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Microbial mechanisms controlling cellulose degradation in soil habitats remains a
critical knowledge gap in understanding and modeling terrestrial carbon-cycling. We
investigated land management and soil micro-habitat influences on soil bacterial
communities and distribution of cellulose-degrading enzyme genes in three bioenergy
cropping systems (corn, prairie, and fertilized prairie). Within the soil, aggregates have
been examined as potential micro- habitats with specific characteristics influencing
resource partitioning and regulation, thus we also investigated genes associated with
cellulose degradation within soil aggregate fractions from the fertilized prairie system.
Soail bacterial communities and carbon-cycling gene presence varied across land
management and soil microhabitats. Examination of genes specifically involved in
cellulose-degradation pathways showed high levels of redundancy across the bioenergy
cropping systems, but medium macroaggregates (1,000-2,000 wm) supported greater
cellulose-degrading enzyme gene abundance than other aggregate fractions and whole
soil. In medium aggregates, the enriched cellulose-degrading genes were most similar
to genes previously observed in Actinobacteria. These findings represent gentic potential
only, and our previous work on the same samples found elevated cellulase exo-enzyme
activity in microaggregates. These contrasting results emphasize the importance of
measuring community, functional genes, and metabolic potentials in a coordinated
manner. Together, these data indicate that location within the soil matrix matters. Overall,
our results indicate that soil aggregate environments are hot-spots that select for
organisms with functional attributes like cellulose degradation, and future work should
further explore micro-environmental factors that affect realized C-cycling processes.

Keywords: microbiome, carbon cycling, metagenomes, aggregates, prairie, bioenergy

INTRODUCTION

Cellulose comprises 40-60% of plant residues (Lynd et al., 2002), contributing more than 70 x 10°
Mg of carbon (C) annually to the global C budget (Paul, 2014). Cellulose is a simple polymer that
forms insoluble crystalline microfibrils that are highly resistant to enzymatic hydrolysis (Béguin
and Aubert, 1994). Therefore, a suite of enzymes is involved in depolymerizing cellulose into
molecules that can be assimilated by soil microbes (Lynd et al., 2002; Figure 1A). Generally
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cellulose degraders are not able to produce the full suite of
enzymes involved in breaking down cellulose; therefore, it is
considered a community process. Simultaneously, across and
within phyla, multiple genes encode for similar enzymatic
processes, contributing to functional redundancy within a
microbial community. For example, many polysaccharide
degraders harbor multiple glycoside hydrolases, promoting the
coordinated activity among multiple enzymes (Wilson, 2011;
Berlemont and Martiny, 2015). Further, many organisms have
the ability to degrade oligosaccharides, but few lineages have been
identified with enhanced potential for complex carbohydrate
decomposition (Berlemont and Martiny, 2015; Berlemont, 2017).
In fact, observations of complex carbohydrate deconstruction
is limited to only a few lineages of potential polysaccharide
degraders, while the majority of opportunistic microbes
participate indirectly by maintaining low oligosaccharide
concentrations to prevent enzyme inhibition (Xu et al., 2013;
Berlemont and Martiny, 2016).

Recent studies considering large-scale patterns in
microbial biogeography reveal that different locations
harbor microorganisms that differ in genotypic composition
(Langenheder and Prosser, 2008; Hanson et al, 2012). Yet
few studies have considered the influence of the soil matrix
itself, which contains micro-scale environments with stable
soil structures that differ in size and breadth of resources
(Tisdall and Oades, 1982; Six et al., 2001). This heterogeneity
in resource availability can influence community assembly
and the abundance and expression of genes contributing
to a specific function (Salles et al., 2009). Within the soil
matrix, soil aggregates have been examined as potential
microbial habitats (or community niche; Leibold, 1995), where
the level of complementarity in resource niche partitioning
regulates the relative abundance of functional genes with in
the soil matrix. Consequently, much of what we know of
soil-associated carbohydrate decomposition has stemmed from
the isolation of soil microbes that have been characterized with
enhanced complex carbohydrate decomposition or potential
enzyme measurements of cellobiohydrolase and B-glucosidases
to understand how cellulose decomposition varies across
ecosystems (Sinsabaugh et al, 2008) and land management
regimes (Bowles et al., 2014).

Some studies have measured the potential activity of
extracellular enzymes and taxonomic diversity among soil
aggregate fractions (Marx et al., 2005; Allison and Jastrow,
2006; Bailey et al., 2012; Kim et al,, 2015). In a comparison
of individual soil aggregates, relative abundance of bacterial
family Chitinophagaceae was greater in aggregates with high
p-glucosidase activity (Bailey et al., 2013), suggesting that
community membership of a functional group at the micro-scale
may play a role in the potential for soil carbon cycling. Further
evidence for variation among soil aggregates was observed in
a mollisol under corn, prairie, and fertilized prairie bioenergy
cropping systems in central Iowa, where increased plant inputs in
the prairies correlated with increased potential cellobiohydrolase
enzyme activity and microbial biomass carbon pools (Bach and
Hofmockel, 2015, 2016). Within all three bioenergy systems,
total carbon was greatest in soil macroaggregate fractions

in contrast to greater potential cellobiohydrolase activity in
microaggregates (<250 um) (Bach and Hofmockel, 2016).
Further exploration of the soil microbial communities in
these aggregates revealed that the bacterial (16S rRNA) and
fungal (ITS) communities showed greater microbial diversity
and distinct microbial communities in microaggregate fractions
(Bach et al., 2018), evidence of the role of microbial membership
within aggregate fractions to observed differences in enzyme
activity potentials.

To identify genes encoding enzymes involved in cellulose
degradation and the phylogenetic distribution of their bacterial
hosts across cropping systems and aggregate scales, we performed
full metagenomic sequencing on whole soil from three bioenergy
systems (i.e., corn, prairie, and fertilized prairie) and five
soil aggregate fractions from a fertilized prairie system. The
fertilized prairie soils were strategically selected to examine
aggregate-scale differences because our previous work showed
it supports greater extracellular enzyme activity and microbial
biomass than the corn and unfertilized prairie systems (Bach and
Hofmockel, 2015). We hypothesize that cellulose degradation
is enhanced in prairie systems due to enriched abundance of
genes encoding for key cellulose-degrading enzymes, particularly
more energetically expensive endocellulases, and support more
phyla contributing those genes. Further, we hypothesize that
cellulose degrading genes are not evenly distributed among
micro-habitats, or aggregate fractions, due to differences in
the distribution of carbon among aggregates. Specifically,
we expected to see more genes encoding cellulose-degrading
enzymes in microaggregates, where we previously observed
increased cellobiohydrolase activity (Bach and Hofmockel,
2016).

MATERIALS AND METHODS

Soil Sampling and Sequencing

Soil samples were collected at the Comparison of Biofuel Systems
(COBS) research site at Iowa State University (Ames, IA).
Replicated plots growing continuous corn (C, corn planted every
year without rotation), prairie (P, prairie without fertilizer),
and fertilized prairie (FP, prairie with fertilizer, 84 Kg N ha™!)
were studied. The study site is a randomized complete block
design with four replicate blocks containing each treatment
(n = 12). Three replicate soil samples (5.5 cm diameter, 10 cm
deep) were collected from each plot in July, 2012. Replicate
cores from each plot were pooled and physically sieved into
five different aggregate sizes after collection [whole soil, large
(>2,000 jum), medium (1,000-2,000 um), small (250-1,000 pwm),
and micro aggregate (<250 wm)] as previously described (Bach
and Hofmockel, 2014). Among the resulting 60 samples (5
fractions x 4 replicates x 3 blocks), a total of 44 samples were
selected for DNA extraction for this study, including whole soil
from all plots and all fractions from fertilized prairie. DNA was
extracted using PowerSoil®-htp DNA TIsolation Kit (MoBio,
Carlsbad, CA, United States) as previously described (Bach et al.,
2018). Paired-end metagenome libraries (read length 100 bp)
were prepared and sequenced using HiSeq at Argonne National
Laboratory. All 44 metagenomes are publicly available at the
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FIGURE 1 | (A) Cellulose decomposition enzymes from the KEGG database. Breaking down cellulose microfibrils requires endoglucanases that randomly attack the
cellulose chain (EC 3.2.1.4) and exoglucanases including cellodextrinases (EC 3.2.1.74) that cleave from the end of the cellulose chains releasing cellobiose.
Cellobiohydrolases (EC 3.2.1.91) are endoglucanases that can degrade cellulose or cellodextrin to cellobiose. Finally, B-glucosidases (EC 3.2.1.21) cellobiose
phosphorylase (2.4.1.20) and 6-phospho-B-glucosidase (EC 3.2.1.86) release glucose from cellobiose and other soluble cellodextrins. (B) Abundance of reads
encoding for KEGG enzymes in corn (C), unfertilized prairie (P), and fertilized prairie (FP) metagenomes. (C) Abundance of reads encoding for KEGG enzymes in
aggregates from fertilized prairie (FP) metagenomes. WS, whole soil; LM, large; MM, medium; SM, small; Micro, micro aggregates. Normalized counts estimated with
DeSeq?2 package.

MG-RAST Metagenomics Analysis Server (https://www.mg-
rast.org/mgmain.html?mgpage=project&project=mgp13620),
Supplementary Table 1). In total, this study represents a total of
3.1 billion reads (average 71 million reads per sample).

Analysis of Metagenomes

Sequences were aligned to the KEGG prokaryote and eukaryote
protein database (obtained January 17, 2017) using Diamond
(v0.7.9.58), requiring a minimum E-value threshold of 0.001.
The best-matching amino acid sequence with these criteria
was selected as the KEGG protein annotation. Count data for
the abundance of genes encoding for enzymes was analyzed
with DESeq2 (version 1.16.1). Taxonomy associated with
metagenomic reads was assigned by nucleotide homology to
genes encoding enzymes in the KEGG database, requiring
97% similarity and a minimum E-value of le-5 (BLAST+,
version 2.2.30). For estimation of taxonomy, abundances
were calculated as total reads associated with an annotation
normalized by the total number of reads in each metagenome.
To characterize cellulose degradation, a subset of KEGG enzymes
associated with cellulose decomposition were selected within
the starch and sucrose metabolism pathway (Kanehisa et al,
2017), including endoglucanases (EC 3.2.1.4), B-glucosidases

(EC 3.2.1.21), 6-phospho-B-glucosidase (EC 3.2.1.86), cellobiose
phosphorylase (EC 2.4.1.20), cellobiohydrolases (EC 3.2.1.91)
(Figure 1A). Co-occurrence analysis was used to understand
interactions of genes associated with cellulose decomposition.
Spearman correlation coefficient values were calculated using co-
occurrence software FastCoOccur (version 0.0.1) (https://github.
com/germs-lab/FastCoOccur), which is based on methods
previously described (Williams et al., 2014). Nodes representing
genes associated with KEGG enzymes were considered significant
if the Spearman’s rank correlation coefficient, p > 0.7 or smaller
than —0.7 and the P < 0.01. Visualization of networks was
performed using the Force Atlas layout of Gephi software
(version 0.9.2).

Statistical Analyses

All statistical analysis was performed in R v.3.4.1. Phyloseq
(version 1.20.0) (McMurdie and Holmes, 2013) was used to
for metagenome comparisons. All NMDS ordinations were
plotted based on Bray-Curtis distances, and significance between
treatments was determined based on permutational multivariate
analysis of variance (PERMANOVA) using Adonis function in
vegan package (version 2.4-4) (Oksanen et al., 2017). Cellulose
decomposition genes that were significantly different between

Frontiers in Environmental Science | www.frontiersin.org

October 2018 | Volume 6 | Article 107


https://www.mg-rast.org/mgmain.html?mgpage=project&project=mgp13620
https://www.mg-rast.org/mgmain.html?mgpage=project&project=mgp13620
https://github.com/germs-lab/FastCoOccur
https://github.com/germs-lab/FastCoOccur
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Choi et al.

Linking Genes to Carbon Metabolism

treatments were determined using DESeq2 (version 1.16.1) (Love
et al., 2014), requiring p < 0.01. All analysis associated with this
study are available at https://github.com/germs-lab/cobs-study.

RESULTS

Genes Associated With Cellulose
Decomposition Vary in Abundances

Between Corn and Prairies

For each soil sample, a metagenome library was sequenced,
and extracellular enzyme activity was measured. Specifically,
carbon-degrading enzymes B- glucosidase and cellobiohydrolase
were measured, and we observed greater potential activity
of both in fertilized and unfertilized prairie crops compared
with corn (Bach and Hofmockel, 2015, 2016). To better
understand the genes associated with the observed differences
in enzyme potentials, we sequenced metagenomes from the
three crops (Howe et al, 2016). The microbial community
membership between the corn, prairie, and fertilized prairie
were compared based on the 16S rRNA gene distribution
in soil metagenomes. We observed significant differences
between 16S rRNA genes identified in corn and both prairie
metagenomes (prairie vs corn: p = 0.0021, corn vs fertilized
prairie: p = 0.0001) and between prairie and fertilized prairie
(p = 0.0173; Supplementary Figure 1), suggesting distinct
microbial membership among microbiomes. Comparing the
distribution of all KEGG genes in the three cropping systems,
we observed significant differences between corn and both
prairie crop systems (prairie vs corn: p = 0.0098, corn vs
fertilized prairie: p = 0.0007), but no significant differences
between unfertilized and fertilized prairie metagenomes (p = 0.4;
Supplementary Figure 2).

To investigate cellulose degradation in these cropping
systems, we selected genes associated with the starch and
sucrose metabolism pathway (KEGG map00500) and five
cellulose degrading enzymes (Figure1A). These enzymes
were selected because of their consistent detection across soil
metagenomes. Overall, genes associated with these cellulose
degradation enzymes comprised only a small fraction of the
soil metagenomes, ~0.5% of total reads. Among these, genes
associated with PB-glucosidases (EC 3.2.1.21) were the most
abundant, with an average abundance of 23,903 reads per total
number of reads in fertilized prairie soil metagenomes (average,
normalized), followed by endoglucanases (EC 3.2.1.4; 3,954
average reads), 6-phospho-B-glucosidase (EC 3.2.1.86; 1,481
average reads) and cellobiose phosphorylase (EC 2.4.1.20; 629
average reads) (Figures1B,C). Cellulose degrading enzyme
genes observed in low abundance were cellobiohydrolases
(EC 3.2.1.91; 306 average reads) (Figure 1B). In comparison,
the range of abundances of reads associated with any genes
associated with a KEGG EC was 0 to 254,355, with an average
of 933. Overall, the relative abundance of each cellulase gene
was similar in all three cropping systems, suggesting that
these genes are generally conserved within the same soil type
across land management differences (Supplementary Figure 3).
We identified the taxonomy associated with these cellulase

genes in the three cropping systems, observing that similar
bacteria are associated with genetic potential for cellulose
decomposition in these soils (Supplementary Figure 4). Overall,
25 phyla were associated with the 1,214 genes encoding the six
enzymes associated with cellulose degradation (Figure 2). In
all soils, we identified that Actinobacteria and Proteobacteria
comprise the majority of phyla associated with endoglucanases
(EC 3.2.1.4) and B-glucosidases (EC 3.2.1.21), while mainly
Proteobacteria are associated with genes encoding for 6-
phospho-B-glucosidase (EC  3.2.1.86).  Cellobiohydrolases
(EC 3.2.1.91) was associated with mainly Actinobacteria and
Ascomycota (Figure 2).

Genes Associated With Cellulose
Decomposition Vary in Abundances in
Aggregates of Fertilized Prairie

Metagenomes

To examine distribution of cellulase gene abundance within the
soil matrix, four aggregate fractions and whole soil metagenomes
were compared from the fertilized prairie treatment. Laboratory
measures of extracellular enzyme activity across these same
aggregate samples found increased cellobiohydrolase activity
in microaggregates (<250 wm) compared with other aggregate
fractions (Bach and Hofmockel, 2016). To identify functional
differences in aggregates, we compared KEGG genes in fertilized
prairie metagenomes. In contrast to 16S rRNA gene distributions
(Supplementary Figure 5, p-value between 0.28 and 0.79), we
observed significant differences in gene abundances associated
with KEGG enzymes (Supplementary Figure 6, medium vs
other aggregates: p < 0.05; micro vs large: p = 0.035; among
other aggregate: p > 0.05). For KEGG genes specific to cellulose
degradation (Figure 1A), we observed consistent contributions
of genes among aggregate fractions (Supplementary Figure 7).
Further, the abundance of these genes in micro, small, and
large aggregates were similar to whole soils (Figure 1C);
however, in contrast to other aggregates, medium aggregates
were observed to consistently be enriched for genes associated
with enzymes in the cellulose degradation pathway (p < 0.05,
Figure 1C). Specifically, we observed that genes encoding for
enzymes cleaving cellobiose (EC 3.2.1.91) and subsequently D-
glucose (EC 3.2.1.21, EC 2.4.1.20) were significantly enriched in
medium aggregates compared to other soil fractions. Further,
genes encoding for enzymes associated with extracellular
cellulose degradation, specifically extracellular cellobiose (EC
3.2.1.86), were also observed in significantly greater abundances
in medium aggregate soils (Figure 1C). This contrasts with
our direct measures of extracellular cellobiose degradation,
which were elevated in microaggregates (Bach and Hofmockel,
2016).

To further characterize the gene abundance differences we
observed in medium aggregates, we identified the taxonomy
of cellulose degradation genes observed to be significantly
different in medium aggregates. In these aggregates, we
observed a significantly greater abundance of genes associated
with Actinobacteria in four cellulose decomposition enzymes
[endoglucanases (EC 3.2.1.4) and B-glucosidases (EC 3.2.1.21),
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6-phospho-B-glucosidase (EC 3.2.1.86), cellobiose phosphorylase (EC 2.4.1.20), and cellobiohydrolases (EC 3.2.1.91) in fertilized prairie aggregate metagenomes.

6-phospho-B-glucosidase (EC 3.2.1.86), cellobiohydrolases (EC
3.2.1.91), p < 0.01; Figure 3]. Overall, Actinobacteria comprised
on average 7.5% of the taxonomy observed in soil (based
on 16S rRNA gene abundances), suggesting despite its low
presence in bulk soils, it may play an important role in
medium aggregates. In endoglucanases (EC 3.2.1.4) and f-
glucosidases (EC 3.2.1.21), genes associated with Streptophyta
and Basidiomycota were observed at significantly greater
abundance in medium aggregates (p < 0.01), suggesting that
fungal organisms may play important roles in decomposing
cellulose in the soil (Figure 3).

Genes Potentially Interacting With
Cellulose Enzymes in Medium Aggregates

in Fertilized Prairie Metagenomes

Broadening out beyond only cellulose decomposition enzymes,
we examined the 3,546 genes within the KEGG database
and found that 346 genes were observed to be significantly
different between medium aggregates and whole soil. There
were similar numbers of genes observed to be more or
less prevalent in medium aggregates. A total of 162 genes
(associated with 146 KEGG pathways) were observed enriched
in medium aggregates relative to other aggregates and whole
soils (Supplementary Figure 8A). In contrast, 184 genes
(associated with 204 KEGG pathways), were less abundant
in medium aggregates (Supplementary Figure 8C). Genes
associated with similar KEGG pathways were observed as both

increased and decreased in medium aggregates. Similar results
were observed in carbohydrate metabolism associated genes
(Supplementary Figures 8B,D). In other words, we could not
identify specific non-cellulose processing pathway genes that
were enriched in medium aggregates. Consequently, to better
understand the genes unique to medium aggregates, we next
evaluated genes of enzymes that may interact with enzymes
associated with cellulose degradation.

We performed a co-occurrence network analysis on all genes
within metagenomes that were correlated to genes encoding
enzymes in the cellulose degradation pathway (Figure 1). In total,
we identified 192 and 121 KEGG genes that were either positively
or negatively correlated with cellulase genes, respectively
(Figure 4). We next evaluated whether these KEGG enzyme
genes were significantly different (increased or decreased, p
< 0.01) within medium aggregate metagenomes compared
to other aggregates and bulk soil. A total of 54 positively-
correlated KEGG genes were observed to be enriched in medium
aggregate compared with whole soil (Figure 4A, green nodes,
Supplementary Table 2A), and 42 negatively-correlated genes
decreased abundances in medium aggregates (Figure 4B, red
nodes, Supplementary Table 2B). EC class 4 (Lyases) were not
observed in 54 positively-correlated genes that were enriched in
medium aggregates. However all six EC classes were observed
in negatively-correlated relationships with decreased abundance
in medium aggregates. Among EC class 3 (Hydrolases), six
of glycosidase class (EC 3.2.1.-) were observed in positive-
correlations, but not observed among the negative-correlations.
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DISCUSSION

Microbial mechanisms controlling cellulose degradation in soil
habitats remains a critical knowledge gap in understanding and
modeling terrestrial C-cycling. Our metagenomic investigation
of mollisols under three bioenergy cropping systems in
central Towa demonstrates that soil bacterial communities
and KEGG associated genes vary across land management
and soil microhabitats. Examination of genes specifically
involved in cellulose-degradation pathways showed high levels of
redundancy across the bioenergy cropping systems, but medium
macroaggregates (1,000-2,000 pm) supported greater cellulose-
degrading enzyme gene abundance than other aggregate fractions
and whole soil. In contrast, direct measures of potential
cellobiohydrolase activity in these same soil samples were
observed to be elevated in microaggregate fractions (Bach
and Hofmockel, 2016). Hence, realized C-cycling functions
like cellulose degradation do not necessarily reflect observed
differences in microbial genetic potential (Frossard et al., 2012).
Similar pattern is observed in higher level of taxonomic group
(Supplementary Figure 9). Together, these data indicate that
genetic potential and realized cellulase activity are redundant
across bacterial taxa that respond to changes in land management
but are sensitive to changes in soil microbial habitat.

Bacterial Communities and Cellulose
Degradation Potential Differ Under Land

Management
At an ecosystem scale, bacterial communities responded to
stark differences in root input quantity and quality among the

three bioenergy cropping systems. Corn systems had the least
root biomass, fertilized prairie produced 8 times more root
biomass than corn in 2011, and unfertilized prairie produced
more than twice as much root biomass as unfertilized prairie
(Dietzel et al,, 2015). In addition, corn roots had a greater
cellulose index than either prairie treatment, and unfertilized
prairie roots had greater hemicellulose index, driven by greater
concentrations of arabinose, galactose, glucose, and xylose (Rivas
et al., 2014). These differences in root inputs likely contributed
to our observed increased extracellular enzyme activity in both
prairie systems compared with corn (Bach and Hofmockel, 2015)
as well as the differences in the bacterial communities and KEGG
C-cycling gene profiles among the three systems observed in
this study (Supplementary Figure 1). However, we found genes
associated with cellulose degradation pathways were relatively
rare in the full metagenomes, only ~0.5% of total reads and were
similarly distributed among the three cropping systems.

Across the cropping systems, there are several reasons the
capacity for cellulose degradation may be highly conserved.
First, these prairie plantings were only 4 years old at the
time of sampling and had been managed as corn fields for
many decades before the planting, so we may be observing
a legacy effect on cellulose degradation capacity (Kulmatiski
and Beard, 2011). Reciprocal transplant of organic matter
among agricultural and natural systems detected management
system effects on microbial consumption of organic matter,
implying land use and organic matter inputs influence carbon
decomposition (Hunting et al., 2017). Secondly, we did observe
taxonomic shifts in bacterial communities among the systems,
supporting several others studies showing functional redundancy
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Positively Correlated Enzymes in KEGG Pathway
(p <0.01,rho>0.7)

Cok. . MEEENER
O

Negatively Correlated Enzymes in KEGG Pathway
(p <0.01, rho <-0.7)

FIGURE 4 | Co-occurrence network of KEGG enzymes with significant interactions among cellulose decomposition enzymes. (A) Positively correlated KEGG
enzymes with an enzyme in the cellulose decomposition pathway. Green nodes represent KEGG enzymes that are enriched in medium aggregates compared to
whole soil. (B) Negatively correlated KEGG enzymes with an enzyme in the cellulose decomposition pathway. Red nodes represent KEGG enzymes that are observed
in lower abundances in medium aggregate compared to whole soil. Thickness of edges represent the strength of correlation between nodes.

in bacterial and fungal communities (Fierer et al., 2013; Talbot
et al,, 2014). Given cellulose-degrading enzyme genes were
such a small proportion of the total metagenome, it is likely
these genes are hosted by a small portion of the total bacterial

community, and that portion may not be driving taxonomic
shifts in the full community. Small changes in the phyla housing
B-glucosidases (EC 3.2.1.21), endoglucanases (EC 3.2.1.4), 6-
phospho-B-glucosidase (EC 3.2.1.86), cellobiose phosphorylase
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(EC 2.4.1.20), and cellobiohydrolases (EC 3.2.1.91) indicate
similar levels of functional genes were found overall in all the
cropping systems, but were contributed by different bacterial
community members (Supplementary Figure 4). Differences in
cellulose input levels may also lead to differences in gene
expression and/or enzyme efficiency. It is also possible that other
soil organisms such as fungi, nematodes, collembolan, and/or
earthworms may be the primary consumers of plant inputs,
performing the initial stages of cellulose decomposition within
their guts. To better understand micro-scale processes that may
influence ecosystem-scale shifts in community and cellulose
decomposition, we investigated microbial metagenomes from
within soil aggregates.

Medium Macroaggregates Enriched in

Genes Related to Cellulose Degradation

We identified medium macroaggregates as a “hot-spot” for
genetic potential for cellulose degradation. Previous work on
these same samples indicated microaggregates, not medium
macroaggregates support elevated C-cycling enzyme activity and
distinct bacterial or fungal communities(Bach and Hofmockel,
2016; Bach et al., 2018). Other studies have also found contrasting
results. Allison and Jastrow (2006) also found elevated cellulase
activity within microaggregates, but Kim et al. (2015) found
no relationship between extracellular enzyme activity rates
and microbial community composition within soil aggregates.
Investigating enzyme activity within individual macroaggregates
(<1,000 pm diameter), revealed higher cellulase activity in small
volume macroaggregates, and microbial communities within
aggregates with high B-glucosidase activity did not differ in
overall microbial diversity and richness, but did differ in relative
abundance of Chitinophagaceae family of bacteria (Bailey et al.,
2013).

In this study, enrichment of genes encoding cellulose
decomposing enzymes were predominantly associated with
Actinobacteria  and  Proteobacteria. Previous field based
experiments have noted the importance of Actinobacteria and
Proteobacteria for predicting the activities of cellobiohydrolase
activity (Trivedi et al., 2016). Phylogenetic investigations also
support a predominance of cellulolytic capabilities among the
order Actinomycetales, noting the trait-based advantage of
filamentous morphology that preferentially enables penetration
of cellulosic substrates within heterogeneous environments
(Lynd et al, 2002). Enrichment of cellulose degrading
Actinobacteria within the medium aggregates support the
concept of niche differentiation, where sources of cellulose, such
as plant residues, may accumulate in macroaggregates (Six et al.,
2000, 2002) creating separate habitats that harbor functionally
distinct communities. Here we build upon this understanding of
macroaggregates along with previous evidence from the COBS
field experiment by demonstrating microsite differences in
cellulose degrading communities, genetic potential, and enzyme
activity across soil aggregate fractions within whole soil.

Cellulose degradation is a community process involving
multiple enzymes that cleave cellulose molecules from the end
(exoglucanases) and within (endocellulases) of the polymer

(Figure 1A). Endocellulases are critical to decomposition,
but energetically expensive, because cellodextrin cannot be
assimilated intact, due to the large size. Yet breaking the interior
bonds within a cellulose chain is essential for generating multiple
fragments that can be cleaved into assimilable substrates. Our
results indicate that despite the strong influence of endocellulases
on cellulose decomposition, and in turn ecosystem functioning,
these genes are rare, and may provide a keystone function
(Chapin et al,, 2000; Crowther et al, 2013). Endocellulases
are much less prevalent relative to B-glucosidases, which are
abundant and broadly distributed among taxa. In general, we
observed that the proportion of phyla associated with cellulose
degradation was consistent among soil aggregate fractions
throughout the pathway of genes, including Actinobacteria,
and Proteobacteria with contributions from Basidiomycota and
Ascomycota.

While we observed that aggregate-specific dynamics
resulted in the enrichment of genes associated with cellulose
decomposition, we could not identify these trends for specific
metabolic pathways. This result emphasizes the complexity of
organic matter decomposition pathways in soil and the difficulty
to unraveling microbial multifunctionality. Breaking down
cellulose microfibrils requires endoglucanases that randomly
attack the cellulose chain, but do not necessarily produce
assimilable substrates (EC 3.2.1.4). Subsequently exoglucanases
including cellodextrinases (EC 3.2.1.74) cleave from the end
of the cellulose chains releasing cellobiose. Cellobiohydrolases
(EC 3.2.1.91) are endoglucanases that can degrade cellulose or
cellodextrin to cellobiose. Finally, B-glucosidases (EC 3.2.1.21)
cellobiose phosphorylase (2.4.1.20) and 6-phospho-B-glucosidase
(EC 3.2.1.86) release glucose from cellobiose and other soluble
cellodextrins (Schimz et al., 1983; Singh and Hayashi, 1995;
Lin et al, 2012; Montella et al,, 2017). In addition to genes
encoding for these enzymes, we found many genes that positively
or negatively correlated with cellulose decomposition genes.
However, the vast majority of these genes are not studied in
association with cellulose decomposition. Our findings suggest
hypotheses for future researcher aimed at understanding the
genetic mechanisms underpinning microbial decomposition
of cellulose in soil. Our results indicate that this metabolism
is accomplished with diverse microbes with similar functions
operating distinctively depending on their microenvironment.

CONCLUSIONS

Cellulose-degradation is an important, yet complex process
involving multiple pathways and microbial species. Both natural
and human-induced alterations can therefore constrain this
process in numerous ways. Our deep exploration of soil
metagenomes showed that bacterial communities were larger and
more diverse in prairie plantings, across all aggregate sizes, and
more diverse in microaggregates, regardless of land management.
Presence of cellulose-degradation pathways were similar across
land management regimes, but were modestly enriched in
medium macroaggregate habitats. This finding contrasts our
previous work on the same samples, which found elevated
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cellulase exo-enzyme activity in microaggregates, emphasizing
the importance of considering the potential nature of many
standard soil measures. One consistent point in these data is that
spatial structuring within the soil matrix differentiates the genetic
and enzymatic potential as well as the distribution of organisms
within the soil. Soil aggregate environments have substrate hot-
spots that select for organisms with functional attributes. To
identify the mechanisms driving realized functions in-situ, future
work will continue to incorporate molecular information and
substrate inputs that captures the pools and fluxes of metabolites
and enzymes expressed by organisms under field conditions.
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