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With the advent of computed microtomography (µCT), in situ 3D visualization of soil

at micron scale became easily achievable. However, most µCT-based research has

focused on visualization and quantification of soil pores, roots, and particulate organic

matter (POM), while little effort has been put in exploring the soil matrix itself. This

study aims to characterize spatial heterogeneity of soil matrix in macroaggregates from

three differing long term managements: conventionally managed and biologically based

row-crop agricultural systems and primary successional unmanaged system, and explore

the utility of using grayscale gradients as a proxy of soil organic matter (SOM). To

determine spatial characteristics of the soil matrix, we completed a geostatistical analysis

of the aggregate matrix. It demonstrated that, while the treatments had the same range

of spatial correlation, there was much greater overall variability in soil from the biologically

based system. Since soil from both managements have the same mineralogy and

texture, we hypothesized that greater variability is due to differences in SOM distributions,

driven by spatial distribution patterns of soil pores. To test this hypothesis, we applied

osmium (Os) staining to intact micro-cores from the biologically based management, and

examined Os staining gradients every 4µm from 26 to 213µm from pores of biological

or non-biological origin. Biological pores had the highest SOM levels adjacent to the

pore, which receded to background levels at distances of 100–130µm. Non-biological

pores had lower SOM levels adjacent to the pores and returned to background levels

at distances of 30–50µm. This indicates that some of the spatial heterogeneity within

the soil matrix can be ascribed to SOM distribution patterns as controlled by pore

origins and distributions. Lastly, to determine if the grayscale values could be used as

a proxy for SOM levels, gradients of grayscale values from biological and non-biological

pores were compared with the Os gradients. Grayscale gradients matched Os gradients

for biological pores, but not non-biological pores due to an image processing artifact.

Grayscale gradients would, therefore, be a good proxy for SOM gradients near biological

origin pores, while their use for non-biological pores should be conducted with caution.
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INTRODUCTION

The use of computed microtomography (µCT) has allowed
for the in situ characterization of the physical structure of
soil, specifically, positions, size distributions, and shapes of soil
pores (Gibson et al., 2006; Chun et al., 2008; Peth et al., 2008;
Papadopoulos et al., 2009; Kravchenko et al., 2011; Wang et al.,
2012). It also enabled identification of large organic fragments,
including particulate organic matter (POM) (Kravchenko et al.,
2014a) and intact plant roots (Mooney et al., 2012). These
advances led to quantitative insights into the contribution of pore
characteristics to residue decomposition, carbon protection, and
spatial patterns of bacterial distributions (De Gryze et al., 2006;
Ananyeva et al., 2013;Wang et al., 2013; Kravchenko et al., 2014b;
Negassa et al., 2015). However, little focus has been given to µCT
information regarding mineral soil matrix, that is, solid material
containing no pores or organic fragments visible at the µCT
image resolution. Of particular interest is how characteristics
of the solid material may relate to soil organic matter (SOM)
dynamics, specifically SOM protection.

Solid material is represented in µCT images by a range of

grayscale values that are correlated to the attenuation of x-rays,

which is controlled by the density and atomic number (Z) of
the elements occurring within an image voxel (Ketcham, 2005;
Peth, 2010). Voxels that contain primarily low Z elements, such
as nitrogen, carbon, and oxygen, have lower grayscale values
(appear darker) on µCT images, while voxels containing higher
Z elements, such as iron, silicon, and aluminum, have higher
grayscale values (appear brighter). A voxel’s overall grayscale
value is the average attenuation of the elements occurring within
that voxel. Spatial variability in grayscale values of the solid
material originates frommultiple sources, including variations in
mineralogy, presence of pores with sizes below image resolution,
and SOM distribution patterns. The first two of these factors
are important drivers of SOM protection, while the third one is
an indicator of where such protection has occurred. Mineralogy
influences SOM protection by affecting organic matter binding
via electrostatic forces. Small pores can contribute to SOM
protection by a combination of restricting decomposers’ access
and retardation of decomposition due to anaerobic conditions
prevalent in these pores (Bailey et al., 2017; Keiluweit et al., 2017).
Thus, overall SOM distribution patterns are likely controlled by
a combination of mineralogy and pore architecture, i.e., pore size
and connectivity (Dungait et al., 2012; Kravchenko et al., 2015).

Soil pores function as the soil transport network; regulating
the flow of nutrients, microorganisms, oxygen, and organic
material (Young and Crawford, 2004; De Gryze et al., 2006;
Kuzyakov and Blagodatskaya, 2015; Negassa et al., 2015). Soil
pores are created through either biological or non-biological
means. Biological pores are formed by macrofauna, such as
earthworms, or through action of roots and root hairs as they
spread and grow. Non-biological pores are primarily produced
in a course of wetting/drying and freeze/thaw cycles and are
controlled by soil texture, specifically clay content. Biological
and non-biological pores also play different roles in the cycling
of organic matter within the soil. Biological pores are generally
thought of as a source of new carbon inputs, either through direct

organic addition, such as decaying roots, or through ancillary
organic matter additions, such as root exudates. Organic matter
that then diffuses out from biological pores typically occurs as
dissolved organicmatter (DOM). DOMcan be bound tominerals
by electrostatic forces (Kiem and Kögel-Knabner, 2002; Six et al.,
2002; Dungait et al., 2012), where, due to the electrostatic force
being greater than the enzyme binding energy, it can be protected
from microbial attack and results in SOM protection (Dungait
et al., 2012). While biological origin pores are sources of organic
matter and SOM protection, they also compress adjacent solid
material as roots push through the soil resulting in denser
material closer to root pores (Bengough et al., 2011; Aravena
et al., 2014). Thus, the net effect of biological pores on proximate
densities is uncertain. Formation of non-biological pores, on
the other hand, created through the shrinking and swelling
of clay minerals, can expose previously inaccessible carbon to
microbial attack, resulting in a net carbon loss (Sørensen, 1974;
Denef et al., 2001; Smucker et al., 2007). However, quantitative
data on how presence, abundance, and characteristics of pores
of different origins influence SOM accrual and protection is
currently lacking. Falconer et al. (2015) noted that despite
identical bulk characteristics, including average porosity, POM
turnover rate varied widely due to micro-scale properties. Their
results indicated that an understanding of micro-scale pore
properties may be vital to achieve more accurate modeling of soil
carbon dynamics.

The grayscale values of the solid material inµCT images could
potentially provide insights into spatial patterns of SOM and
the associations between such patterns and pores of different
origins. As noted previously, a voxel’s overall grayscale value is
the average attenuation of the elements occurring within that
voxel. While mineralogy plays the largest role in the spatial
characteristics of the solid material and would normally override
any spatial characteristics from distribution of SOM and presence
of pores with below image resolution sizes, samples with similar
mineralogy would allow for the spatial patterns caused by
these other factors to be observed. There is some experimental
evidence that, in samples with similar mineralogy, grayscale
values of µCT images and SOM are correlated (Ananeyva,
personal communications).

Studies have shown that geostatistics is helpful for describing
the spatial characteristics of pores and, therefore, can be expected
to also model well the spatial characteristics of the solid material
(De Gryze et al., 2006; Feeney et al., 2006; Nunan et al.,
2006). Therefore, to assess spatial patterns within the solid
material, geostatistics will be used to quantify the range of spatial
correlation, overall spatial variability, and the contribution of
spatial variability that is below image resolution to the overall
spatial variability.

Here we would like to explore the utility of using the spatial
patterns of grayscale values in µCT images as a proxy for the
spatial patterns of SOM distribution. As such, we will focus
on SOM distribution patterns in the vicinity of soil pores of
both non-biological and biological origin. This focus is driven
by an expectation that, due to the role of biological pores in
supplying new organic inputs and the role of non-biological
pores in contributing to carbon losses, their comparison should
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yield contrasting gradients in SOM distributions. Identification
of such gradients will indicate that grayscale values can provide
useful information on SOM distribution patterns within intact
soil samples.

To further verify the utility of grayscale values as indicators of
SOM spatial patterns, we will compare the gradients of grayscale
values from conventionalµCT images with gradients of Osmium
(Os) stained organic matter from Os dual-energy images. Os
staining has been proposed as an effective tool to visualize organic
matter in µCT images (Peth et al., 2014) and was applied to
estimate SOM spatial patterns (Rawlins et al., 2016). Os strongly
binds with carbon-carbon double bounds and its high atomic
number increases the visibility of organic matter on µCT images.
By taking images above and below the K-edge of Os, 3D maps of
SOM within an intact soil sample can be constructed. From such
maps we can then obtain direct measurements of SOM gradients
in the vicinity of non-biological and biological soil pores.

Agricultural management is known to have an effect on
overall SOM levels (Oades, 1984; Six et al., 2000; Syswerda
et al., 2011; Paul et al., 2015), as well as on micro-scale SOM
patterns (Ananyeva et al., 2013; Kravchenko et al., 2015). Since
pores are known drivers of SOM protection, any change in
the spatial pattern of pores would result in a change in SOM
spatial patterns and potentially SOM levels. The distribution of
non-biological and biological pores is known to be affected by
agricultural management. Wang et al. (2012) and Kravchenko
et al. (2014b) both that observed non-biological pores tended to
dominate in systems with tillage, while pores of biological origin
tended to dominate in conservation managements with little soil
disturbance.

We hypothesize that areas dominated by non-biological pores
will have relatively uniformmicroenvironmental conditions, thus
relatively uniform SOM spatial distribution patterns. Together
with lack of point sources of organic matter in such pores,
this will lead to smaller SOM gradients in their vicinity. On
the other hand, areas dominated by biological pores provide
spatially variable SOM inputs as well as a more diverse range
of microenvironmental conditions for microorganisms. Thus,
we expect greater spatial variability in SOM, as well as greater
SOM gradients, in the vicinity of biological pores. In addition,
we hypothesize that agricultural management practices that lead
to a greater presence of biological pores will increase SOM
spatial variability and result in larger SOM gradients than the
management practices with greater presence of non-biological
pores.

The first objective of the study is to explore utility of
grayscale values of solid material from µCT images to
characterize SOM patterns by comparing grayscale value
spatial patterns with Os spatial patterns. The second
objective is to explore spatial characteristics of the solid
material in µCT images of intact soil samples from three
contrasting land use and management practices and to
analyze relationships between the spatial characteristics and
the SOM levels of these practices. Our third objective is
to explore SOM and grayscale value gradients at distances
from pores of different origins and in soils from different
managements.

MATERIALS AND METHODS

Soil Collection and Imaging
The studied soil was collected from three different managements
at Kellogg Biological Station Long Term Ecological Research
station, Hickory Corners, MI (42◦24′N, 85◦24′W). The three
managements were a conventional corn-soybean wheat
management maintained with current best management
practices, a biologically based corn-soybean-wheat with rye
cover after corn and red clover interseeded into wheat with
no additional inputs and rotary tillage between rows for weed
management, and a primary successional management, which is
burned annually, but otherwise unmanaged. These management
practices represent a management gradient with a highly
managed system (conventional), a conservation management
system (biologically based), and an unmanaged system (primary
successional). Further details can be found in Kravchenko et al.
(2015).

The soil (from 0 to 15 cm depth) was dry sieved and
aggregates of 4–6.3mm were collected for imaging. µCT
images were obtained from beamline 13-BM-D of the
GeoSoilEnvironCARS (GSECARS) at the Advanced Photon
Source (APS), Argonne National Laboratory (ANL) in Argonne,
Illinois. Two-dimensional projections were taken at 0.25◦

rotation angle steps with a 1 s exposure and combined into a
three-dimensional image consisting of 520 slices with 696 by
696 pixels per slice for grayscale analysis and 1,200 slices with
1,920 by 1,920 pixels per slice for analysis of pores below image
resolution. The voxel size of the images was 13µm for grayscale
analysis and 2µm for analysis of pores below image resolution.
Pores were identified using the indicator kriging method in
3DMA-Rock (Oh and Lindquist, 1999; Wang et al., 2011) for
grayscale analysis and through simple thresholding with Otsu’s
method for analysis of pores below image resolution.

Geostatistical Analysis
A total of 32 soil aggregate images were used in the geostatistical
analysis, namely, 11 images from conventional and biologically
based management and 10 images from primary successional
management. On each image we identified 5 soil cubes, 130× 130
× 130µm in size (Figure 1). Positions of the cubes were initially
randomly selected, with further adjustments made to avoid
major overlaps with other cubes, coarse sand grains that would
not reflect the overall spatial characteristics of the aggregate,
and aggregate boundaries. Soil pores identified by 3DMA-Rock
were removed from the cubes prior to geostatistical analysis
allowing for analysis of spatial patterns in the solid material
only. 3D variograms were obtained using the gstat package in
R (Pebesma, 2004) run on the High Performance Computing
Center atMichigan State University. Variograms (Supplementary
Presentation 1) were fit with an exponential model using PROC
NLIN in SAS 9.3 (SAS Inc, 2009). Spatial characteristics of the
solid material can be determined from the components of the 3D
variograms. The sill, where the variogram flattens out, indicates
the total spatial variability within a sample. The range of a
variogram, lag distance at which the sill occurs, is the distance
for which spatial correlation exists in a sample. The nugget, the

Frontiers in Environmental Science | www.frontiersin.org 3 May 2018 | Volume 6 | Article 28

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Quigley et al. Spatial Heterogeneity in Soil Matrix

FIGURE 1 | Workflow for the geostatistical analysis. From each whole aggregate (A), 5 cubes were selected (B,C) and then a 3D variogram obtained (D). The whole

aggregate is 5mm in size, while the cubes in the slice (B) and 3D (C) are 130µm on a side.

difference between the zero and the y-intercept, represents both
measurement error and the variability at scales below the image
resolution. The nugget to sill ratio describes the relative amount
of spatial dependence at the voxel size.

Os Gradients
Soil samples for Os analysis were taken as mini-cores. Only
three mini-cores, all from the biological based management
practice, were analyzed. The reason for the small number
of samples used for this analysis is the very long image
collection time for dual-energy Os scanning limiting the
number of samples that could be processed. We choose
biologically based management for these analyses, since we
expected that pores of both non-biological and biological origin
would be well represented in soil under this management.
Samples were taken as mini-cores, as opposed to dry sieved
aggregates, because of concerns that aggregates would be
too fragile for the multiple handling steps required by this
method.

The mini-cores were taken at 3.5–5 cm depth using a
beveled 3mL Luer-Lok polypropylene syringe with a 8mm inner
diameter (BD, Franklin Lakes NJ, USA). There was minimal
interference with Os staining from polypropylene syringes as
they contained almost no carbon-carbon double bounds. Cores

were air dried and exposed to OsO4 gas in a fume hood for
1 week. This allowed ample time for the OsO4 gas to diffuse
throughout the soil and to ensure maximum binding of Os to the
soil organic material. The cores were then scanned at beamline
13-BM-D, GSECARS, APS ANL. Two-dimensional projections
were taken at 0.25◦ rotation angle steps with a 2 s exposure and
combined into a three-dimensional image consisting of 1,200
slices with 1,920 by 1,920 pixels per slice. Final images had a
4µm resolution. Three energies were used for the scans, 74,
73.8, and 28 keV. These energies provided, respectively, an image
above Os K-edge, an image below Os K-edge, and an image at an
energy optimal for soil pore and POM identification. By taking
the difference between the above and belowK-edge images, amap
of the stained soil organic materials was created (Figure 2). Using
the 28 keV images, non-biological pores were identified using
simple thresholding, while POM pieces of both root and non-
root origin were visually identified by hand. POM of non-root
origin was defined as stand-alone organic fragments of round
or irregular shape that were not connected to any obvious root
remains.

Two pores containing non-root derived POM (POM-NS),
two pores containing root-derived POM (POM-Root) and four
pores of non-biological origin were identified by hand for the
analyses in each mini-core image (Figure 3). Identified pores
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FIGURE 2 | An example of a µCT image from an Os stained soil sample from biologically based management at 4µm resolution. (A) A 3D scan of an entire Os

stained sample. The thickness of the sample was 1mm. (B) Image of a slice of an Os stained sample above the K-edge (74 keV). (C) Image of a slice of an Os stained

sample below the K-edge (73.8 keV). (D) Difference between above and below K-edge images with non-biological pore (E), POM-NS (G), and POM-Root (F)

expanded. Total image size is 8 × 8mm for (B–D).

varied in size from 20 to 300µm. The identified pores were
dilated by∼13µm in all three dimensions to match the grayscale
gradient results (described below). Then, a set of 4µm layers
were identified around each pore to a maximum distance of
213µm.Grayscale values of theOs stainedmapwere averaged for
each 4µm layer to obtain an Os gradient. The averages excluded
the 0 value as that was the color of the image background. To
ensure comparability among the mini-cores, the Os gradients
were standardized by subtracting the Os map’s average grayscale
value from each mini-core.

Grayscale Gradients
From each of the 32 images used in the geostatistical analysis,
we identified three POM-NS, three POM-Root, and five non-
biological origin pores (Figure 3). Identified pores ranged in
sizes from 40 to 300µm. In order to remove partial volume

effects, the identified pores were dilated by one voxel in all
three dimensions, thus they did not include the layer of border
voxels that contained both pore and solid material. The grayscale
value gradients were obtained by averaging voxels from 13µm
layers around each pore to a maximum distance of 208µm
(Figure 4). Averages did not include the 0 and 255 grayscale
values as the 0 value was the value of the image background
and excluding the 255 value corrected for any overly dense
material, such as iron minerals like magnetite or limonite, in
the samples that might have skewed the grayscale averages.
To enable direct comparisons between images, the grayscale
value gradients were normalized so that the minimum grayscale
value was 0 and the maximum grayscale value was 1 for each
gradient. Calculation of the distance over which the gradient
had influence was done by fitting the individual gradients using
PROC NLIN in SAS 9.4 (SAS Inc, 2009) with the following
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FIGURE 3 | Examples of selected non-biological (A,D), POM-Root (B,E), and POM-NS pores (C,F) for 13 and 2µm resolution. Non-biological pores were chosen so

that no organic matter was visible in the pores and the pores were not round or oval in shape. POM-Root pores were chosen such that organic material was visible in

the pores and were root shape, i.e., round or oval with an elongated shape. POM-NS was chosen such that organic material was visible within the pores and the pore

did not have a root like shape.

non-linear model:

f (x) = n+ (s− n) ×
(

1− e
(

−
3x
d

)
)

(1)

where x is distance from the pore, n is the y-intercept,
s is the average grayscale value of the image, and d
is the distance at which the pore stops affecting the
grayscale values or effective distance of pore influence
(EDPI).

Analysis of Pores Below Image Resolution
(2–13µm)
Presence of pores with sizes below the image resolution
(<13µm) can potentially affect gradients of grayscale values. If
that were the case, then it would not be possible to attribute
the observed gradients in grayscale values to SOM. In order
to explore the potential effect of such pores on the studied
grayscale gradients, we scanned six of the 32 studied aggregates
at 2µm resolution. Two aggregates from each management were
scanned.

We explored the differences among the studied managements
in terms of presence of 2–13µm pores. The purpose of this
analysis was to ensure that the observed differences among the
management practices were driven by SOM and not by below-
resolution pores. For that, four cubes, 140 × 140 × 140µm
in size, were selected, using a selection process identical to
that described above for the geostatistical analysis. Using Otsu’s
method, the overall porosity of each cube was determined.
Binning was then used to compress the cube image to ∼13µm
voxel size (Figure 5). Overall porosity of the binned image was

then determined using the same threshold as the 2µm samples.
Subtracting the porosity of the binned images from the un-
binned images resulted in the 2–13µm porosity, referred to
hereafter as the below image resolution porosity.

Statistical Analysis
Data analyses for all studied variables were conducted using
the mixed model approach implemented in the PROC MIXED
procedure of SAS Version 9.4 (SAS Inc, 2009). For comparisons
of the geostatistical characteristics and total below image
resolution porosity, the statistical model consisted of the fixed
effect of management and the random effect of aggregates
nested within management. For investigation of pore type and
management effects on the grayscale gradients, the statistical
model consisted of the fixed effects of management, pore types,
distances from the pores, and their interactions, as well as the
random effect of aggregates nested within management and the
random effect of individual pores nested within respective pore
types and aggregates. In this analysis, distance was treated as
a repeated measure factor. Comparisons among pore types for
the Os gradients were conducted using the statistical model with
the fixed effects of pore type, distance, and their interaction
and the random effects of soil core and soil core by pore type
interaction. As with the grayscale gradients, the Os gradients
distance factor was treated as a repeated measure. Comparisons
among managements and pore types for the gradient influence
distance were evaluated using the statistical model with the
fixed effects of management, pore type, and the interactions
between them and the random effect of aggregates nested within
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FIGURE 4 | Workflow for grayscale gradients. The whole aggregate (A) has all pores identified (B). Individual pores are then identified (C). Layers are collected for

analyses of grayscale gradients (D). Each color represents a different layer, while the white in the middle is the actual pore, and the black layer adjacent to white

accounts for partial volume effects.

management. The normality of residuals in all analyses was
visually assessed using normal probability plots and stem-and-
leaf plots, while equal variances assumption was assessed using
Levene’s test. Results are reported as statistically significant at
α = 0.05 level.

For all analyses, if the interactions were not significant,
pairwise comparisons of the main effects using the LSMEANS
statement were used. In the case where interactions were
significant, slicing using the LSMEANS statement was employed.
All distance graphs were created from slicing results. T-tests
were conducted to determine if the mean values differed
from zero.

RESULTS

Geostatistical Analysis of Grayscale
Spatial Patterns
Biologically based and primary successional managements had
greater overall variability in grayscale values of the solid material
than the conventional management system, as indicated by their
higher sill values (Table 1). Spatial variations at distances greater
than the image resolution (13µm) accounted for more than 50%
of the overall variability, as indicated by nugget-to-sill ratios
ranging from 39% in biologically based management to 46 and

TABLE 1 | Characteristics of the variograms of soil material containing no

>13µm pores in three studied land use and management practices.

Variogram

characteristic

Conventional Biologically

based

Primary

successional

Range (µm) 334.1(1.4)a 309.4(1.4)a 297.7(1.4)a

Nugget 313(26)a 321(26)a 357(28)a

Sill 641(45)a 822(45)b 778(47)b

Nugget to Sill 0.48(0.02)a 0.39(0.02)b 0.46(0.02)a

Shown are means and standard errors (in parentheses) calculated based on a total of 157

subsection cubes from 32 aggregates. Different letters within each row denote statistically

significant differences among the managements at α = 0.05.

48% in primary successional and conventional managements.
The three managements did not differ in terms of their nugget
and range values, indicating similarities in terms of variabilities
at distances <13µm and of distances at which spatial correlation
were present.

Os Levels as a Function of Distance From
Soil Pores
The Os gradients were markedly different in pores of non-
biological and biological origin (Figure 6). However, Os
gradients did not differ between biological pores associated with
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FIGURE 5 | Example of a 2µm image (A) and the same image reduced to 13µm resolution (B). Example of thresholding with Otsu’s method of the same image at

2µm (C) and 13µm (D).

POM-NS and POM-Root. Pores of biological origin had a large
increase in Os labeled SOM immediately adjacent to the pores,
which then slowly declined until returning to background levels
at distances of 100–130µm. Non-biological pores, on the other
hand, had levels of Os labeled SOM that were statistically lower
than background levels (P = 0.0454) at distances up to 30µm
from the pores.

Grayscale Levels as a Function of Distance
From Soil Pores
The grayscale gradients for all managements and pore types had
decreased grayscale values closer to the pores that increased as
distances from the pore increased (Figure 6). This was similar to
the biological pore results from the Os gradients. For biological
pores, the grayscale gradients matched the Os gradients almost
identically. When both grayscale and Os gradients for POM-
NS and POM-Root in biologically based management were
normalized (Figure 7), the overlap between the relationships was
almost perfect, indicating that Os and grayscale value gradients
were equivalent.

The grayscale levels in the solid material adjacent to non-
biological pores were lower than the background grayscale values
(average grayscale value of the whole aggregate). However, they
increased much faster with increasing distance (Figure 6) and
reached the background levels at much shorter distances than
those of biological pores (Table 2). For POM-NS and POM-Root,
grayscale values returned to background levels at 123µm, while
non-biological pores at 74µm.

While no differences were observed between POM-NS and
POM-Root grayscale gradients for biologically based and primary
successional managements (P = 0.4217, 0.2311), POM-NS
retained decreased grayscale values over longer distances than
POM-Root in conventional management (P < 0.001; Figure 8).
No significant differences were observed between managements
for non-biological and POM-Root pores (P = 0.8516, 0.3629),
but conventional management again showed a shallower POM-
NS grayscale gradient than the other managements (P= 0.0096).
EDPI only varied by pore type, indicating that management had
no effect on this characteristic of grayscale value distributions
(Table 2).
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FIGURE 6 | (A) Mean difference from the background level for Os stained

samples as a function of distance from pores of biological origin with plant

roots (POM-Root) and with non-root derived POM (POM-NS) and from

non-biological pores (n = 6). The samples are from the biologically based

system. Positive values indicate increased presence of Os labeled SOM, while

negative values indicate a decrease in Os labeled SOM. (B) Normalized

grayscale values for all three studied pore types from all three management

practices. Dots are averages and the standard errors are equal to the size of

the dots at each distance. The solid black lines represent the background Os

labeled level (on A) and the background grayscale value (on B).

Pores Below Image Resolution
While the >2µm and the >13µm porosity differed among
the managements (P = 0.0435), the below image resolution
porosity (2–13µm) was the same for all three managements
(P = 0.4513; Figure 9). The >13µm porosity and the >2µm
porosity were greater in the biologically based management than
the conventional management, while the primary successional
management was not significantly different from either
management.

DISCUSSION

Image Grayscale Values as a Proxy for
SOM Patterns
Our findings indicate that grayscale values can be a useful
proxy for SOM, however, caution needs to be exercised in such

FIGURE 7 | Normalized Os values from Os stained samples (n = 6) and

grayscale values (n = 96) from non-stained samples as a function of distance

from POM-NS and POM-Root pores in the soil of the biologically based

management.

TABLE 2 | Effective distance of pore influence (EDPI) for the three studied pore

types averaged across all studied aggregates.

Pore type EDPI(µm)

Non-biological 74.2(5.0)a

POM-Root 123.3(6.2)b

POM-NS 122.7(6.2)b

Means were calculated based on 32 aggregates with 3 POM-NS, 3 POM-Root, and 5

non-biological pores from each aggregate. Standard errors are shown in parentheses.

Different letters denote significant differences among pore types at α = 0.05.

use. Specifically, in the studied soil, a reliable correspondence
between SOM gradients as determined via Os staining and
grayscale value gradients was achieved only for pores of biological
origin. As can be seen from Figure 7, the Os and grayscale
gradients corresponded to each other remarkably well, indicating
that grayscale gradients can be used as a suitable proxy when
exploring SOM patterns near pores of biological origin. It
should be noted that the EDPI observed (123µm) is consistent
with previously reported ranges for SOM distributions in soil
of 38–175µm determined through the use of Os staining
and geostatistical analyses, although these analyses were not
correlated to pores specifically (Rawlins et al., 2016). Previous
studies utilizing isotopically labeled materials have reported
movement of decomposition products as far as 5–10mm from
carbon sources during soil incubations (Gaillard et al., 1999,
2003; Toosi et al., 2017). However, these studies do not
specifically measure transport of DOM from individual pores,
but overall transport of isotopic labeled materials from its source,
which would account for the larger transport ranges seen in
previous studies. Direct imaging of the spatial distribution of
SOM near individual pores has previously been achieved using
NanoSIMS, however, at spatial scales much lower (nm) than
those used in this study. Mueller et al. (2012) showed that, in

Frontiers in Environmental Science | www.frontiersin.org 9 May 2018 | Volume 6 | Article 28

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Quigley et al. Spatial Heterogeneity in Soil Matrix

FIGURE 8 | Normalized grayscale values as a function of distance from

POM-NS pores for the three management practices (n = 96). Error bars

represent standard errors. The solid black line represents the background

grayscale value, i.e., the average grayscale value of the entire aggregate.

FIGURE 9 | Percentage of 2–13µm and >2µm pores in aggregates of the

three managements. Letters indicate significant differences between

managements for >2µm pores at α = 0.05. The differences in 2–13µm pores

were not statistically significant. Error bars represent standard errors.

the 5mm and <63µm samples used in their study, DOMmoved
∼2µm from a carbon source, but also found indications of
possibly larger spatial ranges at larger spatial scales. The 123µm
distancemay indicate the typical diffusion distance of DOM from
biological pores into the soil matrix in similarly textured soils.

For non-biological pores, Os staining and grayscale value
gradient trends did not match. The grayscale levels increased
with the distance from the pore, which could be interpreted
as increased SOM concentrations near the pore. Yet, the Os
gradients clearly indicate lower SOM levels in immediate vicinity
(<30 micron) of non-biological pores (Figure 6). This result was
hypothesized to be due to increased <13µm porosity closer to
non-biological origin pores. However, no difference in <13µm

FIGURE 10 | Percentage of 2–13µm pores as a function of distance from

pores of biological origin with plant roots (POM-Root) and with non-root

derived POM (POM-NS) and from non-biological pores (n = 8). Error bars are

standard errors at each distance.

porosity was observed among pore types (Figure 10). A possible
explanation for this discrepancy is an artifact of image processing
via 3DMA. 3DMA uses indicator kriging as a thresholding
method, while the distance measures were conducted using
Otsu’s method due to computational and time limits resulting
from the smaller image resolution. Indicator kriging performs
well for identifying pores well above the image resolution, but
may misidentify pores of sizes at or only slightly larger than
the image resolution (Figure 11). Thus, the decreases in the
grayscale values might be due to such missed porosity in non-
biological pores. For non-biological pores, indicator kriging fails
to identify small visible connections between larger pores, that
extend for several voxels between adjacent pores due to using the
surrounding voxels to help determine if a voxel is pore or not,
while Otsu’s method correctly identifies these pores because it
only uses the raw grayscale value to identify pores. This artifact
is less pronounced in biological pores as biological pores have no
such small connections and, therefore, the true extent of the pore
was accounted for.

The reason for this artifact to be present in pores of non-
biological but not biological origin can be explained by the
processes that create the pores of these two different types.
Biological pores are created through the radial compression of
the surrounding matrix as a root or macrofauna pushes through
the soil and is then supported by organic binding agents, such as
mucilage, mucus, and large amounts of DOM from decomposing
organic matter, resulting in a clear boundary between pore and
solid material (Gray and Lissmann, 1938; Greacen and Oh, 1972;
Greacen and Sands, 1980; Czarnes et al., 2000; Ruiz et al., 2017).
Additionally, Helliwell et al. (2017) found that while porosity
near roots increased initially in sandy soils, which is similar to the
texture of these soils, after 8 days of growth, porosity was found
to decreased adjacent to roots at this image resolution. Non-
biological pores are created through the shrinking and expanding
of clays, resulting in neither clear nor stable boundaries (Peng
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FIGURE 11 | Examples from the three different managements of how 3DMA missed pore material adjacent to non-biological pores, but identifies POM-Root and

POM-NS pores correctly. (A) is from the conventional management, (B) is from the biologically based, and (C) is from the primary successional. The blue outlines are

the pores identified by 3DMA. Red arrows on each figure indicate an example of missed porosity on each figure.

et al., 2007). However, using a different thresholding methodmay
overcome the artifact effect.

Spatial Patterns of Grayscale Values
The nugget to sill ratio values of the studied samples indicate
that approximately 50–60% of the spatial variability in grayscale
values of the solid material is accounted for at >13µm distances.
This matches the porosity data, where approximately 50% of
the porosity occurs at >13µm (Figure 9). Biologically based
management had the most porosity above 13µm and the
lowest nugget to sill ratio, while conventional management
had the lowest porosity above 13µm and the highest nugget
to sill ratio. Since nugget to sill ratio indicates the relative
amount of spatial dependence at voxel size, this may indicate a
connection between spatial dependence and porosity at image
scale. This would support our hypothesis that spatial variability
in the solid material of similar mineralogy is driven by pores.
However, more research would be necessary to confirm this
connection.

The lack of difference in spatial correlation ranges among
the aggregates from the three managements was surprising.
Tillage, utilized both in conventional and biologically based
management, homogenizes the soil, which, according to our
expectations and previous findings (Garrett, 2009), should be
manifested in greater spatial correlation range values. Lack of
such an effect in our samples may indicate that the spatial
correlation range in this soil is controlled more by the inherent
mineralogy and/or texture, which are similar for the soil of
all three managements, than by the management-driven SOM
differences. The EDPI was much smaller than the spatial
correlation range (123 vs. 312µm) lending further support to
the notion that the SOM distribution was not a driver of the
spatial correlation range values. Rawlins et al. (2016) investigated
the spatial ranges of SOM, pores, minerals, and bulk from µCT
images. While the spatial ranges for SOM (38–175µm) were
greater than mineral and pores alone, the spatial ranges for
bulk variograms were <250µm, which is congruent with our
results.
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Observed similarity in the nugget values from the three
studied managements was in agreement with the results of
Nunan et al. (2006), who found similar nuggets between three
different amendment managements. The lack of differences
between nuggets corroborates the below image resolution
porosity measurements where the below image resolution
porosity was similar between all three managements (Figure 9).
The differences observed in the overall porosity matched results
previously reported for these aggregates with biologically based
≥ primary successional ≥ conventional (Kravchenko et al.,
2015).

Greater overall spatial variability in conservational practices,
i.e., biologically based and primary successional managements,
manifested via greater sill values (Table 1), is likely a result of
management-induced changes in SOM. As mentioned above, soil
mineralogy and texture of the studied managements were very
similar, as well as their below image resolution porosity values
(Figures 9, 10). Yet, after almost 20 years of implementation,
the biologically based and primary successional management
practices resulted in higher SOM than the conventionally
managed practice (Paul et al., 1999; Senthilkumar et al., 2009).
Observed greater variability in grayscale values of biologically
based and primary successional managements suggests that
these SOM inputs were not uniformly distributed. This
assertion is supported by previous findings of Ananyeva et al.
(2013) who reported greater variability in soil carbon within
the macro-aggregates from primary successional management
as compared to conventional management practice; while
Feeney et al. (2006) observed that active biota, in particular
roots, increased spatial correlation of soil pores. Spatial
gradients in SOM associated with pores of biological origin
is one possible mechanism contributing to the increased
variability.

The increased spatial variability observed in the grayscale
values of the biologically based and primary successional
managements, if driven by SOM distributions, would indicate
increased occurrence of different microenvironments of
either increased or decreased amounts of SOM, while
conventional management would have less of these differing
microenvironments. Greater presence of biological pores
may result in an increased diversity of microenvironmental
conditions, including different levels of microbial accessibility,
nutrient availability, and potentially water and gas fluxes. Such
microenvironmental differences affect microbial activities
(Ekschmitt et al., 2005, 2008; Kravchenko and Guber,
2017); and greater SOM decomposition can be expected in
microenvironments conducive to high microbial activity, while
SOM protection in microenvironments where microbial activity
is reduced. This increase in microenvironment heterogeneity,
and therefore, greater presence of microsites where SOM might
not be available to microbial decomposers and/or reduction
of microbial decomposition due to anaerobic microsites
(Keiluweit et al., 2016, 2017), may be reflective of the increased
carbon protection/sequestration observed in the biologically
based and primary successional managements as compared to
conventional management (Paul et al., 1999; Senthilkumar et al.,
2009).

SOM Pattern in Relation to Soil Pores
Our Os results demonstrated that pores were the drivers of
SOM’s spatial variability in the studied soil (Figure 6). Biological
pores, had a clear spatial gradient of SOM with highest levels
in the vicinity of pores and decreasing when moving into
the surrounding solid material. Biological pores are observed
more frequently in biologically based and primary successional
managements as biological pores tend to be < 90 µm,
which have a higher abundance in these managements. Non-
biological pores, had a small decrease in SOM adjacent to
the pores, but otherwise their presence was not related to
SOM distribution patterns. Non-biological pores are observed
more frequently in conventional management as non-biological
pores tend to be 40–90µm in size, which have a higher
abundance in this management. Oxygen availability may control
the decrease in SOM observed adjacent to non-biological pores.
In the studied soil, <13µm pores (below image resolution
sizes) are water filled during most of the year. This would
hamper the diffusion of oxygen and lead to dominance of
anaerobic conditions, which can result in as much as a
10-fold decrease in decomposition rates (Keiluweit et al.,
2017). The likely outcome is, thus, organic’s decomposition
near large (20–300µm) pore boundaries, where oxygen is
available, and organic’s preservation in anaerobic (<13µm pore)
zones.

Effect of Management Practices on SOM
Pattern in Relation to Soil Pores
The effect of management on the SOM gradients as inferred
from the grayscale gradient was unanticipated. There were no
differences between managements observed for non-biological
and POM-Root pores. However, there was observed differences
between the managements in POM-NS pores. Biologically based
and primary successional managements had no differences
between POM-Root and POM-NS pores. Conversely, in
conventional management, POM-NS gradients tended to
retain decreased grayscale values over longer distances. It is
inferred that this decrease would be related to an increase
in SOM content. A possible explanation is that, per visual
observations. POM-NS within conventional soil aggregates
tended to be located closer to the interior of soil aggregates
and/or away from pores of >13µm size, while POM-NS in
biologically based and primary successional managements
were located closer to the aggregate exterior and/or nearer
to pores of >13µm size. Such isolation in conventional soil
would result in restriction of microorganism, water, and oxygen
access to POM-NS, resulting in incomplete decomposition. The
incomplete decomposition produces decomposition products
of a more hydrophobic nature. This hydrophobicity would
decrease the ability of these products to be transported by
water, resulting in a build-up of organic matter closer to the
pore. Toosi et al. (2017) observed that as maximum pore
size decreases the presence of SOM compounds with fewer
oxygen functional groups and greater aromaticity increases;
this observation supports our increased hydrophobicity
explanation.
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CONCLUSION

Analysis of grayscale gradients near pores of biological origin
were found to be a useful proxy for assessing SOM spatial
distribution patterns at micro-scale. Grayscale gradients of
non-biological pores, in contrast, were found to be different
from SOM gradients due to a pore identification artifact.
Utilizing a different thresholding method may overcome this
limitation.

Os and grayscale value gradients indicate increased SOM
concentrations adjoining biological pores, decreasing to
background levels as distance from the pore increases. The
average distance of positive influence of biological pores on
SOM levels was 123µm. Os gradients indicate that SOM
concentrations decreased in the direct vicinity of non-biological
pores then returning to the background levels. The average
distance of negative influence of non-biological pores on SOM
levels was 30µm.

Soil material without >13µm pores was more variable
in its grayscale values in biologically based and primary
successional management than in conventional management
practice. The greater variability is believed to be driven
by SOM spatial distribution patterns, which reflect
presence of soil pores, especially, pores of biological
origin. This spatial variability likely results in greater
variability of microenvironmental conditions for microbial
functioning with possible implications for soil carbon
protection.
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