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For decades, the development of new visualization techniques has brought incredible

insights into our understanding of how soil structure affects soil function. X-ray

microtomography is a technique often used by soil scientists but challenges remain

with the implementation of the procedure, including how well the samples represent

the uniqueness of the pore network and structure and the systemic compromise

between sample size and resolution. We, therefore, chose to study soil samples

from two perspectives: a macroscopic scale with hydrodynamic characterization

and a microscopic scale with structural characterization through the use of X-ray

microtomography (X-ray µCT) at a voxel size of 21.53 µm3 (resampled at 433 µm3). The

objective of this paper is to unravel the relationships between macroscopic soil properties

and microscopic soil structure. The 24 samples came from an agricultural field (Cutanic

Luvisol) and themacroscopic hydrodynamic properties were determined using laboratory

measurements of the saturated hydraulic conductivity (Ks), air permeability (ka), and

retention curves (SWRC). The X-ray µCT images were segmented using a global method

and multiple microscopic measurements were calculated. We used Bayesian statistics

to report the credible correlation coefficients and linear regressions models between

macro- and microscopic measurements. Due to the small voxel size, we observed

unprecedented relationships, such as positive correlations between log(Ks) and a µCT

global connectivity indicator, the fractal dimension of the µCT images or the µCT degree

of anisotropy. The air permeability measured at a water matric potential of −70 kPa was

correlated to the average coordination number and the X-ray µCT porosity, but was best

explained by the average pore volume of the smallest pores. Continuous SWRC were

better predicted near saturation when the pore-size distributions calculated on the X-ray

µCT images were used as model input. We also showed a link between pores of different

sizes. Identifying the key geometrical indicators that induce soil hydrodynamic behavior

is of major interest for the generation of phenomenological pore network models. These

models are useful to test physical equations of fluid transport that ultimately depend on

a multitude of processes, and induce numerous biological processes.

Keywords: soil, X-ray micro-computed tomography, saturated hydraulic conductivity, soil water retention curve,

air permeability, Bayesian statistics

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2018.00020
http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2018.00020&domain=pdf&date_stamp=2018-04-23
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sarah.smet@uliege.be
https://doi.org/10.3389/fenvs.2018.00020
https://www.frontiersin.org/articles/10.3389/fenvs.2018.00020/full
http://loop.frontiersin.org/people/476913/overview
http://loop.frontiersin.org/people/522614/overview
http://loop.frontiersin.org/people/550530/overview
http://loop.frontiersin.org/people/477154/overview


Smet et al. Soil: Hydrodynamics vs. Pore Scale Geometry

INTRODUCTION

The development of visualization techniques has played a major
role in fully describing soil functions. Serial sectioning, a well-
established method (Cousin et al., 1996), has been replaced
by replaced by 3D non-destructive visualization techniques are
becoming more easily available, with added benefit of less time-
consuming procedures that provide higher resolution images
(Grevers et al., 1989). However, Roose et al. (2016) have wisely
said, “Technological advances alone are not sufficient. Real
advances in our understanding will only be achieved if these
data can be integrated, correlated, and used to parameterize and
validate image based and mechanistic models.” X-ray micro-
computed tomography (X-ray µCT) has been widely used in
soil science making comparisons between studies possible. (Taina
et al., 2008) and Wildenschild and Sheppard (2013) discuss the
use of X-ray µCT to study the vadose zone. We also will mention
the visual analysis of the air and water distributions within pore
spaces, which are both important physical variables for activity
of soil biota (e.g., Young et al., 1998; Or et al., 2007; Falconer
et al., 2012; Monga et al., 2014; Vogel et al., 2015). One approach
is to visualize the soil at high resolution to identify hot-spots of
microbial activity (e.g., Gutiérrez Castorena et al., 2016), simulate
air-water interfaces within the pore network (e.g., Pot et al., 2015)
or quantify the impact of the pore network architecture on the
microorganism’s activity (e.g., Kravchenko and Guber, 2017).
Another approach is to provide a more specific description of
the fluid transport capacities (Vogel et al., 2015) which could
ultimately improve field-scale models of microbial activity and
biochemical processes (Blagodatsky and Smith, 2012). De facto,
when dealing with agricultural and environmental properties of
the soil, an accurate description and prediction of its transport
capacities in the unsaturated state is the overarching goal.

It is well-known that, due to natural or anthropogenic actions,
there is quite a range in the variability in fluid transport
parameters [e.g., saturated hydraulic conductivity (Ks) or air
permeability (ka)] between samples with homogenous textures
(Baveye and Laba, 2015; Naveed et al., 2016), due to the
uniqueness of the porosity distribution and the connectivity
within a sample. Studies have, therefore, focused on the
link between the inner pore space structure of a sample
and its specific fluid transport properties. On one hand,
experimentally visualized infiltration studies shed light on the
effective conducting pore network which represents only a small
portion of the total network (Luo et al., 2008; Koestel and Larsbo,
2014; Sammartino et al., 2015). The procedures developed in
these studies are promising, but restricted to the analysis of
large macropores because of the trade-off between resolution and
acquisition time. On the other hand, numerical simulations based
on pore space are used to predict conductivity. Many studies
focused on idealized porous structures (e.g., Vogel et al., 2005;
Schaap et al., 2007) and a few deal with actual soil (Elliot et al.,

Abbreviations: h, water matric potential; θ, water content; SWRC, soil water
retention curve; Ks, saturated hydraulic conductivity; ka, air permeability; LabPO,
laboratory measured air-filled porosity at a water matrix potential of 1 kPa; BF,
Bayes factor. The rest of the uncommon abbreviations are defined in Table 1.

2010; Dal Ferro et al., 2015; Tracy et al., 2015). The latter show
encouraging results, but are restricted to a defined resolution
and/or sample size (Baveye et al., 2017). Indeed, the direct
approach of linking one structure to one function is limited by
the difficulty in analyzing the structure in a representative way, so
that the soil is adequately characterized (Vogel et al., 2010). The
description of soil microscopic structure via global characteristics
could encompass that challenge and comparisons of one soil
microscopic structure to its own macroscopic properties have
indeed gained attention.

Luo et al. (2010) were among the first to measure Ks and
the break through curve characteristics on soil samples that
were also scanned with X-ray µCT and analyzed in 3D (16 soil
cores of 5 × 6 cm and 10.2 × 35 cm and voxel sizes ranging
from 250² × 1,000 µm3 to 1² × 10 mm3). They found that
µCT macroporosity, the number of independent macropore,
macropore hydraulic radius and angle were identified as the most
important microscopic characteristics to explain fluid transport.
From 18 soils cores (10 × 9 cm) scanned at a voxel size of 1863

µm3 and 17 soil cores (19 × 20 cm) scanned at 430² × 600
µm3, respectively, Naveed et al. (2012) and Katuwal et al. (2015b)
found that the lowest µCT macroporosity value for any quarter
length of sample height adequately explained air permeability
(ka) measured at a water matric potential (h) of −3 or −2 kPa,
respectively. Paradelo et al. (2016) showed that the minimum
value of macroporosity along a sample depth was most correlated
to Ks and ka (45 soil cores of 20× 20 cm and voxel size of 430²×
600µm3). Mossadeghi-Björklund et al. (2016) also demonstrated
that Ks was significantly correlated toµCTmacroporosity within
a compaction experiment (32 soils cores of 20 × 20 cm and
voxels size of 430² × 600µm). Eventually, Naveed et al. (2016)
suggested that biopore-dominated and matrix-dominated flow
soil cores should be distinguished before analyzing relationships
between microscopic and macroscopic soil properties. They
indeed found distinct significant power regressions between Ks
or ka (measured at h=−3 and−0 kPa) and µCTmacroporosity
for the two categories of the 65 soil cores (6 × 3.5 cm and voxel
size of 1293 µm3). These observed relationships between flow
parameters and µCT porosity are actually intuitive, but they
depend on image resolution, water matric potential and soil type.
For example, Lamandé et al. (2013) did not find the expected
relationship between µCT porosity and ka measured at h =

−10 kPa, but rather a linear positive relationship between the
number of pores and ka (32 soil cores of 19 × 20 cm and voxel
size of 6003 µm3). Finally, Anderson (2014) found that Ks could
reasonably be estimated from the µCT number of pores and the
µCT macroporosity fractal dimension (336 soil cores of 7.62 ×

7.62 cm and voxel size of 0.19²× 0.5 µm3).
The µCT porosity, number of pores, average pore radius,

surface area, and pore network connectivity and tortuosity all
depend on the minimal visible pore size, in other words, on the
resolution of the binary X-ray µCT images used to obtain the
pore network (Houston et al., 2013; Peng et al., 2014; Shah et al.,
2016), additionnaly, useful information about conducting pores
is lost with increased voxel size. One strategy to minimize this
limitation is to use grayscale information. Crestana et al. (1985)
demonstrated a linear dependence between the gray value of the
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soil matrix in Hounsfield unit (HU) and the soil water content.
More recently, Katuwal et al. (2015a) found the CT number of the
soil matrix (average grayscale value in HU) as a useful descriptor
for determining the magnitude of preferential flow, and Paradelo
et al. (2016) showed that global macroporosity values combined
with the CT-matrix number best explained the variation in air
and water transport parameters. Another strategy would be to
scan soil samples at higher resolutions. For example, Sandin
et al. (2017) worked at a voxel size of 1203 µm3 and observed
significant correlations between Ks and a global measure of the
pore network connectivity (from the percolation theory) which
had, to our knowledge, never been observed (20 soil samples
of 6.8 × 10 cm). Pore network connectivity and tortuosity are
important indicators of flow capacities (Perret et al., 1999; Vogel,
2000). There is still a lack of information on the links between
global pore network complexity indicators and flow parameters.
It is indeed challenging to identify and describe the part of the
conducting pore network that dominates flow. We, however,
hypothesize that it might come from the resolution at which
previous studies were performed.

Within that context, the objectives of this study are to:
(i) characterize the microscopic structure of twenty-four soil
samples at a resolution of 21.5µm resampled to 43µm; and (ii)
explore the relationships between soil microscopic characteristics
and its saturated hydraulic conductivity, air permeability and
retention capacities using Bayesian statistics.

MATERIALS AND METHODS

Soil Sampling
Twenty-four vertical undisturbed soil samples (3 cm in diameter
and 5 cm in height) were taken at the surface of an agricultural
soil in Gembloux, Belgium (50◦33′N, 4◦42′E). According to the
WRB soil system (2006), this soil is classified as a Cutanic Luvisol
with an average of 14.3% of clay, 78.3% of silt and 7.4% of
sand. This type of soil is representative of the intensive central
agricultural area in Belgium. Sampling was performed 24 to 48 h
after a rain. In order to minimize sampling disturbance, the
plastic cylinders were manually driven into the soil until the
top of the cylinder was at the surface level and then manually
excavated.

Macroscopic Measurements
Soil samples were first upward saturated with distilled water.
Their characteristic soil water retention curve (SRWC) was
then measured using pressure plates (Richards, 1948; DIN
ISO 11274, 2012). After being weighed at a water matric
potential of −7, −10, −30 and −70 kPa, the air permeability
of the samples was measured by applying an air flow across
the sample and measuring the resulting inner-pressure with
an Eijkelkamp air permeameter 08.65 (Eijkelkamp Agrisearch
Equipment, Giesbeek, The Netherlands). As recommended by
the constructor, each measure was repeated five times and kept
as short as possible. Corey’s law was then applied to calculate
the air permeability [L²] (Corey, 1986 in Olson et al., 2001).
At −70 kPa, the soil samples were scanned using an X-ray
microtomograph (see next section) before the end of their SWRC

was measured (water matric potential of−100,−500, and−1500
kPa). After reaching −1,500 kPa, the soil samples were saturated
once again and the saturated hydraulic conductivity (Ks [LT−1])
was measured using a constant head device (Rowell, 1994) and
applying Darcy’s law. Finally, the soil samples were oven-dried at
105◦ for 7 days to obtain their dry weight. Porosity [L3L−3] was
calculated as the ratio between the volume of water within the
saturated soil sample and its total volume (McKenzie et al., 2002).
From McKenzie et al. (2002), the bulk density (BD) [ML−3] was
deduced from the porosity value (PO) assuming a particle density
of 2.65 g/cm3.

Microscopic Measurements
Image Acquisition
After reaching a water matric potential of −70 kPa, the soil
samples were scanned using a Skyscan-1172 desktop micro-
CT system (Bruker microCT, Kontich, Belgium). The choice of
scanning parameters (filters, number of projections, 180 or 360◦,
projection averaging) was made by evaluating reconstruction
quality over acquisition time. The X-ray source was set at 100 kV
and 100 µA and an aluminum-copper filter was used to reduce
the beam hardening artifacts in the reconstruction. The rotation
step was set at 0.3◦ over 180◦ and, to improve the signal-to-noise
ratio, the average of 2 projections was recorded at each rotation
step. The exposure time was 600ms. The field of view was 21
× 14mm and, to cover the entire sample, a 2 × 4 grid of sub-
regions were scanned (in the Skyscan software this corresponds
to using both the “wide image” mode and “oversize scan” mode).
Given these parameters, the total acquisition time was ∼4 h. We
adjusted the detector configuration (16-bit X-ray camera with
4 × 4 binning, creating 1000 × 666 pixel radiograms) and the
distance between the camera and the soil sample in order to
obtain radiographs with a pixel size of 21.5µm.

Image Processing
Tomographic reconstruction was performed with the NRecon R©

software, freely provided by Brüker. Automatic misalignment
compensation was used along with a level 7 (out of 20) ring
artifact correction. No beam hardening post-corrections were
applied. The lower limit for the histogram grayscale range was
set at zero, as recommended by Tarplee and Corps (2008). The
upper limit, the same for all samples, was the maximum value
between the automatically generated upper limit for each sample.
After reconstructions, the 3D images were cropped to only select
the volume within the sampling cylinders (radius of 700 pixels)
and the image’s contrast was improved in Matlab (MathWorks,
UK).

Prior to segmentation, a 3D median filter with a radius of
2 pixels was applied to the images to decrease noise (Smet
et al., 2017). Because of computational cost, sub-sampling was
performed and the final voxel size was 43µm in all directions.
This process follows recommendation fromHouston et al. (2013)
and Shah et al. (2016), which is to scan a sample at the highest
possible resolution even if a post-scan coarsening is necessary.
We then applied the global porosity-based segmentation method
developed by Beckers et al. (2014b). To that purpose, we firstly
calculated the potential maximal visible pore size from capillary
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law and voxel size information (433µm3). Then, from the
laboratory SWRC data, the potential visible porosity for each
soil samples was obtained; it was the air-filled porosity at h
= −1 kPa (equivalent radius of 150µm). The porosity-based
segmentation method selects an initial global threshold with
Otsu’s method (Otsu, 1979), and then compares the porosity of
the resulting binary image (ratio of pore voxels over the total
amount of voxels) to the estimated soil sample visible porosity.
Through an iterative loop, the threshold is then adjusted to
minimize the difference between this calculated porosity and
the estimated soil sample visible-porosity. This method has been
proven satisfactory (Beckers et al., 2014b; Smet et al., 2017)
and the Matlab R2015a (MathWorks, UK) code was provided
by the authors. Finally, a visual inspection was performed to
evaluate the segmentation quality and, in case the porosity-based
segmentation method failed, Otsu’s segmentation was used. A
post-segmentation cleanup was applied to remove any pores
smaller than five voxels.

Quantification of Soil Microscopic Features
After segmentation, the images were imported into Avizo where
codes developed by Plougonven (2009) were used. Those codes
provide a 3D morphological quantification of the pores based
on the skeleton where a pore is defined as “part of the
pore space, homotopic to a ball, bounded by the solid, and
connected to other pores by throats of minimal surface area”
(Plougonven, 2009), the pore boundaries are demarcated by
the local geometry. The resulting 3D quantification information
regarding pores chambers connected by pores throats included
pore localization, volumes, specific surface, connected surfaces,
number of connections, deformation and inertia tensor. From
those data, we calculated several microscopic parameters
(Table 1) as well as the pore-size distribution with radius
calculated from the assumption that pores were elliptic cylinders
(Beckers et al., 2014a). After morphological processing in Avizo,
we imported the binary images in ImageJ (Schneider et al., 2012)
where the BoneJ plugin (Doube et al., 2010) functionalities were
used; all the measurements into ImageJ were performed in 3D.
The skeletonisation tool was used to find the pore’s centerline
and extract a skeleton made of branches that are connected
by junctions. It was achieved by external erosion with a 3D
medial axis thinning algorithm. All the calculated microscopic
parameters presented in Table 1 are commonly used in studies
regarding the use of X-ray in soil science. We calculated the large
porosity (Large_PO) in order to be comparable to the results
discussed in the introduction of this paper where the voxel size
was∼10 times larger.

3D Visualization
In order to obtain clear 3D representations, all 24 soil X-ray µCT
images were subjected to the following process: any pore that was
not part of the largest connected component was removed using
theMorphoLib plugin (Legland et al., 2016) in ImageJ (Schneider
et al., 2012), a cylindrical region of interest of 295 pixels in radius
was then used to remove the edge effects caused by sampling with
the initial height going unchanged. Visualization was performed

using the 3DViewer plugin (Schmid et al., 2010) in ImageJ
(Schneider et al., 2012).

Results Analysis
Basic descriptive statistics were performed on the macroscopic
and microscopic data. The correlation coefficients (ρ) between
the different microscopic parameters were then calculated
using Bayesian statistics (see next section) to account for
data uncertainty. Then, Bayesian correlation coefficients were
calculated between relevant microscopic and macroscopic
measurements as well as Bayesian linear regression models.
Before implementation, the data were randomly split into
calibration (18 soil samples) and validation (6 soil samples) sets.
To that purpose, a number was assigned to each of the 24 soil
samples and six numbers were randomly picked. Therefore, the
soil samples have a sequential numbering. The calibration set
includes samples from #1 to #18 and the validation set from #19
to #24.

Bayesian Statistics for Correlation and Linear

Regression
When a linear relationship was visually assumed between two
variables, the correlation coefficient between those two variables
was calculated using Bayesian statistics. In Bayesian statistics a
probability is assigned to a model [P(observations|model)] rather
than to an observation, as in frequentist statistics. From the
observations, the models (the prior) are updated to posterior
distributions [P(model|observations)] and the uncertainty of
the statistic description is expressed in a probabilistic way
through the posterior distributions parameters. We refer to
Marin and Robert (2007) for more information about Bayesian
statistics. In this study, we used the package “BayesMed” (Nuijten
et al., 2015) in R (R Core Team, 2015), which computes a
Bayesian correlation test, the null hypothesis (H0) being that the
correlation coefficient is null. The correlation test is based on a
linear regression between two variables with a Jeffreys-Zellner-
Siow (JZS) prior as a mixture of g-priors (Liang et al., 2008;
Wetzels and Wagenmakers, 2012). The correlation coefficient is
extracted from the posterior variance matrix. We computed the
test without expectation about the direction of the correlation
effect (Wagenmakers et al., 2016). The credibility of the test is
assumed by comparing the marginal likelihoods of the regression
model to the same regression model without the explaining
variable (Bayes Factor, BF), which quantify the evidence for one
or the other hypothesis. Another advantage of using the Bayesian
approach is the possibility of quantifying the evidence for the null
hypothesis (Wetzels and Wagenmakers, 2012). Non-significant
tests in frequentist statistics are interpreted in favor of the null
hypothesis although the result could be induced by a noisy data
set. Therefore, because the posterior distributions are updated
from the observations, the conclusion of the test will not depend
on the number of observations and it is possible to recalculate BF
as the observations are logged-in and stop the collect when the
evidence is compelling. Adapted from Jeffreys (1961) in Wetzels
and Wagenmakers (2012), BF’s larger than 100 were interpreted
as decisive evidence for H1; BF’s between 30 and 100 as a very
strong evidence for H1, BF’s between 10 and 30 as a strong
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TABLE 1 | Calculated microscopic parameters on the X-ray µCT images and their definition.

Microscopic parameter (abbreviation, metric) Definition

Avizo Porosity (µCT_PO, %) Ratio of pore voxels over the total amount of voxels

Large porosity (Macro_PO,%) Part of the porosity composed by pores of at least 1,000 voxels

Number of pores (NP, –) Total number of pores

Averaged pore volume (Avg_vol, mm3 ) Ratio of the total volume of pores over the number of pores

Averaged pore volume of the biggest pores

(Avg_Bvol, mm3 )

The biggest pores are the ones that account for 90% of the pores volumes by only representing 10% of

the number of pores

Averaged pore volume of the smallest pores

(Avg_Svol, mm3 )

The smallest pores are the ones that account for 10% of the pores volumes by representing 90% of the

number of pores

Proportion of isolated pores (IP, %) Ratio of the number of pores that have no connection over the total number of pores

Proportion of isolated porosity (IPO, %) Ratio of the isolated porosity over the total porosity

Averaged coordination number(Avg_Z, –) The average of Z, which is the number of connections at one point (Perret et al., 1999), of the connected

pores

Averaged surface connectivity (SC, L−1) The average of sc which is sc = Nc * Ac / Vp, where Nc is the number of connections, Ac the mean

surface area of the connections (L²) and Vp the pore volume (L3)

Total surface connected (Con_surf, mm²) The sum of each pore’s connected surface

Specific surface (SS, m−1) Sum of the specific surface of each pore which is the ratio of the pore surface area over its volume

Av. + IJ Global connectivity (Ŵ, –) The sum of each pore’s volume squared divided by the total volume of pores. It measures the probability

that two pores voxel are part of the same pore (Renard and Allard, 2013).

Image J Total length of the pore network (L, m) After skeletonization, it is the sum of all the branches length

Total nomber of branches (B, –) After skeletonization

Total number of junctions (J, –) After skeletonization

Degree of connectivity (B/J, –) Ratio of the number of branches over the number of junctions. As negative is the ratio, as connected

should be the medium

Global tortuosity (τ , m−1) The geometric tortuosity between two points is the ratio between the effective pore path and the

shortest distance between the two extreme points (Perret et al., 1999). We calculated the global

tortuosity (τ ) of the pore network as the average of the tortuosity of each branch

Fractal dimension (FD, –) FD was calculated with a box-counting algorithm (Perret et al., 2003)

Degree of anisotropy (DA, –) The value of DA is between 0 and 1, 0 for an isotropic medium. DA was calculated with the mean

intercept length method (Harrigan and Mann, 1984)

Euler number (ε, –) The Euler number is a quantification of the connectivity. Originaly calculated as ε =N-L+O, where N is

the number of isolated objects; L is the number of redundant connections and O the number of cavities

or holes (Vogel et al., 2010). As negative is the Euler number, as connected is the medium

Lowest Euler number (Min_ε, –) The Euler number of the largest connected component of the pore network

evidence for H1, BF’s between 3 and 10 as a substantial evidence
for H1 and BF’s below 3 as an anecdotal evidence for H1. The
values of BF’s that were inferior to one (1/100; 1/30; 1/10; 1/3)
were interpreted in the same way as the BF values superior to
one, the evidence going for H0.

We also established a Bayesian linear regression design
to extract relationships between micro- and macroscopic
measurements. All combinations between Y and X1 + X2 were
tested and regression models were compared against the same
models without the explaining variable (BF). The variables
priors were JZS prior as a mixture of g-priors (Liang et al.,
2008). We used the “BayesFactor” package (Morey and Rouder,
2015) in R (R Core Team, 2015), the autocorrelation and the
convergence were verified. In Bayesian statistics, the starting
point is not to identify the best regression equation but rather
evaluate the unknown values of the equation explaining variables
and intercept. We did it through the quantification of the 2.5
and 97.5% quantiles. The regression equations are reported in
the Supplementary Materials section. Afterwards, we aimed at

predicting the validation data points through the use of the slopes
and intercepts posterior mean. The relative root mean square
errors (RRMSE) were calculated as follows:

RRMSE =

√

√

√

√

1

n

n
∑

i=1

(

di − Di

Di

)2

(1)

Where n is the number of data points, di is the predicted data
point and Di the observed data point.

RESULTS AND DISCUSSIONS

Macroscopic Measurements
The agricultural soil we studied showed large variations between
samples with porosity values ranging from 43.09 to 57.70% and
density from 1.12 to 1.51 g/cm3. Table 2 presents the maximum,
minimum, and average values as well as the associated standard
deviations of the logarithmic saturated hydraulic conductivities
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TABLE 2 | Logarithmic saturated hydraulic conductivities (Ks, cm/day) and air

permeability (ka, µm²) measured after applying a draining pressure of −4, −7,

−10, −30, and −70 kPa for the calibration and validation data sets [minimum

values (Min), maximum values (Max), mean values (Mean), and standard deviation

(St dev)].

[cm/d] log [µm²]

log(Ks) ka(−4 kPa) ka(−7 kPa) ka(−10 kPa) ka(– 30 kPa) ka(−70 kPa)

CALIBRATION DATA SET

Max 1.591 2.920 3.076 2.992 3.235 3.231

Min 0.443 0.059 0.017 0.095 0.418 0.936

Mean 1.015 1.681 1.735 1.916 2.164 2.318

St error 0.149 0.505 0.478 0.478 0.603 0.400

VALIDATION DATA SET

Max 1.709 1.773 2.532 2.718 2.837 3.217

Min 0.352 0.395 −0.051 0.581 1.077 0.402

Mean 1.149 1.132 1.018 1.601 1.852 1.885

St error 0.400 0.801 1.028 1.013 0.893 0.891

ALL DATA

Max 1.709 2.920 3.076 2.992 3.235 3.231

Min 0.352 0.059 −0.051 0.095 0.418 0.402

Mean 1.049 1.584 1.572 1.853 2.086 2.220

St error 0.147 0.443 0.445 0.424 0.496 0.376

[Ks (cm/day)] and air permeabilitys [ka (µm²)]. As expected,
the range of Ks and ka values is large due to the singular
nature of pore network organization and the resulting transfer
properties. For all studied soil samples, we observed a power-law
type relationship between ka and the associated air-filled porosity
measured from the SWRC (e.g., Ball and Schjønning, 2002).
There was, however, no linear relationship between log(Ks) and
log(ka) as opposed to what has been shown in other studies
(e.g., Loll et al., 1999; Mossadeghi-Björklund et al., 2016). Those
transport properties, as well as the water content at variousmatric
potentials, were compared to the microscopic measurements
made on the X-ray images.

X-ray µCT Images Analysis
The segmentation step, within the image processing scheme, has
a great impact on the visible porosity calculated on the X-ray
µCT image and on the extracted microscopic measurements
(Lamandé et al., 2013; Smet et al., 2017). We, therefore, visually
verified the accuracy of the global segmentation on each of the
24 X-ray µCT images by superimposing the grayscale images
on the binary images. It appears that the porosity-based global
segmentation method did not provide satisfactory results for two
soil X-ray µCT images (#6 from the calibration set and #20 from
the validation set). Those samples had a large air-filled porosity
at h = −1 kPa (Lab_PO); the porosity-based segmentation
method increased the threshold (increased µCT_PO) in order
to obtain a µCT_PO as close as possible to Lab_PO [resulting
threshold of 94 (0–255)]. In addition, the algorithm did not
converge for one soil sample (#2), which had a large Lab_PO.
Otsu’s method was, therefore, applied to those three samples
and the global threshold values for samples #2, #6, and #20
were 67, 69, and 69 (0–255), respectively. The threshold values

comparisons obtained with the porosity-based method for the
other samples supported this processing choice; the averaged
threshold value was 63 (± 0.75). Finally, the samples #10, #13, #16
and #17 were segmented using the Otsu’s method because their
soil water retention curves (SWRC) were not measured. Figure 1
presents a 3D visualization of each soil sample (calibration and
validation sets) followed by a 2D vertical slice from the middle
of the soil sample. We will refer to this figure within the Results
section.

Microscopic Measurements
Table 3 presents the data ranges, averages and associated
standard deviations for all the previously introducedmicroscopic
measurements made on the X-ray µCT soil images (Table 1).
The calculated µCT porosities, taking into account pores of at
least five voxels, were only slightly higher than those calculated
taking into account pores of at least 1,000 voxels. The differences
represented ± 90% of the number of pores (the pores having
a volume between five and 1,000 voxels happened to be the
“small pores” as defined in Table 1). There was no surprise
that we observed longer pore networks (L), higher numbers
of pore branches (B) and junctions (J) than Katuwal et al.
(2015b) or Garbout et al. (2013) who both worked with larger
voxel sizes. Consequently to the high number of pores (NP),
the observed Euler numbers (ε) were frequently highly positive
and the differences between the percentage of isolated pore (IP)
and isolated porosity (IPO) was large. Comparisons to others
studies are however tricky because the pore network skeleton
is highly sensitive to the scanning equipment and procedure,
the image processing, the skeletonisation process and the pore
identification.

Table 4 provides the credible (BF > 3) Bayesian correlation
coefficients between each of the microscopic measurements.
The coefficients were initially calculated for the calibration
data and then the validation data were included. In Bayesian
statistics, the number of observations does not count for
the credibility of a hypothesis, so when a BF was improved
with the addition of the validation data, it meant that the
correlation was more credible thanks to the observation
values. The BF were highlighted with colors according to the
classes described in the Materials and Methods section. We
did not compute the Bayesian regression equations between
microscopic measurements since it was not in the scope
of this paper. We did not observe any substantial evidence
for the null hypothesis between any of the microscopic
measurements.

As Perret et al. (1999) observed, µCT_PO and NP were
not correlated; NP cannot be a measure of porosity, but rather
expresses a notion of pore density and distribution through the
soil sample. The positive correlation between µCT_PO and the
fractal dimension (FD) has often been observed in the literature
(Rachman et al., 2005; Larsbo et al., 2014) and its dependence
on µCT_PO is actually the main drawback of being used as an
indicator of pore network heterogeneity and complexity. FD was
also correlated to the specific surface area (SS), L, B, J, and NP,
which is consistent with studies from Kravchenko et al. (2011)
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FIGURE 1 | 3D and 2D representations of the 24 studied soil samples.

and Anderson (2014). Those five parameters were all highly
correlated to each other but selecting one to represent the other
could distort the analysis.

The correlation between µCT_PO and average pore volumes
(Avg_vol, Avg_Bvol, and Avg_Svol) also made sense since the
average pore volumes were not negatively correlated to NP. The
average pore volumes were all slightly correlated to Avg_Z; we
observed that larger pores tended to be more connected; Avg_Z
and Large_PO were also correlated. This is consistent with the
results from Luo et al. (2010); Larsbo et al. (2014); Katuwal et al.
(2015a,b). Regarding the other connectivity indicators [degree of
connectivity (B/J), the Euler number [ε], and the average surface
connectivity (SC)], we observed that AvgZ was correlated to B/J
but not to ε or to SC while B/J was correlated to ε and not to
SC, and SC was correlated to ε. Those connectivity indicators
did not carry the exact same information and should, therefore,
be used for their potential explanatory power, as pointed out by
Renard and Allard (2013) and Katuwal et al. (2015a), Jarvis et al.
(2017), and Sandin et al. (2017) have focused on connectivity
indicators based on the percolation theory, and they found
that four indicators of connectivity were interchangeable and
dependent on soil porosity. We calculated the global connectivity
(Ŵ) indicator from the pore size distribution extracted fromAvizo
and, from the cluster distribution extracted from BoneJ to be
comparable to Jarvis et al. (2017) and Sandin et al. (2017). We
observed drastically different Ŵ values from the two methods of
computation. As Houston et al. (2017) assessed it, the software,
and the decomposition method that goes with it, influence the
final pore size distribution. The very low values of Ŵ from
Avizo came from the decomposition of the pore space into a
large amount of connected (or not) pores and the resulting
smaller (by two orders of magnitude) largest component than
the one identified in BoneJ, where cluster of connected pores are
quantified. In the following, to be comparable to Sandin et al.
(2017), we used the Ŵ value computed from the BoneJ’s cluster
size distribution.

Relationships Between the Microscopic
and Macroscopic Measurements
Measured, Calculated, and Predicted Soil Water

Retention Curves
In the following section, samples #10, #13, #16, and #17 were not
included because SWRC were not measured; the calibration data
set included 14 samples instead of 18.

Air-filled porosity at h=−1 kPa
In the calibration data set, the relationship between µCT_PO
and Lab_PO was neither linear nor credible because of three
outliers (#1, #2, #7, Figure 2). As discussed above, samples
#2 and #7 were segmented with Otsu’s method. In the case
of sample #7, Lab_PO was too large for the porosity-based
method, introducing unrealistic porosity that would explain the
deviations. Lab_PO was calculated by weighing the soil samples
after draining. If the pore surfaces were rough or loose, water
films could have covered up the pores surface by adsorption and
pores could appear smaller than they are. Difference between
adsorption and desorption curves, also known as the hysteresis
effect, can indeed be substantial close to saturation (McKenzie
et al., 2002). A physical explanation for sample #1 could be that
it had large pores which drained just before being weighed at
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TABLE 3 | Microscopic measurements on µCT X-ray images for the calibration and validation data set [minimum values (Min), maximum values (Max), mean values

(Mean), and standard deviation (St dev)].

Microscopic measurements Calibration data set Validation data set

Min Max Mean St dev Min Max Mean St dev

µCT_PO [%] 3.71 14.23 7.66 2.69 2.76 12.77 8.55 4.06

Macro_PO [%] 2.87 13.22 6.69 2.68 1.97 11.86 7.54 3.93

NP [–] 31,770 79,749 46,649 12,957 32,197 66,192 44,478 12,346

Avg_vol [mm3] 0.0260 0.1110 0.0567 0.0223 0.0260 0.1010 0.0620 0.0294

Avg_Bvol [mm3] 0.1350 1.3450 0.5958 0.3656 0.1210 2.0190 0.7795 0.7191

Avg_Svol [mm3] 3.000E-03 1.200E-02 6.278E-03 2.372E-03 3.000E-03 1.100E-02 7.000E-03 3.162E-03

IP [%] 66.29 87.32 76.58 5.97 64.28 83.76 75.51 7.31

IPO [%] 3.10 12.76 8.44 2.62 4.16 12.88 7.93 3.02

Avg_Z [–] 3.07 5.40 4.29 0.83 3.58 5.24 4.36 0.59

SC [voxel−1] 0.206 0.304 0.250 0.029 0.209 0.315 0.258 0.036

Con_surf [mm²] 2553 7921 4722 1321 2696 5984 4703 1282

SS [m−1] 2.040E-03 5.078E-03 2.991E-03 8.484E-04 2.027E-03 4.008E-03 2.843E-03 7.034E-04

Ŵ [–] / Avizo 9.200E-04 4.817E-02 5.152E-03 1.080E-02 1.400E-03 4.100E-02 1.307E-02 1.601E-02

Ŵ [–] / BoneJ 0.8613 0.5356 0.7386 0.0820 0.8286 0.6724 0.7365 0.0649

L [m] 28.22 71.58 43.83 10.95 30.97 57.57 43.63 12.17

B[–] 77,776 22,3143 126,510 36,757 81,850 158,219 124,115 30,407

J [–] 28,480 94,542 51,812 16,524 32,605 65,150 51,595 13,053

B/J [–] 2.230 2.930 2.529 0.183 2.280 2.740 2.443 0.166

Tortuosity [mm−1] 1.240 1.280 1.257 0.014 1.240 1.276 1.258 0.013

FD [–] 2.405 2.642 2.527 0.072 2.313 2.653 2.507 0.118

DA [–] 0.112 0.384 0.206 0.080 0.104 0.352 0.252 0.092

ε [–] −14,125 27,434 8,761 10,969 −9,897 30,112 6,534 13,836

Min_ε [–] −39,624 −7,196 −20,034 9,141 −2,7461 −9,747 −19,667 6410

The abbreviations of the microscopic measurements are listed in Table 1.

saturation. Therefore, the volume of water used to calculate the
total laboratory porosity could have been under-evaluated. This
is most likely since one gram of water can change the Lab_PO
from 8.02 to 14.21%. The 3D visualization of sample #1 shows
that a large part of its porosity was connected from top to
bottom (Figure 1). The validation data were in agreement with
the calibration data except for sample #20, which was segmented
with Otsu for the same reasons as sample #7, and sample #22,
which showed a behavior similar to sample #1.

Eventually, the samples that were segmented with the
porosity-based method displayed similar Lab_PO and µCT_PO
values. Lab_PO was used as a target during the segmentation
process. Elliot et al. (2010) also found congruent air-filled
porosity values measured by X-ray µCT (voxel size of 453µm3)
and by weight determination. The slope of the relationship
between Lab_PO andµCT_POwas higher than one and Lab_PO
was indeed positively correlated to the difference between
Lab_PO and µCT_PO. The applied capillary theory to calculate
Lab_PO and µCT_PO simplifies the pore network to capillaries.
We, therefore, suggest that the difference between Lab_PO and
µCT_PO reflected the systematic error produced by considering
pores as capillaries, and increasing the volume of data to
which the theory was applied (PO) had increased the error
(the difference). The difference between Lab_PO and µCT_PO,
whether in absolute value or not, could, however, not be

correlated to any microscopic measurements. We presumed that
the pore network real connectivity would explain the imperfect
applicability of the capillary law. For example, Parvin et al.
(2017) reported that the percentage of isolated pores explained
the difference in volumetric water content (between laboratory
evaporation measurements and X-ray µCT calculation) at a
water matric potential ranging from −0.35 to −0.4 kPa by only
considering pores larger than 350µm (pores that should drain at
a matric potential of −0.42 kPa from capillary law). The isolated
pores were actually connected to others by throats smaller than
the voxel size and may not have drained at the required potential
calculated from capillary law.

From discrete to continuous data
Beckers et al. (2014a) and Parvin et al. (2017) applied nearly
the same methodology to compare predicted SWRC with the
bimodal version (Durner, 1994) of the van Genuchten (1980)
model. On one hand, they only used macroscopic input data
[from pressure plates weighting procedure for Beckers et al.
(2014a) and from the evaporation method for Parvin et al.
(2017)], and on the other hand, they used those macroscopic data
in combination with microscopic data (pore-size distribution
extracted fromX-rayµCT images) as input. They both found that
using the X-ray µCT data allows a better prediction of SWRC
close to saturation in terms of RRMSE. We noted, however,
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FIGURE 2 | Air-filled porosity measured in the laboratory at a water matric

potential of −1 kPa (Lab_PO) vs. the visible porosity measured on X-ray

images (µCT_PO) for the calibration data set (black circles) and the validation

data set (white circles).

that those studies used macroscopic data from one set of soil
samples and microscopic data from another set of soil samples.
We aimed at validating the results by using the same samples for
both types of measurements. To that purpose, capillary theory
was applied to the pore-size distribution extracted from the X-
ray µCT images and the calculated SWRC were adjusted to
the total laboratory porosity. Figure 3 illustrates the SWRC for
three samples and shows that for all samples, except #1, the
volumetric water content (θ) close to saturation was higher when
predicted with the combination of X-ray µCT data and pressure
plates data (µCT+PP) than with only the pressure plates data
(PP), confirming previous results from Beckers et al. (2014a)
to Parvin et al. (2017). We also observed that according to the
RRMSE values, prediction with µCT+PP data were better than
with only the PP data (Table 5), except for sample #1. Lamandé
et al. (2013) also found that X-ray µCT measurements (voxel
size of 6003 µm3) allowed a more complete description of the
pore space than classical laboratory measurements, and Rab et al.
(2014) have concluded that X-rayµCTwas likely a better method
than laboratory SWRC measurements for determining air-filled
macroporosity (pores larger than 300µm in diameter). The poor
performance from sample #1 came from the fact that Lab_POwas
lower thanµCT_PO, as discussed in Figure 2. Apart from sample
#1, the use of microscopic information undeniably improved
the prediction of continuous SWRC with the bimodal version
(Durner, 1994) of the van Genuchten model (1980).

Altogether
The determination of SWRC through pressure plate
measurements are likely more representative of the in-situ
soil hydrodynamic, but those are not free of artifacts; for

FIGURE 3 | Measured and predicted soil-water retention curves for three

samples. Unlike the samples, the SWRC for #1 predicted with the pressure

plates data alone (plain line, Pred_PP_DP) performed better than with X-ray

µCT data (dotted line, Pred_PP+µCT_DP). Black circles represent the X-ray

µCT data and white circles the pressure plate measurements.

example, air entrapment might result in incomplete saturation
leading to inaccurate estimation of the air-filled macroporosity.
And, although the connectivity of the pore network was not
taken into account with the X-ray µCT SWRC calculation, we
still observed that the combination of laboratory measurements
and X-ray µCT data improved the SRWC prediction close
to saturation. The accurate characterization of the air-filled
macroporosity is important for the study of microorganism
development (e.g., soil fungal growth in Falconer et al., 2012).

Saturated Hydraulic Conductivity and Soil Porous

Structure
The saturated hydraulic conductivity was positively correlated
to the global connectivity indicator (Ŵ) computed from the
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TABLE 5 | Relative root mean squared error (RRMSE, %) for the predicted soil

water retention curves with the pressure plates data (PP) or the µCT data plus the

pressure plates data (µCT + PP) for the calibration data set samples.

Sample RRMSE

PP µCT+PP

#1 3.445 0.0538

#2 1.816 0.0157

#3 2.867 0.0201

#4 3.617 0.0254

#5 3.711 0.0300

#6 2.311 0.0165

#7 1.727 0.0134

#8 2.906 0.0216

#9 6.526 0.0474

#11 2.427 0.0232

#12 6.135 0.0556

#14 2.734 0.0223

#15 3.840 0.0275

#18 4.781 0.0385

BoneJ cluster size distribution (Figure 4A, ρ = 0.593, BF = 9.5)
as observed in Sandin et al. (2017), unlike that study, we did
not observe a credible correlation, but a positive trend between
µCT_PO and Ŵ/BoneJ. It is worth noticing again that Sandin
et al. (2017) worked with a resolution close to our but with a
different textural soil. Pöhlitz et al. (2018) also reported similar
trend of Ks and connectivity values (and µCT_PO) between
cultural practices. They worked with a voxel size of 603µm3

on different samples for the Ks and microscopic measurements,
with although a large number of repetitions. Figure 4A shows
the observations of the calibration data (black circles), the
observations of the validation data (white circles), the predicted
validation points with the 50% quantiles of the regression
model (crosses) and the 25 and 75% quantiles of the regression
models (dotted lines). The 50% quantiles of the regression
models provided a RRMSE of 0.492 for the validation data and
the predicted data points were, in most cases, underestimated.
The reported regression models that included two explaining
variables reported light credible evidence in the cases where
Ŵ was one of the explaining variables. We did not observe
relationships between µCT_PO and log(Ks), despite what the
literature reported (Kim et al., 2010; Luo et al., 2010;Mossadeghi-
Björklund et al., 2016; Naveed et al., 2016). The measured Ks
from those studies were, however, higher by several orders
of magnitude. We did observe a positive correlation between
log(Ks) and FD when the calibration samples were visually
separated in two groups according to their Ks value (Figure 4B,
black circles). Samples #1, #2, #3, #4, #7, #11, #12, #14, #15, #16,
#18 were part of group 1 and samples #5, #6, #8, #9, #10, #13, #17
were part of group 2. No microscopic measurements explained
that separation and it was difficult to visually distinguish a
pore distribution trend within the pore space (Figure 1). We
noticed that some of the less conductive samples presented
one or two large macropores (not necessarily vertically oriented

FIGURE 4 | Logarithmic saturated hydraulic conductivity (Ks) vs. (A) global

connectivity calculated from the pore size distribution extracted from BoneJ,

(B) the fractal dimension measured on X-ray µCT images, and (C) the soil

degree of anisotropy measured on X-ray µCT images. Black and white circles

represent the observations from the calibration and validation data sets,

respectively. Crosses represent predicted validation data points and dotted

lines represent the 25 and 75% regression model quantiles.

nor connected from top to bottom) while some of the more
conductive samples had more dispersed pore networks, and we
observed a negative trend (not credible) between FD and the
degree of anisotropy (DA) for group 2, but not for group 1. This
suggested that the porosity arrangement led to the composition
of two groups for the relationship between FD and log(Ks).
By using the Ks value as a boundary, the validation data were
assigned to a group (Figure 4B, white circles). FD measures the
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ability of the studied object to fill the Euclidian space within
which it is integrated and, the larger the FD, the closer to a
real fractal the object gets, meaning that its shape is similar at
different scales. Although Pachepsky et al. (2000) reported that
soils are far from being real fractal, Perret et al. (2003) and
Kravchenko et al. (2011) pointed out that FD can be used as a
global measure of the pore network complexity. For example,
FD was found to vary with depth or soil treatment (Rachman
et al., 2005; Udawatta and Anderson, 2008; Kim et al., 2010).
Anderson (2014) also observed a positive correlation between
log(Ks) and FD. By applying the regression equations, log(Ks)
of group 1 equal to log(Ks) of group 2, when FD = 3.03, which
was close to the upper limit of the possible FD values of a 3D
object. At FD= 3, the object (the porosity) occupies each point of
3D Euclidian space, but that also meant that log(Ks) was limited
to 128 cm/day. It is reasonable to ask if more groups would
be created with increasing conductivity and if the slopes of the
relationships would decrease, or if the solutions of the regression
equations would be identical when the fractal dimension equals
three, which is the fractal dimension upper limit for an Euclidian
3D object. The global RRMSE was 0.260, which is a rather good
performance (Figure 4B, crosses). The 25 and 75% regression
model quantiles were highly dispersed (Figure 4B, dotted lines)
inducing uncertainty about the regression model.

Anisotropy has been shown to impact soil conductivity
(Ursino et al., 2000; Raats et al., 2004; Zhang, 2014). Figure 4C
plots log(Ks) as a function of DA (black circles for the
observations of the calibration data) and by removing two
outliers from the calibration data set (#9 and #10), we obtained
a correlation coefficient of 0.74 (BF = 125.3), which presents
a convincing link that has, to our knowledge, not been seen
before. Such a positive correlation could be interpreted as a
consequence of preferential flow through large macropores. For
example, Dal Ferro et al. (2013) have found that anisotropy was
scale-dependent by showing higher average DA in soil cores
(DA of 0.32 and voxel size of 40µm) than in soil aggregates
(DA of 0.14 and voxel size of 6.25µm), they hypothesized
that as a possible consequence of biological and mechanical
macropores. This was later confirmed by a second study where
they showed that only the macropores in the range of 250–
500µm were correlated to the global DA (Dal Ferro et al., 2014).
From the DA calculation decomposition (in the Supplementary
Materials section), it was possible, but not straightforwardly,
to evaluate the main direction of the anisotropy which could
be represented by a small amount of pores in that direction,
or as the direction of the preferential orientation of one large
pore. Ks was measured along the z-axis (vertically) but the main
direction of anisotropy was not systematically in that direction.
Therefore, the positive correlation between DA and log(Ks) was
not necessarily a result of preferential pore networks paths.
Moreover, the directions of the pore connections showed that a
majority of the pores junction were horizontal (x- and y-axis).
The repartition was practically the same between samples, 60%
horizontal and 40% vertical connections. Applying the regression
model to the validation data gave consistent results for four
samples with a RRMSE for those of 0.414 (Figure 4C, crosses).
Sample #21 gave poor results with a predicted log(Ks) of 1.03

cm/day instead of an observed log(Ks) of 0.35 cm/day and a
resulting RSE of 3.742. As well, sample #22 gave a RSE of 0.433,
its low DA and large log(Ks) made it similar to the two outliers
of the calibration data (#9 and #10). The relationship between
DA and log(Ks) may not be suitable for highly conductive soil
sample presenting isotropic-like porosity distribution (Samples
#9, #10, #22, Figure 1). Subjective comparisons between 3D
representations andDAneed to bemade cautiously.We observed
that, compared to samples #9, #10, #22, samples #15 and #18
had similar visually homogenous porosity (and equivalent low
DA) but with a lower Ks. Samples from group 2 in Figure 4
(#5, #6, #8, #13, #17 and #20, #23, #24) had higher log(Ks) with
a more heterogeneous porosity (and higher DA). The narrower
distribution of the 25 and 75% regression model quantiles came
from the exclusion of two outliers in the model computation.

The prediction of the hydraulic conductivity curve is
frequently extracted from the SWRC shape and absolute values
of K(h) can be obtained by matching both curves with a
specific point, which is often Ks (Vogel and Roth, 1998). Ks
is however cumbersome and time-consuming to measure in-
situ. We reported here that the porosity arrangement described
by the global connectivity, the fractal dimension, and degree
of anisotropy had an impact on the soil conductivity, the
combination of those indicators provided information that could
be used across scales and to eventually better estimate Ks.
No other relationships between log(Ks) or Ks and the other
microscopic measurements were reported.

Air Permeability Variations Explained by Microscopic

Structure
Macroscopic measurements showed, as expected, that the air
permeability increased with air-filled porosity. We also observed
positive credible Bayesian correlation coefficients between
log(ka) measured at various h and microscopic indicators
of the porosity (µCT_PO, Large_PO, Avg_vol, Avg_Bvol,
and Avg_Svol), although only log(ka,−70 kPa) was positively
correlated to µCT_PO (Table 6). Given the X-ray µCT image
resolution, µCT_PO should be representative of the air-filled
PO measured at h = −1 kPa although th e soil samples were
scanned at h = −70 kPa. The choice to scan soil samples at
h = −70 kPa was a compromise between the fact that all the
potential visible porosity should be air-filled and without cracks
due to drying, and this particular correlation suggests that all
the potential visible porosity was indeed air-filled. In their study,
Katuwal et al. (2015b.) and Naveed et al. (2016) both observed a
power-law function between, respectively, ka(−2 kPa) or ka(−3
kPa) and µCT_PO. The µCT_PO calculated on their images
is equivalent to the Large_PO on our images as previously
stated, and we also reported a correlation between Large_PO and
log(ka) (Table 6). Therefore, the difference between µCT_PO
and Large_PO might be the part of the PO that should have
drained at low negative potential (from the capillary law),
but was actually drained at higher negative potential (due to
unusable pathways). We refer to Hunt et al. (2013) to name that
part of porosity, the inaccessible porosity. This assumption was
confirmed by the credible correlations between the inaccessible
PO andmicroscopic parameters which expresses a notion of pore
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network complexity (B, J, L, NP, SS, IPO, FD). We previously
pointed out the drawback that, when calculating SWRC from the
X-ray µCT data (namely from the visual pore size distribution),
the connectivity was not taken into account. We here confirmed
that the pore network connectivity play a role in the desorption
process.

Lamandé et al. (2013) found a positive correlation between
log(ka,−10 kPa) and NP. We observed negatives correlations
(as well as with B, J, and SS). Many pores of our samples were
connected to others with connections smaller than the voxel
size and were considered isolated (high IP and ε, Table 3). It
would make sense, that an increasing volume of small (invisible)
connections reduces the airflow through the pore network. The
air permeability is also largely dependent on the tortuosity and
connectivity of the pore network (Ball and Schjønning, 2002;
Moldrup et al., 2003), but to our knowledge, no study has
reported these links from µCT measurements. From Table 6,
it appears that the air permeability increased with a growing
average number of connections (Avg_Z) as well with a growing
global connectivity (Ŵ/BoneJ), but also with Min_ε and B/J.
The last two parameters indicate a decreasing connectivity with
an increasing value. First, from Table 4, it was observed that
B/J increased with decreasing B or decreasing J. That purely
algebraic relationship might explain why the air permeability
would decrease with decreasing B/J (increasing connectivity).
Then, Min_ε was calculated over the largest connected pore
component, and, because there are no cavities in real soil pore
space (Vogel and Roth, 1998), Min_ε decreased as the number
of redundant connections increased. When calculating Avg_Z by
class of pore according to their volumes, it appeared that the
values of Avg_Z we observed came from a large number of small
pores having few connections; the biggest pores had ten times

TABLE 6 | Credible Bayesian correlation coefficients between microscopic

measurements and logarithmic air permeability (ka) measured at water matric

potentials of −70, −30, −10, and −7 kPa for the calibration data set.

log

ka (−7 kPa) ka (−10 kPa) ka (−30 kPa) ka (−70 kPa)

µCT_PO 0.53

Large_PO 0.54 0.60 0.64

Avg_Vol 0.72 0.76 0.72 0.79

Avg_Svol 0.75 0.85 0.75 0.84

Avg_Bvol 0.69 0.76 0.69 0.77

NP −0.70 −0.76

Avg_Z 0.55 0.78 0.85 0.69

SS −0.64 −0.73 −0.80 −0.54

IPO −0.70 −0.76 −0.82 −0.62

B −0.56 −0.68 −0.72

J −0.52 −0.68 −0.71

B/J 0.62 0.63

Ŵ/BoneJ 0.54 0.54

Min_ε 0.68 0.73

The abbreviations of the microscopic measurements are listed in Table 1.

more connections. Avg_Z was correlated to Avg_Z calculated on
the pores having a radius between 250 and 375µm. Therefore, air
permeability was correlated to the fact that “medium” size pores
had more connections. Moreover, there was a negative trend
between log(ka) and Avg_Z calculated on the largest pores which
corroborated the positive correlation between ka and Min_ε.

The best regression models calculated on the calibration
data (Bayes factor) and applied on the validation data reported
that the best explaining variable for all measures of log(ka)
(RRMSE) was the average pore volume of the smallest pores
(Avg_Svol). That parameter might be seen as a limiting factor,
and this suggested that ka was more related to pore size
distribution than porosity. Figure 5A displays log(ka, −70 kPa)
as a function of Avg_Svol and the distribution of the 25
and 75% regression model quantiles are rather narrow. The
RRMSE was 1.256 or 0.0649 when the two worst predicted
validation data points were not taken into account. The
RRMSE for log(ka, −30 kPa) and log(ka, −10 kPa) were
around 0.800 with one bad validation data point, and the
RRMSE for log(ka, −7 kPa) was very high (8.154) with three

FIGURE 5 | (A) Logarithmic air permeability measured at a water matric

potential of −70 kPa (ka) vs. the average pore volume of the smallest pores

(Avg_Svol). Black and white circles represent the observations from the

calibration and validation data sets, respectively. Crosses represent the

predicted validation data points and the dotted lines the 25 and 75%

regression model quantiles. (B) The predicted logarithmic air permeability from

the average pore volume of the smallest pores vs. the observed logarithmic air

permeability. Error bars represent the 75% regression model quantiles.
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badly predicted data points out of five. The combination of
Avg_Svol and average pore volume of all pores (Avg_Vol)
performed slightly better in some cases, and slightly worse in
others. Figure 5B shows the predicted log(ka) from Avg_Svol
vs. the observed log(ka) values. Although the RRMSE were
acceptable, the regression model distributions (the error bars
represent the 75% regression models quantiles) were high which
induce large uncertainty. That combination of two explaining
variables was, in all cases, the best regression model of two
explaining variables. Other important explaining variables were
the average coordination number (Avg_Z), the proportion
of isolated porosity (IPO), the average pore volume of the
biggest pores (Avg_Bvol) and the combination of µCT_PO and
Large_PO.

With soil air diffusivity, soil air permeability is one of the main
processes governing the exchange of gases with the atmosphere,
including therefore soil aeration. Through our experimentations,
we aimed at unraveling the main physical drivers of air fluxes
through the soil. We have previously observed that subdividing
the pore volume averages into three categories (all of the
pores, the biggest, and smallest) was not informative; in this
study, we have shown the opposite. Avg_Svol was the average
volume of the pores having a volume between 4 × 105 and
± 8 × 107 µm3, in contrast to other cited studies; those
pores were visible because of our high resolution (43µm).
Eventually, we suggested that Avg_Svol worked as a limiting
factor.

CONCLUSION

X-ray microtomography, among other visualization techniques,
has brought new insight into the study and the understanding of
soil function. The challenge, however, is the representativeness
of the studied soil samples (Vogel et al., 2010) and, to
that purpose, the analysis of the same soil samples at
two scales has become more prevalent. The resulting
next challenge is the resolution at which the soil samples
should be studied. To our knowledge, very few studies
dealt with equivalent voxel size (433 µm3) and, we did
not find any micro-macro correlations such as the ones we
observed.

Starting with the comparison of the calculated visible porosity
for all pores and for those of at least 1,000 voxels in volume,
it appeared that the difference was rather small but positively
correlated to indicators of the pore network complexity. The
uncommon relationships we observed might be due to the higher
resolution we worked with and the resulting finer details of
the pore network structure. For example, the calculated fractal
dimension and degree of anisotropy are both global indicators
of the pore network complexity and both were positively
correlated to the saturated hydraulic conductivity, although with
some limitations. The global connectivity showed interesting
results although highly dependent on the decomposition software
used to extract the pore size distribution. Identifying the key
parameters that convey the complexity of the pore network is
a motivating goal to reach. Pore network modeling has already

proven useful (e.g., Vogel and Roth, 1998, or more recently,
Köhne et al., 2011), and those three indicators are values
that could be used for the generation of a phenomenological
model.

Furthermore, we have reported various positive correlations
between the air permeability measured at several water
matric potentials and microscopic measurements. The average
volume of the smallest pores (as small as ± 4 × 105

µm3) showed the best link with air permeability. Due
to our high resolution, we observed a higher number of
pores than in other studies and consequently more isolated
pores. The Euler number based on the connected space
was expected to correlate well with air permeability, but
this was not the case. Other measures that provide similar
types of information (total pore length, total number of
branches, and junctions) proved equally unsatisfactory. In fact,
a pertinent link was the positive relationship between the
average pore volume of the biggest pores and that of the
smallest ones, suggesting dependence between pores of different
volumes.

We also reported that the soil water retention curve was
better predicted near saturation with the pore size distribution
extracted from the X-ray µCT data. Indicators can be derived
from the SWRC to characterize soil quality or extrapolate
microorganism development (Rabot et al., 2018); its accurate
description is therefore a prerequisite. The degree of saturation
is also important in the modeling of microbial growth, the
dissolution of O2, the soil respiration, the NO and N2O
production. These processes are affected by the so-called water
filled pore space, by soil oxygen content and by soil temperature,
which all vary with the volumetric water content (Smith
et al., 2003). Blagodatsky and Smith (2012) concluded that
the microbial growth models (and we add to this statement:
“among others”) including “an explicit description of microbial
growth, i.e., growth rate and efficiency, humidification ratios
and their relationship with N availability, need to be coupled
with well-developed soil transport models.” The fluid transport
predictions for a continuous range of water contents and
from discrete measurements are possible through models that
are, today, mostly not physically-based. From the pore space
structures analyzed, we aimed at contributing to a better
understanding of the potential influences of the pore network
topology on the physical hydrodynamic properties of soil.
Strong unequivocal conclusions could not be drawn because
of the limited number of repetitions; image processing and
analysis are time-consuming and will be increase with increasing
resolution. The comparisons to others studies, as discussed
multiple times, depends on many factors and we, therefore,
strongly urge the open access to gray scale X-ray µCT
images.
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