arthrospira) is generally termed as “magic agent”
because of its wide applications as feeds, food, anticancer agent
and cosmetics (Vonshak, 1997). However, Spirulina proteins are
low in methionine, lysine and cysteine contents, and therefore,
inferior to milk or meat protein but it is superior to plant
proteins such as legumes (Ciferri, 1983). Thus, Spirulina could be
utilized as a source of protein and other nutrients in countries

where starvation and malnutrition is the main problem for
human civilization. Spirulina can also be used for feeding hens
because it stimulates egg production with intense yolk color,
while Spirulina-fed fish develop a pink yellow meat of high
commercial value (Sharma et al., 2011). Tilapia fish shows high
growth rates in outdoor and indoor cultures when fed with
marine cyanobacteria (Mitsui et al., 1983). P. valderianum is non-
toxic and possesses high nutritional value, and therefore, it can
be used as a complete aquaculture feeds (Steinberg et al., 1998).
Thus, cyanobacteria can be used as a quality food in aquaculture
and poultry farming which increases the quality and quantity of
products.

Several cyanobacteria such as Anabaena flos-aquae, A. hassali,
Nostoc punctiforme, Phormidium bijugatum, and Microcystis
pulverana are good source of vitamin B-complex, pentothene and
nicotinic acid (Robbins et al., 1951; Koptera, 1970). Similarly,
N. commune is a rich sources of fibers and proteins (Abed
et al., 2009). Additionally, cyanobacteria are source of pigments
such as phycobiliproteins, chlorophyll a, and carotenoids.
Cyanobacteria synthesize UV screening compounds such as
mycosporine-like amino acids and scytonemins which have their
applications in cosmetic and pharmaceutical industry (Rajneesh
et al., 2017). However, several species of cyanobacteria are
known to produce various cyanotoxins such as hepatotoxins,
neurotoxins, cytotoxins, and dermatotoxins, and therefore, care
should be taken when toxin producing cyanobacteria are used
for the production of edible chemicals (Rajneesh et al., 2017).
Cyanobacteria-based diet can be also used in reducing the
cholesterol levels; cyanobacterial diet has been found to reduce
the lipoproteins and cholesterol levels in blood serum of rats
(Nakaya et al., 1988; Hori et al., 1994). Detailed studies suggest
that cyanobacterial feeding increases the lipase enzyme which
helps in lowering of triglycerides (Iwata et al., 1990). The
consumption of cyanobacteriumA. flos-aquae decrease the blood
cholesterol level, stimulate liver functioning and accelerate the
recovery from mild traumatic brain injury (Vlad et al., 1995;
Valencia and Walker, 1999).

The phycobiliproteins produced by cyanobacteria, e.g.,
phycocyanin, phycoerythrin, and allophycocyanin, have several
applications in food, cosmetics, medicine, and diagnostics
industry. Phycocyanin from Spirulina has been used in lipsticks,
eyeliner and eye shadow (Sharma et al., 2011). In Japan,
phycocyanin extracted fromA. platensis is marketed as a colorant
of cosmetics and food (Prasanna et al., 2007). Phycocyanin is
highly stable in the presence of preservatives, high temperature,
and light; however, reluctance in consumption of blue foods has
limited the interest of industries in utilization of phycocyanin
as food colorant (Jespersen et al., 2005; Mishra et al., 2008).
Phycocyanin can be also used as a rich source of protein in
commercially available dietary supplements. Apart from the
nutritional importance, the cyanobacteria also possess anti-
inflammatory, antioxidant, anti-viral, and anti-cancer properties
(Jensen et al., 2001). Several biologically active compounds
have been reported from cyanobacteria (Table 2), which
may contribute to the improved health on consumption of
cyanobacteria based diet, and furthermore, these compounds
can be also used in the development of new drugs (Rajneesh
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TABLE 2 | Cyanobacterial metabolites of pharmacological and biotechnological importance (Source: Rajneesh et al., 2017).

Antibacterial Antifungal Anticancerous Antiviral Antimalarial

Abietane diterpenes,

Ambiguines,

Bastadin,

Bis-(v-butyrolactones), Hapalindole,

Didehydromirabazole, Nostocine A,

Muscoride,

Noscomin,

Tolyporphin

Anhydrohapaloxindole,

Fischerllin,

Majusculamide A–D,

Tanikolide

Acutiphycin, Ankaraholide A,

Aplysiatoxin, Apratoxins,

Arenastatin A, Aurilide,

Bisebromoamide, Biselyngbyaside,

Borophycin, Calothrixins A, B,

Carmabin A, B, Caylobolide,

Cocosamides B, Coibamide,

C-phycocyanin, Cryptophycins,

Curacin A, Hoiamide,

Dragonamide C, D, Dolastatins,

Diacylglycerols, Homodolastatin 16,

Isomalyngamide, Kalkitoxin,

Jamaicamides, Lagunamide,

Largazole, Lyngbyabellin B,

Majusculamide, Malevamide,

Malyngamide 3, Obyanamide,

Palauamide, Symplocamide A

Symplostatin 3, Tasiamide,

Tasipeptins, Tjipanazoles,

Ulongapeptin, Veraguamides,

Wewakpeptins

Bauerines A–C,

Calcium spirulan,

Cyanovirin,

Scytovirin, Sulfoglycolipid,

Sulfolipids

Calothrixins A,B,

Carmabin A,B,

Dragonamide A, B,

Dragomabin, Dolastatins,

Nostocarboline, Symplocamide A,

Venturamide A, B

et al., 2017). The consumption of cyanobacterial diet increases
the level of IgA in serum, and therefore, cyanobacterial diet can
boost our immune system to fight against different allergens
(Hayashi et al., 1998). Therefore, cyanobacterial consumption
may help in reducing allergies, chronic inflammatory conditions,
autoimmune diseases and diseases involving a suppressed
immune system.

MASS CULTIVATION OF CYANOBACTERIA

Cyanobacterial biomass can complement agricultural crops for
the production of food, feeds, fuels, and chemicals. However,
production of biomass at large scale is required for the
application of cyanobacteria in above mentioned purposes.
Cyanobacterial cultivation does not compete for resources
with agricultural crops, and moreover, they have better aerial
productivity than plants (Dismukes et al., 2008; Cañedo and
Lizárraga, 2016; Ooms et al., 2016). Genetic modification of
cyanobacteria and their usefulness have been studied mainly
in the laboratory; however, for commercial production, the
process needs to be standardized and applied outdoors. The
idea of high-rate (non-nutrient limited) large-scale (>50 L)
cultivation of cyanobacteria and microalgae was proposed in
early 1950s (Cook, 1951). The recent demand of cyanobacteria
and other microalgae in bioenergy, food, and valuable chemicals
production sector has necessitated their large-scale cultivation.
However, economic sustainability is the most critical factor
which determines the success of large scale biomass production
and its downstream processing for the production of different
commercial products (Figure 2). Light, pH, temperature, carbon
dioxide, and nutrient supplements are the five critical abiotic
parameters which determine the success of any growth system
designed for autotrophic growth of photosynthetic organisms
(Pulz, 2001; Flynn et al., 2010). However, tremendous expertise

and resources are required to manage all these closely linked
factors. Therefore, only few cyanobacteria andmicroalgae such as
Arthrospira, Chlorella, Haematococcus, and Dunaliella have been
cultivated on large scale as economically and commercially viable
crops (Rosenberg et al., 2008).

Cyanobacterial cultivation requires a source of light, essential
nutrients such as C, N, P, S, K, Fe, etc., and water. Commercial
production of photosynthetic microorganisms can be achieved in
different ways (Figure 3):

(1) Cultivation using sunlight in open systems
(2) Cultivation using sunlight in closed systems
(3) Cultivation using artificial light in closed systems

The above mentioned systems have both positives and negatives
which are discussed in the following section, however, the
preference of system depends on the value of the product and
the extent of control over various parameters required for the
production. Supplying light to culture constitutes a common
limitation to all these systems; however, light limitation can
be overcome by increasing the surface area of the system to
maximize the light absorption.

Cultivation Using Sunlight in Open Systems
Several designs of sunlight dependent open cultivation systems
have been proposed and constructed (Oswald, 1988; Chaumont,
1993; Pushparaj et al., 1997). Generally, the raceway or circular
type shallow open ponds are used for mass cultivation of
cyanobacteria and microalgae (Cañedo and Lizárraga, 2016).
These systems are usually large raceways or open ponds
where natural light is the source of energy (Figure 3A). The
most advantageous aspect of this system is that the source
of light, i.e., solar radiation is free of cost. However, several
major disadvantages compensate this advantage and limit the
overall biomass production. Contamination by algae, grazers and

Frontiers in Environmental Science | www.frontiersin.org 7 February 2018 | Volume 6 | Article 7

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Pathak et al. Cyanobacterial Farming for Sustainable Agriculture

FIGURE 2 | Simplified outline for large-scale cultivation of microalgae. Photosynthetic microorganisms can be cultivated by providing nutrients, light, carbon dioxide,

and water using different cultivation systems under controlled pH and temperature conditions. After mass cultivation, biomass is harvested for downstream processing.

FIGURE 3 | Different cultivation systems for large-scale production of algal biomass. (A) Open raceway pond system using natural solar light as a source of energy;

(B) Closed system using natural solar light as a source of energy; (C) Closed system using artificial light as a source of energy.

other microorganisms in open systems is unpreventable which
compromise the net productivity. However, contamination
problems could be avoided for organisms requiring unique
growth conditions which generally prevent the growth of other
organisms, however, this strategy limits the application of open
systems for cultivation of only selected organisms (Costa et al.,
2006; De Morais and Costa, 2007; Ugwu et al., 2008).

The outdoor open cultivation systems are also subject to
diurnal fluctuation of different environmental conditions such
as quality and quantity of light, temperature, evaporation, and
rain, which significantly control the productivity and survival
of the system. Apart from these limitations, open cultivation
systems have been proven successful for the production of
specific biomaterials producing tons of dried biomass (Lee,
1997). For example Spirulina has been extensively cultivated in

Mexico, USA, China, and Thailand using open system due to its
abovementioned unique growth requirement (Li and Qi, 1997;
Vonshak, 1997).

Cultivation Using Sunlight in Closed
System
Several cultivation systems have been designed which are closed
and utilize solar radiation as a source of energy (Qiang and
Richmond, 1994; Spektorova et al., 1997; Grima et al., 1999). In
these systems, transparent material made up of plastic or glass is
used for making vessels which are placed outdoors in the natural
light for illumination (Figure 3B) (Khatoon and Pal, 2015). The
cost of these systems is increased significantly by application of
transparent materials but the closed system helps in preventing
contamination of grazers and competitors. Such systems are
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designed in a manner which provides a higher surface to volume
ratio, and therefore, cell densities obtained are often higher than
in open systems (Carvalho et al., 2006).

Outdoor systems are subjected to aforementioned abiotic
factors that may affect the reproducibility of their outcome.
Additionally, the removal of photosynthetically produced oxygen
and maintenance of optimum temperature are other factors
which need to be critically observed in closed systems. These
factors, if not maintained optimally, can cause a sudden crash
of cultures. Techniques have been developed to maintain these
parameters; however, the associated costs usually offset the cost
advantage of using natural sunlight (Khatoon and Pal, 2015).

Cultivation Using Artificial Light in Closed
System
Several designs have been developed for closed (indoor)
cultivation of photosynthetic microorganisms which utilize
artificial light as source of energy (Ratchford and Fallowfield,
1992; Wohlgeschaffen et al., 1992; Lee and Palsson, 1994).
These designs/vessels are similar to conventional fermenters
in principle and are referred to as photobioreactors; however,
these photobioreactors are driven by light unlike the fermenters,
which are driven by an organic carbon source (Figure 3C). These
photobioreactors empower real-time control and optimization
of culture parameters using software, and therefore, could be
suitable for the cultivation of various organisms (Ratchford and
Fallowfield, 1992).

The cost of photobioreactor-based biomass production
increases significantly in comparison to outdoor systems due
to utilization of plastic or glass material in making the vessel
and power consumption. However, the cost can be offset by
the production of high quality and quantity biomass using
these systems. Photobioreactors serve as an important tool
for the production of high-value products such as stable-
isotope-labeled biochemicals (Apt and Behrens, 1999). These
systems are also ideal for the cultivation of genetically modified
organisms because their release in the environment from closed
photobioreactors is limited but not guaranteed. Therefore,
analysis of the associated risks of spreading of genetically
modified organism into the surrounding is suggested before
starting a large-scale production.

CONCLUSIONS AND FUTURE
DIRECTIONS

Cyanobacterial farming can help in developing sustainable
agricultural practice by the generation of biomass that can
be used for the sustainable production of bioenergy, food
supplements, nutraceuticals, biofertilizers, and feeds for
aquaculture and poultry. In addition, cyanobacterial farming
can significantly lower the atmospheric CO2, and therefore,
helps in controlling the problems associated with global climate
change. The successful utilization of cyanobacterial species or
other microalga for the development of sustainable agricultural
practices requires their large scale cultivation. The raceway

pond and photobioreactors systems have been devised for large
scale biomass production, however, cyanobacterial farming
using abovementioned systems requires very high amount
of investment in the form of capital and operational costs.
Therefore, third farming system, i.e., hybrid system, involving
both raceway and photobioreactor system, are recommended
which significantly reduce the capital and operational costs
of farming (Bravo-Fritz et al., 2016). The cost associated with
cyanobacterial/microalgal farming is still so high that any
venture will have negative net profitability considering the
current scenario of capital and operational costs required for the
establishment of biorefinery (Bravo-Fritz et al., 2016). Therefore,
the cost associated with farming needs to be significantly reduced
for net profitability and success of any venture. The economic
studies conducted so far have focused only on selected species,
and therefore, further economic profitability modeling with a
large number of new species is needed. The production cost of
photobioreactors is an important area of concern, and attention
is required to cut the price to reduce the cost of commodities
production.

The reduction in production cost and positive net profitability
can be also achieved by production of several commodities and
complete utilization of biomass without producing any waste
(Bravo-Fritz et al., 2016; Rajneesh et al., 2017). For example,
protein extraction before the production of bioenergy has
shown the positive net profitability of biorefinery (Bravo-Fritz
et al., 2016). Therefore, different aforementioned sustainable
services from cyanobacteria can be combined with each other
to reduce the waste which could help in reaching a positive
net profitability by producing several valuable commodities.
The harvesting of organisms from a large volume of water
is another challenge that cost enormously to and negatively
affect the profitability. The biomass composition of an alga,
i.e., percentage of proteins, lipids and carbohydrates, also
affects the profitability of the bioenergy business, and therefore,
farming of species with high lipid and low protein contents is
recommended for the profitability of bioenergy industry (Bravo-
Fritz et al., 2016). The requirement of water and nutrients
are other major challenges for economic profitability of large
scale cyanobacterial farming, however, bioremediation property
of cyanobacteria can be exploited to lower the expenditure
on water and nutrients. Cyanobacterial farming needs to be
optimized using wastewater at small scale before going to large
scale cultivation. Outdoor open cultivation of cyanobacteria
is challenged by fluctuating environmental conditions and
contamination, which collectively result in lower biomass
production and pose a threat to economic viability. Abiotic
stresses mainly light quality and quantity, temperature, pH,
salinity, availability of nutrients, and CO2, and biotic factors
such as grazers and other biological contamination controls
the biomass production. Therefore, cyanobacterial species need
to be identified which can sustain fluctuating environmental
conditions and can give consistent and economically viable
amounts of biomass throughout the year for various applications.
Efforts are also needed to improve the fitness of already known
species under various environmental stresses which will enhance
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the biomass production and profitability of cyanobacterial
farming.
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