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The rhizosphere is the interface between plant roots and soil where intense, varied

interactions between plants and microbes influence plants’ health and growth through

their influence on biochemical cycles, such as the carbon, nitrogen, and iron cycles.

The rhizosphere is also a changing environment where oxygen can be rapidly limited

and anaerobic zones can be established. Microorganisms successfully colonize the

rhizosphere when they possess specific traits referred to as rhizosphere competence.

Anaerobic respiration flexibility contributes to the rhizosphere competence of microbes.

Indeed, a wide range of compounds that are available in the rhizosphere can serve as

alternative terminal electron acceptors during anaerobic respiration such as nitrates, iron,

carbon compounds, sulfur, metalloids, and radionuclides. In the presence of multiple

terminal electron acceptors in a complex environment such as the rhizosphere and in the

absence of O2, microorganisms will first use the most energetic option to sustain growth.

Anaerobic respiration has been deeply studied, and the genes involved in anaerobic

respiration have been identified. However, aqueous environment and paddy soils are

the most studied environments for anaerobic respiration, even if we provide evidence

in this review that anaerobic respiration also occurs in the plant rhizosphere. Indeed,

we provide evidence by performing a BLAST analysis on metatranscriptomic data that

genes involved in iron, sulfur, arsenate and selenate anaerobic respiration are expressed

in the rhizosphere, underscoring that the rhizosphere environment is suitable for the

establishment of anaerobic respiration. We thus focus this review on current research

concerning the different types of anaerobic respiration that occur in the rhizosphere.

We also discuss the flexibility of anaerobic respiration as a fundamental trait for the

microbial colonization of roots, environmental and ecological adaptation, persistence and

bioremediation in the rhizosphere. Anaerobic respiration appears to be a key process for

the functioning of an ecosystem and interactions between plants and microbes.

Keywords: rhizosphere competence, anaerobic respiration, terminal electron acceptors, respiratory pathways,

rhizobacteria, root colonization, adaptation
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INTRODUCTION

Bacteria are ubiquitous and occupy a very wide variety of
ecological niches in particular the plant rhizosphere, the volume
of soil influenced by root exudates (Kai et al., 2016). The
rhizosphere is a densely populated soil fraction rich in carbon,
insofar as 10–40% of photosynthetic fixed carbon is released
through the root into the surrounding soil named “root-
adhering soil” (Marschner, 1995; Haichar et al., 2014). As a
result of this carbon flux, bacteria are attracted to the surface
of the roots that they successfully colonize if they possess
specific genetic and physiologic traits named “rhizosphere
competence.” These traits shape bacterial growth and activity
and are influenced by environmental factors, such as the pH,
soil structure, water content, oxygen flux and nutrient availability
(Philippot et al., 2013). Oxygen flux is one of the most
changing factors in the rhizosphere, as plants can be subjected
to aerobic or microaerophilic conditions followed by alternating
exclusively anoxic conditions or anaerobic conditions, as in soil
aggregates (Philippot et al., 1996). This variation in oxygen
concentration constrains bacteria to adapt their physiology and
to develop flexible metabolic pathways, such as the respiration
of compounds other than oxygen when it is lacking. Indeed,
bacterial anaerobic respiration is one of the most flexible and
diverse metabolic processes (Hong and Gu, 2009). Among
microbes, a wide range of compounds can serve as terminal
electron acceptors (TEAs), including oxygen (the most energetic
one); nitrogen oxyanions and nitrogen oxides (Zumft, 1997;
Kuypers et al., 2018); carbon compounds, such as fumarate
(Kröger, 1978; Alves et al., 2015); transition metals, such as
Fe(III) and Mn(IV) (Lovley and Phillips, 1987; Kasai et al.,
2015); metalloid oxyanions, such as selenate and arsenate (Macy
et al., 1996; Switzer Blum et al., 1998; Glasser et al., 2018);
radionuclides, such as U(VI) (Lovley et al., 1991; Marshall et al.,
2006); and elemental sulfur and sulfur oxyanions (Klimmek
et al., 1991; Eller et al., 2018). These TEAs are more or less all
available in the rhizosphere and can serve for microbial anaerobic
respiration. The appearance, development and evolution of such
respiration have been the subjects of a numerous studies (Lovley
and Coates, 2000; Richardson, 2000; Philippot, 2002; Kuypers
et al., 2018). Respiratory chains have already been deeply studied
in several bacteria (Richardson, 2000). Some bacteria present
high anaerobic respiration flexibility through the use of different
TEAs for growth. For example, Deltaproteobacteria exhibit
considerable flexibility in respiratory processes, including sulfate
reduction, iron reduction, fermentation, and dehalogenation
(Sanford et al., 2002). Indeed, strains of Geobacter can
at minimum use Fe(III), Mn(IV), nitrate, fumarate, arsenic
oxyanions, and U(VI) as TEAs (Lovley et al., 1991). Shewanella
oneidensis is even more versatile than Geobacter and can
use additional TEAs, such as sulfur oxyanions and selenium
oxyanions (Beliaev et al., 2005; Klonowska et al., 2005). Due
to the high flexibility of anaerobic respiration, microorganisms
affect a number of biogeochemical cycles, such as those for N,
C, Fe and Se (Richardson, 2000). Those processes may result to
greenhouse gases release (CO2 and N2O) and nutrient loading
and consumption, which coupled with changes of interacting

spheres of the earth (Zheng et al., 2018). Globally, bacterial
anaerobic respiration is well-known but remains an incomplete
story in the rhizosphere. Indeed, aside from denitrification
and Fe(III) respiration, little is known about other respiration
processes, and only few model strains have been deeply studied,
even if certain rhizospheric models possess genes involved in
anaerobic respiratory pathways. Furthermore, the reasons for
microbial respiratory diversity and flexibility in the rhizosphere
has yet remain incompletely known, but this diversity appears
key to rhizosphere competence, adaptation, and persistence
belowground. For example, microbial respiratory flexibility
is suggested to provide competitive advantage to Fe(III)-
reducing bacteria to colonize iron oxide plaque on root surfaces
(Somenahally et al., 2011) and confers rhizosphere competence
to denitrifiers in colonizing different plant rhizospheres, such as
those of maize and tomato plants (Philippot et al., 1995; Mirleau
et al., 2001; Chèneby et al., 2004).

In this review, we detail for the first time, anaerobic
respirations that occur in the rhizosphere. First, attention is
paid to the environmental conditions that affect anaerobic
respirations and the different respirations encountered in the
rhizosphere. Second, research on the genes involved in anaerobic
respiration from metatranscriptomic data on the rhizosphere
are conducted to evidence how this trait is largely distributed
among rhizobacteria. Finally, the ecological and environmental
advantages of anaerobic respiration in the rhizosphere are
discussed.

ANEAROBIC RESPIRATIONS IN THE
RHIZOSPHERE

Plant roots modulate anaerobic respiration both indirectly and
directly. Indeed, it is well-known that roots increase the anaerobic
volume of the soil by consuming oxygen, exude different carbon
sources thatmay act as TEAs, such as fumarate, and compete with
the microbial community for certain elements, such as nitrate,
thereby diminishing its availability to microbes. Therefore,
elucidation of how the rhizospheric microbiota switches from
aerobic to anaerobic respiration in the absence of oxygen and
which alternative electron acceptors it uses holds great potential
to understand population dynamics and evolutionary strategies
for coping with oxygen depletion.

Environmental Conditions Affecting
Anaerobic Respirations
Oxygen Flux
One of the most significant factors influencing anaerobic
respiration is the lack of oxygen. Its flux has been extensively
studied at the root level of submerged plants (Christensen et al.,
1994). However, only a few studies are available regarding the
rhizosphere. The spatial distribution of oxygen depends strongly
on the investigated scale. At the pedon scale, a higher O2

partial pressure (pO2) is found in the topsoil and gradually
decreases with depth (Stepniewski and Stepniewska, 2009) due
to the greater diffusion distance from the free atmosphere. At
the aggregate scale, pO2 decreases from the outside perimeter

Frontiers in Environmental Science | www.frontiersin.org 2 November 2018 | Volume 6 | Article 139

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Lecomte et al. Rhizobacterial Anaerobic Respiration Strategies

to the aggregate heart, which can reach anaerobic conditions
(Sexstone et al., 1985; Zausig et al., 1993; Philippot et al., 1996).
At the rhizosphere scale, O2 distribution from the root surface
into the bulk soil is driven by its consumption due to root
and microbiotic respiratory processes and diffusive O2 supply
(Glinski and Stepniewski, 1985; Uteau et al., 2015). Oxygen flux
in soil is very difficult to predict, as it depends on soil properties
such as porosity, texture, organic matter content, moisture
content, temperature and pH (Runkles, 1956). The soil structure
is the most important soil property related to oxygen diffusion
in the soil. Indeed, the modification of the soil structure due to
compaction limits gas transport in the soil, since it decreases the
pore spaces filled with air where gas diffusion occurs (Neira et al.,
2015). In addition, soil organic matter impacts oxygen level by
stabilizing soil aggregates (Uteau et al., 2013).

Terminal Electron Acceptors and Their Distribution in

the Rhizosphere
The basic anaerobic respiratory process involves the oxidation of
a low-redox-potential electrons donor, such as carbon substrates,
the transfer of electrons through a wide range of cytochromes
and the reduction of a high-redox-potential electrons acceptor.
Bacteria synthetize ATP through a membrane-bound ATP
synthase complex driven by proton-motive force with the
intermediary action of cytochromes (Richardson, 2000; Kartal
et al., 2011). A wide range of metallic and non-metallic terminal
electron acceptors (TEAs) is encountered in soils and can serve
for bacterial anaerobic respiration (Figure 1, Table 1). Their
availability is spatio-temporally variable (Jackson and Caldwell,
1993; Farley and Fitter, 1999; Lark et al., 2004) and depends
on the constant interaction of processes such as weathering,
atmospheric deposition, nutrient leaching, biological cycling,
and plants nutrition, resulting in the formation of vertical and
horizontal TEA gradients within the soil (Figure 1) (Giehl and
Wirén, 2014). Additional processes, such as rainfall, the inflow of
dust in agricultural soils, and the supply of manure and chemical
fertilizers, introduce additional nutrients to the soil pool (Giehl
and Wirén, 2014), which can act as TEAs.

Non-metallic electron acceptors
Nitrate, fumarate, and humic substances represent the most
studied non-metallic TEAs. Their availability in the rhizosphere
is variable and depends on different biotic and abiotic factors.
The bioavailability of N forms in soils, such as nitrate (NO−

3 )
and nitrite (NO−

2 ) is a dynamic balance influenced by microbial
nitrification and denitrification (Jones and Hallin, 2018). NO−

2
formation occurs near the surface and NO−

2 concentration
decrease rapidly with deep (Arth and Frenzel, 2000). The spatial
and temporal availability of soil NO−

3 is highly heterogeneous.
At the centimeter scale or over the course of a day, NO−

3 may
vary by an order of magnitude (Beliaev et al., 2005; Klonowska
et al., 2005). This heterogeneity is derived from several factors
that release or remove nitrates from the soil (Bloom et al., 2002).
For example, a high rate of nitrification activity or fertilizer use
in agricultural soils leads to an increase in nitrate concentration
(Burger and Jackson, 2003; Galloway et al., 2008), whereas plant
root uptake, which competes with soil microbiota, reduces nitrate

in soils (Kuzyakov and Xu, 2013). Notably, some bacteria impact
positively N availability for plants, such as Rhizobia that are able
to provide N2 to plants by nitrogen fixation in nodules (Haichar
et al., 2014). In the rhizosphere, nitrate move freely within the
soil and reach the root surface through mass flow, which is
driven by the nutrient concentration in the soil solution and
the rate of plant transpiration (Giehl and Wirén, 2014). Their
concentration varies from 0.04 to 5 g.kg−1 for soils deficient in
nitrate to 80–100 g.kg−1 for soils rich in nitrate (unpublished
data).

Fumaric acid or fumarate is an organic acid exuded by plants
in the rhizosphere of various plant species such as maize, banana
and Dactylis glomerata (Zhang et al., 2014; Guyonnet et al.,
2017). Its concentration in the rhizosphere varies according to
plant developmental stage (Petersen and Böttger, 1991). Recently,
Guyonnet et al. (2017) evidenced that the relative abundance of
fumaric acid was approximately 0.04% in the root-adhering soil
of D. glomerata. Fumaric acid exudation was also observed with
barley (Hordeum vulgare cv. Barke) and was likely involved in
the tripartite interaction of beneficial microorganisms, plant and
pathogens in the rhizosphere (Jousset et al., 2014). In addition,
Liu et al. (2014) and Yuan et al. (2015) demonstrated that fumaric
acid exudation is involved in improving plant growth-promoting
rhizobacterial colonization by stimulating biofilm formation.
Hence, fumaric acid has a role in plant-microbe interactions and
in microbial anaerobic respiration in the rhizosphere.

In addition to fumaric acid, humic substances (HSs) have also
been investigated as TEAs for microbial anaerobic respiration
(Lovley et al., 1996; Hong and Gu, 2009). HS are highly
polymerized natural polymers of highmolecular weight and poor
biodegradability that are formed during the decomposition of
plant materials by microorganisms in soils and sediments (Hong
and Gu, 2009). The remarkable recalcitrance of such materials
is reflected by their long residence times in the environment,
exceeding 500 years. Lovley et al. (1996) were the first to put
forward the concept of humic respiration, which was supported
by experiments in which both Geobacter metallireducens and
Shewanella alga can grow with humus and/or anthraquinone-
2,6-disulfonate (AQDS) as TEAs when a wide variety of organic
substrates or H2 are oxidized.

Metallic electron acceptors
The most-studied metallic TEA are iron [Fe (III)], manganese
[Mn (IV)], arsenic [As (V)], selenium [Se (VI)], sulfur (S0),
and uranium [U(VI)]. Their availability in the rhizosphere also
depends on biotic and abiotic factors. Among those TEAs, Fe,
Mn, and S also serve as plant nutrients (Giehl and Wirén,
2014); hence, mutualistic/competitive interactions may occur
with rhizosphere microbiota for their uptake (Somenahally et al.,
2011; Moreau et al., 2015).

Iron (Fe) is a relatively abundant element in many cultivated
soils, with an average total concentration of approximately
20–40 g.kg−1 (Cornell and Schwertmann, 2003); however, the
amount of its available fraction is generally very small (Colombo
et al., 2014). Iron is considered an essential micronutrient for
plants andmicrobes, and its availability is crucial for their growth.
Thus, bacteria and plants both adopt strategies to acquire Fe
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FIGURE 1 | Terminal Electron Acceptors (TEAs) distribution, O2 flux and pH gradient in the rhizosphere. Many factors are involved in the formation of zones favorable

for anaerobic respiration establishment such as TEAs availability, pH, water movement and soil aggregate formation. NO−

3 moves freely within the soil, with a vertical

gradient of availability from sub-soil to top-soil. Decomposition of plant materials leads to the release of humic substances. Fumaric acid is exuded by plant roots.

Availability of Fe(III), Mn(IV) and S0 is mostly driven by pH. Roots influence pH leading to a gradient from an acidic pH close to the roots to a neutral pH in the

rhizosphere. Anoxic zones occur in soil aggregates and in soils submitted to water flow.

for their metabolisms, such as the secretion of microbe- and
phyto-siderophores (Colombo et al., 2014). Fe availability in the
rhizosphere is mediated by two major factors: the redox potential
(i.e., oxidizing or reducing conditions) and pH (Lemanceau et al.,
2009; Colombo et al., 2014). In fact, soil pH can increase or
decrease by up to two units in the rhizosphere owing to the
release and uptake of ions by roots (Hinsinger et al., 2009).
Among Fe species present in the soil environment, a wide variety
of Fe(III) oxides and clay minerals can be used as a TEAs during
microbial anaerobic respiration (Lovley et al., 2004; Weber et al.,
2006; Colombo et al., 2014).

Manganese is, an essential trace element for life, usually
present in relatively large amount in the plant rhizosphere (Uren,
2013), and its availability is governed by oxidation and reduction
processes (Marschner, 1988; Posta et al., 1994). The balance
between these two processes is a function of soil chemical,
microbial and plant factors (Marschner, 1988). Theoretically,
Mn may exist in any of the redox states ranging from 0 to
+7, but it is primarily present under the three oxidation states
+II, +III, and +IV in natural environments (Davison, 1993).
In addition, various oxides and oxyhydroxides of Mn(IV) are
present in soils and serve as sinks for bioavailable Mn (Post,
1999). These Mn oxides are typically generated during diagenetic
processes or the oxidation of Mn(II) (Mouret et al., 2009) and
serve as TEAs for microbial anaerobic respiration (Lovley et al.,
2004).

In soils, sulfur occurs in inorganic and organic forms and
is cycled between these forms via mobilization, mineralization,
immobilization, oxidation, and reduction processes (Scherer,
2009). Whereas, organic sulfur compounds are largely immobile,
inorganic sulfur is more mobile, with sulfate being the most
mobile (Scherer, 2001). Sulfate is also the most important
S source for plants, generally accounting for <5% of the
total S in the soil (Scherer, 2009). In grassland soils, the
total S content in the upper soil layer (0 to 20 cm) ranges
from 0.21 to 1.7 g.kg−1 (Wang et al., 2006). Among sulfur
compounds encountered in soils, sulfite, organic sulfoxides,
elemental sulfur, polysulfide, tetrathionate, and organic
disulfides are important TEAs in the biogeochemical cycling
of sulfur anaerobically (Schauder and Kröger, 1993; Kertesz,
2000; Burns and DiChristina, 2009). Their availability, as for
Fe(III) oxides, is also dependent on pH (Hedderich et al.,
1998).

Selenium is an essential trace element available in different
chemical and physical forms and is found in all natural
environments, such as soils (Nancharaiah and Lens, 2015). In
most soils, selenium concentrations are very low, in the range
of 0.01–2mg.kg−1. However, in seleniferous soils, selenium
concentrations of up 1,200mg.kg−1 have been reported (Fordyce,
2013). The selenium cycle has a wide range of oxidation
states, from –II to +VI, and their distribution may vary in
the environment depending on the prevailing redox conditions
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and pH (González et al., 2006). Generally, selenium oxyanions
selenate [SeO2−

4 or Se (VI)] and selenite [SeO2−
3 or Se (Se

IV)] are soluble and stable and exhibit high bioavailability and
toxicity in oxic environments. In anoxic conditions, selenium
oxyanions serve as TEAs for anaerobic microbial respiration and
are replaced by elemental selenium (Se0).

Arsenic, despite its toxicity, is readily used by a great diversity
of prokaryotes for cell growth and metabolism (Stolz et al., 2006).
Arsenic, as is the case with selenium, is widely distributed in the
environment, with an average As content in Earth’s crust varying
between 2 and 3mg.kg−1 (Tanaka, 1988). Its concentration
in soils depends on rock type, human activities, climate, As
forms and soil redox conditions (Yan-Chu, 1994). Arsenic is
found in four oxidation states, arsenate As(V), arsenite As(III),
elemental As0 and arsenide As(-III) distributed according to
oxygen availability (Stolz et al., 2006; Mohan et al., 2007). Among
these species, As(V) is used as a TEA by microbes for anaerobic
respiration called “arsenate respiration,” which is the dominant
process in anaerobic conditions (Oremland et al., 2005).

Uranium is an important component of Earth’s crust and
is found in all environments from water to soils (Gavrilescu
et al., 2009). Uranium is a radioactive element whose 3 dominant
isotopes are 238U, 235U, and 234U. Thus, uranium is a toxic metal,
and multiple studies are interested in the remediation of this
element (Akob et al., 2007; Lee and Yang, 2010; Choudhary
and Sar, 2011; Yan et al., 2016). Uranium is found in soil in
concentrations ranging from 8.1 × 10−4 to 3.2 µg.g−1 soil
(Tzortzis and Tsertos, 2004). It is available in the environment
in the form of oxides such as uranyl ion (UO2+

2 ) and UO2OH+,
which can be complexed with carbonate, nitrate or humic
substances, for example, (Markich, 2002; Gavrilescu et al.,
2009) and which can be used as TEAs for microbial anaerobic
respiration.

As described above, the rhizosphere contains a large
variety of compounds that can serve as terminal electron
acceptors for microbial respiration in the anoxic zone of the
rhizosphere. However, only a few studies have been interested
in understanding anaerobic respiration in the rhizosphere
(Philippot et al., 1995; Ghiglione et al., 2000; Mirleau et al., 2001).
Denitrification represents the most studied one area, likely due
to its large contribution to the increase of N2O emissions, a
gas that has an approximately 300-fold greater impact on global
warming than CO2 (Bakken et al., 2012; Domeignoz-Horta et al.,
2015; Gaimster et al., 2018). In the next paragraph, we review
the different mechanisms of anaerobic respiration encountered
in the environment and we attempt to determine whether certain
respiration processes studied in a given environment can take
place in the rhizosphere by the microbiota associated with plants.

The Different Types of Anaerobic
Respiration in the Rhizosphere
In anoxic conditions, bacteria have developed specific processes
that allow them to use sufficiently abundant alternative TEAs to
survive, proliferate and acclimate quickly in a rapidly changing
environment such as the rhizosphere. Indeed, the rhizosphere
can lead to prolonged anoxic conditions such as in rice field
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or aerobic conditions followed by alternating anoxic conditions
such as soils aggregates (Figure 1) (Philippot et al., 1996; Kostka
et al., 2002). In these conditions, the TEAs described above can be
respired by rhizospheric microbiota. According to the acceptor,
bacteria can grow more quickly, such as with nitrate, or less
quickly, such as with sulfur (Nealson et al., 1994), due to the
difference in free energy released during respiratory metabolism.
Here, we summarize the different respiration processes, which
potentially occur in the rhizosphere, and the energy they
generated (Figure 1).

Denitrification
Denitrification is a part of nitrogen cycle and occurs in anaerobic
conditions mainly by bacteria. Denitrification uses nitrate as a
TEA and yields the highest energy to sustain growth among
anaerobic respirations; it includes nitrate, nitrite, nitric oxide
and nitrous oxide reductions (NO−

3 :NO
−

2 :NO :N2O :N2)
(Zumft, 1997). Each reaction is catalyzed by a reductase that
is coupled to energy-conserving electron-transport pathways
and regulated by the transcriptional regulator “Fnr” (fumarate
and nitrate reductase). Fnr is part of a superfamily of Crp-
Fnr transcriptional regulators that includes Crp (catabolite
repression), FnrN (nitrogen fixation/photosynthesis), FixK
(nitrogen fixation), NnrR (response to NO in denitrification) and
Dnr (dissimilatory nitrate respiration regulator) (Körner et al.,
2003). Notably, in Bradirhizobium japonicum, the global response
regulator that controls expression of denitrification gene is called
RegR (Torres et al., 2014).

Unlike other anaerobic respirations, genes encoding the
denitrifying reductases have been characterized in bacteria
inhabiting the rhizosphere, such as Pseudomonas stutzeri,
Pseudomonas fluorescens and Parococcus denitrificans (Zumft,
1997; Kuypers et al., 2018). The reductases involved in
this respiratory process are described as dissimilatory nitrate
reductase (membrane-bound “NAR, narGH” and periplasmic
“NAP, napA”), nitrite reductase (Nir), nitric oxide reductase
(cytochrome c-dependent “cNOR, cnorB”, quinol-dependent
“qNOR, norZ” and copper-containing quinol-dependent nitric
oxide reductases “CuANOR”) and nitrous oxide reductase (Nos)
(Philippot, 2002; Kuypers et al., 2018). Two types of dissimilatory
nitrate reductases are found in bacteria and even in the same
bacteria as in Escherichia coli: a membrane-bound (Nar) and
a periplasmic-bound (Nap) nitrate reductase (Moreno-Vivián
et al., 1999; González et al., 2006; Kraft et al., 2011). Nar is
composed of 3 subunits encoded by narGHI, as found in E. coli,
P. fluorescens, P. stutzeri and B. subtilis (Philippot and Højberg,
1999; Lalucat et al., 2006), whereas Nap is composed of 2 subunits
encoded by napAB, as found in Rhodabacter sphaeroides and
B. japonicum (Reyes et al., 1998; Bedmar et al., 2005). The nar
operon is induced under low oxygen partial pressure and in the
presence of nitrogen oxides (Philippot et al., 2001; Giannopoulos
et al., 2017), whereas the expression of the nap operon can
be affected or not by anaerobiosis depending on the organism
(Philippot, 2002; Bueno et al., 2017).

A recent study demonstrated that the two types of nitrite
reductase can also be found in the same bacteria, contrary to
what has been previously accepted (Sánchez and Minamisawa,

2018). The two nitrite reductases encoded by nirK and nirS are
evolutionarily unrelated enzymes (Philippot, 2002). Both nitrite
reductases encoded by nirS in P. fluorescens and P. stutzeri and
nirK in R. sphaeroides are expressed under low O2 levels and
in the presence of nitrate or nitrite (Tosques et al., 1997; Härtig
and Zumft, 1999; Philippot et al., 2001). Moreover, it has been
demonstrated that NO induces nirS expression in P. stutzeri
(Vollack and Zumft, 2001). Nitric oxide reductase is composed
of 2 subunits encoded by norCB and is expressed in the absence
of O2 and in the presence of NO (Zumft, 1997; Vollack and
Zumft, 2001; Hino et al., 2010). The enzyme involved in nitrous
oxide respiration is encoded by nosZ (Zumft and Kroneck, 2007;
Hartsock and Shapleigh, 2010; Thomson et al., 2012). This gene
is lacking in many denitrifying bacteria and archaea, leading to
greenhouse gas emissions (Hu et al., 2015). Recently, it has been
demonstrated that non-denitrifying bacteria, such as Wolinella
succinogenes, can grow with N2O as the sole electron acceptor,
thereby allowing to the reduction of the N2O greenhouse gas
(Simon et al., 2004). These N2O-reducing microorganisms are
the subject of a recent review by Hallin et al. (2017)in which
the two distinct groups of N2O reducers and their ecology
are described. They underscore the fact that NirK denitrifying
microorganisms are more lacking the nos cluster than are NirS
denitrifyingmicroorganisms. So far, no study has been conducted
on the co-occurrence of the nar/nap operons and nirK and/or
nirS denitrifying microorganisms.

Anammox
Microorganisms contribute to N cycle not only through
denitrification process also through anaerobic ammonium
oxidation (anammox) process (van de Graaf et al., 1995).
Anammox is responsible for a loss of total N from fertilized
soils, such as paddy soils (Nie et al., 2015) but less significant
than loss caused by denitrification. Anammox is the oxidation
of ammonium to dinitrogen gas under anaerobic conditions
with nitrite as TEA (Gori et al., 2011). Hydrazine (N2H4) and
NO are intermediates of anammox process (Strous et al., 2006).
Anammox activity is linked to the ammonium, nitrate and nitrite
concentration in soils (Hu et al., 2011). So, this process depends
on denitrification and ammonia oxidation rates to form the
substrates of the reaction (Naeher et al., 2015). Anammox is also
influenced by oxygen flux, soil pH, salinity and rhizosphere effect
(Nie et al., 2018). Indeed, soil pH affects ammonium availability
and hence plays an important role in shaping anammox bacterial
community. Like denitrification, anammox respiration occurs in
a larger variety of niches in rhizospheres and soils (Humbert
et al., 2010; Li et al., 2016). The five predominant anammox
bacterial genera are Kuenenia, Brocadia, Jettenia, Scalindua, and
Anammoxoglobus and detected in many habitats, including soils
and sediments (Humbert et al., 2010; Li et al., 2016). Genes
encoding specific proteins involved in anammoxwere deciphered
in Kuenenia stuttgartiensis (Strous et al., 2006; Kraft et al., 2011).
The first step of anammox corresponding to the reduction of
NO−

2 in NO is performed by the dentification protein NirS.
The second step of the predicted anammox pathway would
be the reduction of NO and its simultaneous condensation
with ammonium to produce N2H4. In K. stuttgartiensis, two
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gene clusters potentially involved in this step may formed an
enzymatic complex called hydrazine synthase, HZS (Kraft et al.,
2011). The final step of annamox is the oxidation of N2H4 to N2.
In K. stuttgartiensis, the dedicated enzyme involved in this step
is the hydrazine dehydrogenase (HDH) encoded by kuste0694
(Kraft et al., 2011).

Anammox respiration is a sufficient energetic strategy to
sustain growth during anaerobic conditions (Kraft et al., 2011).
The overall reaction for anammox is NH+

4 +NO−

2 :N2 + 2 H2O
and the associated free energy is −358 kJ.mol−1 of NH+

4 (van de
Graaf et al., 1995, 1996).

Fe(III) and Mn(IV) Respiration
Electron acceptors such as Fe(III) and Mn(IV) are highly
insoluble in most environments at pH 7. Thus, there is an
important challenge for Fe(III) and Mn(IV) reducers to develop
strategies for electron transfer to an insoluble and extracellular
TEA (Lovley et al., 2004). Dissimilatory Fe(III)-reducing bacteria
need (i) to transfer electrons from the central metabolism to a
site of reduction somewhere outside the inner membrane and (ii)
to express a reductase located on the outer membrane to reduce
Fe(III) oxides to Fe (II). The same observations can be made for
Mn (IV)-respiring bacteria (Lovley et al., 2004).

Fe (III) and Mn (IV) anaerobic respirations have been
extensively studied in S. oneidensis MR-1 and Geobacter
sulfurreducens models (Lovley et al., 2004). However, until
recently, no study has been made available using rhizobacteria
as model. In addition, the mechanisms responsible for these
respirations are not fully understood, but a number of genes seem
to be involved (Bretschger et al., 2007). In S. oneidensis MR-
1, these include the mtrA, mtrB, mtrC, omcA and cymA genes.
MtrABC serve as an electron conduit between the periplasm
and the extracellular environments (Hartshorne et al., 2009).
MtrC and OmcA have been hypothesized to serve as terminal
Mn(IV) and Fe(III) reductases (Bretschger et al., 2007). CymA,
cytoplasmic membrane-bound, tetraheme c-type cytochrome, is
involved in electron flow during Fe(III) and Mn (IV) respiration
(Myers andMyers, 1997). InG. sulfurreducens, different genes are

also involved in each respiratory pathway (Aklujkar et al., 2013).
Interestingly, OmcS, an outer-membrane protein, is required for
both types of respiration (Mehta et al., 2005). Respiration of
Fe(III) or Mn(IV) has the potential to yield sufficient energy to
support growth, as does nitrate (Tables 1, 2). Interestingly, some
anammox bacteria, such as K. stuttgartiensis are known to use
Fe(III) and Mn(IV) oxides as TEA during anaerobic conditions
(Strous et al., 2006; Zhao et al., 2014).

Fumarate Respiration
Fumarate respiration has been well-known since the 1970s.
However, it has been described in only a few bacteria, such as
E. coli, W. succinogenes and Shewanella (Ackrell et al., 1992;
Kröger et al., 1992; Arkhipova and Akimenko, 2005). Fumarate
is reduced to succinate, the reverse reaction of succinate to
fumarate that occurs aerobically in the tricarboxylic acid cycle

(TCA cycle). Under anaerobic conditions in the presence of
fumarate in E. coli, a specific membrane quinol-bound fumarate
reductase complex encoded by four genes frdA-D is induced
(Jones and Gunsalus, 1987). Fumarate reductase is a distinct
complex from the succinate dehydrogenase complex, encoded
by sdhA-D genes. The regulation of these two enzymes is
quite distinct since frd genes are expressed under anaerobic
conditions in the presence of fumarate, whereas sdh genes are
expressed under aerobic conditions and depend on glucose
(Maklashina et al., 2013). In addition to the fumarate reductase
complex, different global regulators are also involved in fumarate
respiration, such as FNR and CymA. Indeed, in S. oneidensisMR-
1, as in Fe(III) oxides and Mn(IV) respirations, CymA is also
involved in anaerobic fumarate respiration (Myers and Myers,
1997).

Unlike the aforementioned respiration processes, fumarate
respiration is less energetically favorable (see Tables 1, 2).

Sulfur Respiration
Anaerobic respiration with elemental sulfur/polysulfide or
organic disulfides is performed by several bacteria and archaea
but has only been investigated in detail in a few organisms, such
asW. succinogenes and S. oneidensisMR-1. The electron transport

TABLE 2 | Comparison of free energy 1G◦′ for various TEAs coupled to acetate oxidation and associated reactions.

Reaction Free energy 1G◦′

(kJ.mol−1 acetate)

References

5 CH3COO
−

+ 8 NO−

3 + 13 H+ :N2 + 10 CO2 + 4 N2 + 14 H2O

CH3COO
−

+ 4 MnO2 + 2 CO2 + H+ :4 MnCO3 + 2 H2O

CH3COO
−

+ 24 Fe(OH)3 + H+ :8 Fe3O4 + 2 CO2 + 38 H2O

CH3COO
−

+ 4 SeO2−
4 + H+ :4 SeO2−

3 + 2 CO2 + 2 H2O

C2H4COO
−

+ SeO2−
3 + H+ :CH3COO

−
+ Se0 + HCO−

3 + H2O

CH3COO
−

+ 2 HAsO−

4 + 2 H2AsO
−

4 + 5 H+ :4 H3AsO3 + 2 HCO3

CH3COO
−

+ 4 fumarate2− + H+ :4 succinate2− + 2 CO2 + 2 H2O

CH3COO
−

+ 4 S0 + H+
+ 2 H2O:4 H2S + 2 CO2

CH3COO
−

+ 4 U(VI) + 4 H2O:4 U(IV) + 2HCO−

3 + 9 H+

−802

−727

−717

−575

−529.5

−252.6

−249.3

−39

ND

Thauer et al., 1989

Thauer et al., 1989

Thauer et al., 1989

Nancharaiah and Lens, 2015

Nancharaiah and Lens, 2015

Macy et al., 1996

Yoon et al., 2013

Thauer et al., 1989

Lovley et al., 1991

Free energy 1G◦′

(kJ.mol−1 NH+

4
)

NH+

4 + NO−

2 :N2 + 2 H2O −358 van de Graaf et al., 1995

The reactions are arranged in energetic order. ND for no data available.
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chain that catalyzes the polysulfide reduction in W. succinogenes
consists of polysulfide reductase (Psr) which is composed of 3
subunits (PsrA, B, C) encoded by psrABC genes, where PsrA
seems to be the catalytic subunit (Hedderich et al., 1998), PsrB
serves for electron transfer, and PsrC anchors the polysulfide
reductase (PsrA) (Krafft et al., 1995).

The energy gain from sulfur respiration is the smallest
compared to the previous respiration processes (Table 2; Thauer
et al., 1989). The data suggest that this respiration process does
not support bacterial growth and probably allows bacteria to
persist until conditions are favorable.

Selenium Oxyanion Respiration
Dissimilatory reduction of selenium oxyanions, viz., selenate
(SeO2−

4 ) and selenite (SeO2−
3 ), is significantly important in

the environment and involves the conservation of metabolic
energy for microorganisms (Knight et al., 2002). Microbes
that can reduce selenium oxyanions are not restricted to any
particular group or subgroup of prokaryotes, and examples are
polyphyletically found throughout the bacterial and archaeal
domain (Watts et al., 2003). Selenium oxyanion respiration
consists of 2 distinct respirations: selenate and selenite.
Two successive reductions occur during anaerobic respiration:
selenate to selenite and selenite to selenium. Anaerobic
respiration of selenate is induced by its presence under
anaerobic conditions, leading to the formation of selenite and
then selenium (Debieux et al., 2011). It has been suggested
that selenate reduction may be catalyzed in many cases by
bacterial nitrate reductases, and selenate reductase activity of
both membrane-bound nitrate reductase (NAR) and periplasmic
nitrate reductase (NAP) has been reported (Avazéri et al.,
1997; Sabaty et al., 2001). However, it is evident that nitrate
reductases are poor reducers of selenate and may not contribute
significantly to global selenate reduction, particularly in areas
enriched with both selenate and nitrate (Watts et al., 2003).
Consequently, novel enzyme systems that catalyze the reduction
of selenate selectively have been sought, and to date, detailed
biochemical studies have been limited mainly to species isolated
from aqueous or contaminated environments, such as Thauera
selenatis, Bacillus selenatarsenatis SF-1, Sulfurospirillum barnesii,
and Enterobacter cloacae SLD1a-1 (Rabenstein and Tan, 1988;
Losi and Frankenberger, 1997; Yamamura and Amachi, 2014).
For example, the selenate reductase of T. selenatis is part of
the SerABC operon (Rabenstein and Tan, 1988), whereas the
selenate reductase respiratory activity in B. selenatarsenatis is
conferred by the srdBCA operon (Kuroda et al., 2011). In T.
selenatis, SerABC has a high affinity to selenate and does not
use selenite or other electron acceptors as substrates (Stolz
et al., 2006). In addition, SerABC shares several similarities with
the respiratory nitrate reductases. Furthermore, genetic studies
have shown that selenate reductase activity requires the global
anaerobic regulatory gene FNR (Yee et al., 2007).

At present, no gene has been identified for the second
reduction of selenate respiration from selenite into elemental
selenium in T. selenatis. Anaerobic respiration of selenite is
induced by its presence under anaerobic conditions, leading
to the formation of S0. It is well-established that selenite

reduction can be categorized into anaerobic respiration or a
microbial detoxification strategy (Turner et al., 1998). The
genetic mechanism of selenite respiration has been investigated
only in S. oneidensis MR-1, and some mutagenesis analyses have
been performed on respiratory or trans-membrane reductase
(Taratus et al., 2000). It is still unclear whether S. oneidensisMR-1
is able to grow on selenite as the sole electron acceptor or if it is
just a fortuitous detoxification process during anaerobic growth
on fumarate, where fccA gene may be involved (Li et al., 2014).

Arsenic Oxyanion Respiration
Arsenic respiration has been well-studied in Mono Lake,
resulting in the isolation of a number of arsenate-respiring
bacteria (Oremland et al., 2000; Hollibaugh et al., 2005). The
respiratory arsenate reductase (Arr) from Chrysiogenes arsenatis,
Bacillus selenitireducens, Shewanella, and Alkalilimnicola ehlichii
was identified and characterized (Krafft and Macy, 1998; Afkar
et al., 2003; Richey et al., 2009). The arsenate reductase is a
heterodimer, with a large catalytic subunit (ArrA) and a smaller
electron transfer protein (ArrB). Stolz et al. (2006) performed
a phylogenetic analysis of available sequences from arsenate
reductases (Arr) and showed a high similarity between them.
Remarkably, a complete genome analysis of A. ehlichii indicated
that it lacks a conventional arsenite oxidase, but it instead
possesses two operons that each encodes a putative respiratory
arsenate reductase (Arr) expressed under different conditions
acting as a bidirectional enzyme (Richey et al., 2009).

Uranium Respiration
Only few known strains are able to anaerobically reduce uranium
to sustain their growth such as Shewanella putrefaciens strain 200,
S. oneidensis MR-1, G. metallireducens, and Desulfotomaculum
reducens (Lovley et al., 1991; Tebo and Obraztsova, 1998).
The reduction of U(VI) anaerobically was particularly deeply
investigated in both Shewanella strains (Lovley et al., 1991;
Wade and DiChristina, 2000; Marshall et al., 2006). To date,
no uranium-specific reductase has been reported, but certain c-
type cytochromes implicated in Fe(III) and Mn(IV) anaerobic
respirations have been found to be involved in uranium
reduction, such as MtrA, MtrB, MtrC, and OmcA (Beliaev and
Saffarini, 1998; Beliaev et al., 2001; Marshall et al., 2006). Notably,
in S. putrefaciens strain 2000, anaerobic respiration of U(VI)
seems to be related to denitrification, as the U(VI) reduction-
deficient mutant (Urr) lacks the ability to growth using U(VI)
and nitrite.

Humic-Substance Respiration
Humic substances (HSs) are the major component of soil’s
organic matter and are derived from the partial degradation of
plant material (Trevisan et al., 2010). The biogeochemical cycle
of HSs is driven through oxidation and reduction performed
by various microorganisms that can use HSs as electron donors
and/or acceptors. Even if HS respiration has been known since
the 1990s (Lovley et al., 1996), only few models have been
studied for their ability to reduce HSs, such as Shewanella
and G. sulfurreduscens (Lloyd et al., 2003; Hong et al., 2007).
Certain genes involved in this respiration process were evidenced
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in G. sulfurreducens (Voordeckers et al., 2010) through the
mutagenesis of five c-type cytochromes, OmcB, OmcS, OmcT,
OmcE, and OmcZ. The authors concluded that AQDS and
HS reduction might occur at the outer surface through these
five c-type cytochromes. It is well-accepted that priming the
soil with HS causes an increase in microbial activity due
increased availability of energy required by microbes (Shah
et al., 2018). However, to our knowledge, no information is
available on the energy yielded by the anaerobic reduction of
HSs.

As seen above, some bacteria are able to respire several TEAs,
such as S. oneidensis or G. sulfurreducens. Remarkably, electron
flows are shared by several anaerobic respiration processes.
Indeed, the Mtr pathway of S. oneidensis is involved at least
in Fe(III), Mn(IV) and U(VI) respiration (Beliaev et al., 2005;
Marshall et al., 2006). Thus, in the presence of multiple TEAs in a
complex environment, such as the rhizosphere in absence of O2,
microorganisms will use TEAs in specific order (Achtnich et al.,
1995). Even if this order is specific to each microorganism, they
generally prefer to use the more energetic option first (Achtnich
et al., 1995; Table 2).

Anaerobic Respiration: A Trait Largely
Distributed Among Rhizospheric Bacteria
As described below, the majority of anaerobic respiration
models leverage aqueous environments or paddy-rice fields
(Somenahally et al., 2011), with only a few having been derived
from the plant rhizosphere, except for denitrification respiration
(Zumft, 1997).

Here, to evidence whether genes involved in iron, sulfur,
selenate and arsenate respirations are expressed in the plant
rhizosphere, we used available rhizosphere metatranscriptomic
data for BLAST analysis. Ten protein sequences from 6 model
strains were selected as templates: MtrC and OmcA from
S. oneidensis MR-1 for Fe(III) respiration; PsrA from W.
succinogenes and S. oneidensis MR-1 for sulfur respiration; ArrA
from Shewanella ANA-3, B. selenitireducens, and C. arsenatis for
arsenate respiration; and SerA, SerB, and SerC from T. selenatis
for selenate respiration. Eleven rhizosphere metatranscriptomic
bioprojects published on NCBI (https://www.ncbi.nlm.nih.gov/
sra/docs/), retrieved from the rhizospheric soil and/or the roots
of Citrus (Zhang et al., 2017), Arabidopsis thaliana, Vellozia
epidendroides, Populus, Miscanthus, corn, switchgrass, maize,
canola, and sorghum were analyzed. The raw reads from these
data were filtered, trimmed, and quality-controlled to generate
the unique and clean reads. Then, we compared the sequence
similarity by BLAST analysis (at least 40% identity and 80%
coverage) of reference protein sequences against these unique
reads. Interestingly, we found that genes involved in the selected
anaerobic respirations are expressed in the rhizospheres of
Citrus, Arabidopsis thaliana, Vellozia epidendroides, Populus,
Miscanthus, corn, switchgrass and sorghum, confirming that
the anaerobic respiration of iron, sulfur, selenate and arsenate
occur in the plant rhizosphere and that such an environment
is favorable for the establishment of these respiration processes
by the rhizospheric microbial community (Figure 2). Notably,

FIGURE 2 | Anaerobic respiration gene expression in different plant

rhizospheres. The number of hits per 106 reads expressed the level of genes

expression. As for Arsenate, Fe for iron, S for sulfur and Se for selenate.

Rhizospheric metatranscriptomics bioprojects accession numbers: Vellozia

epidendroides (PRJNA441428), Sorghum bicolor (PRJNA406786), Populus

(PRJNA375667), Miscanthus (PRJNA337035), [corn, switchgrass and

Miscanthus] (PRJNA365487), Citrus (PRJNA324090), Arabidopsis thaliana

(PRJNA366978, PRJNA366977, PRJNA336798).

genes encoding Fe(III) respiration enzymes were less expressed
in the various plant rhizospheres tested, suggesting that this is
due either to a lower conservation of these genes between S.
oneidensis MR-1 and rhizobacteria, or to Fe oxides being less
available for anaerobic respiration.

Further studies are needed to identify and isolate model
strains of the rhizosphere expressing anaerobic respiration genes
to better elucidate the importance and extent of anaerobic
respiration processes in this environment. We suggest that
microbial anaerobic respiration appears to be a key process for
ecosystem functioning and plant-microbe interactions that need
to be put in the spotlight.

ECOLOGICAL AND ENVIRONMENTAL
SIGNIFICANCE OF ANAEROBIC
RESPIRATION

Does the Anaerobic Respiration of
Available TEAs Confer Competitive
Advantage for Plant Colonization?
As reported above, rhizobacteria present a flexible respiratory
process that may allow them to colonize and acclimate rapidly
to a changing environment represented by the rhizosphere,
where oxygen can be rapidly limited. In addition, certain
respirations, such Fe(III) oxides by Fe(III)-reducing bacteria
(FeRB), participate in Fe(II) availability for plants. Consequently,
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under anaerobic conditions and in the presence of Fe(III) oxides,
FeRB are more abundant on the root surface of plants, as shown
by Somenahally et al. (2011), suggesting a specific selection of
this functional group by plants on the root surface, the most
selective and rich habitat (Haichar et al., 2008). Under anaerobic
conditions, Fe(III) oxide respiration may be considered a trait
that allows bacteria to colonize plant roots, and a mutualistic
interaction may take place whereby the plant provides root
exudates for bacterial growth while the bacteria in participating
iron availability for the plant.

With regard to iron, performing a denitrification process also
offers competitive advantage for bacteria to colonize plant roots
(Chèneby et al., 2004). Indeed, several authors have reported
on the selection of the denitrifying community by plant roots
(Henry et al., 2008; Guyonnet et al., 2017). However, only a few
studies have evaluated the role of denitrification’s function in the
selection of microorganisms in the rhizosphere (Philippot et al.,
1995; Ghiglione et al., 2000). Genes involved in denitrification
have been evidenced to be involved in (i) the fitness of bacteria
during anaerobic growth and (ii) rhizospheric competence.
Indeed, nir or nor mutants of Nitrosomonas european presented
limited growth under denitrification conditions (Schmidt et al.,
2004), whereas nir and nor mutants of Parococcus denitrificans
and Rhodobacter sphaeroides are unable to grow (De Boer
et al., 1996; Bartnikas et al., 1997). Moreover, competition assays
performed by Philippot et al. (1995) and Ghiglione et al. (2000,
2002) between wild type and nir or nar mutants of P. fluorescens
YT101 on maize roots demonstrated that nirS and narG genes
confer to the P. fluorescens YT101 strain a competitive advantage
in rhizosphere colonization. In addition, Mirleau et al. (2001)
demonstrated the role of nitrate reductase in the fitness of
P. fluorescens C7R12 strain during in vitro and in planta
assays (Mirleau et al., 2001). All these studies tend to evidence
the role of denitrification genes (reductases) in rhizosphere
competence.

Overall, to understand more deeply the advantage proffered
by the reduction of TEAs, such as Fe(III) oxides in the
rhizosphere for bacterial root colonization, a mutant of a
model rhizobacterium affected in Fe(III) oxide reduction should
be constructed,. As done previously for denitrification, an
experiment based on comparing the mutant’s and the wild
type’s (WT) fitness in the rhizosphere could be an easy and
accurate way to evidence the importance of TEAs reduction in
the rhizosphere competence. Further investigations are needed
to prove the competitive advantage of TEA reducers within a
complex rhizospheric microbial community.

Anaerobic Respiration for Pollutant
Removal
Anaerobic processes by microorganisms are involved in the
degradation of a wide range of pollutants named “detoxification”
(Harwood et al., 1998). Bacterial anaerobic respiration is capable
of using selective-priority pollutants as TEAs and reducing
them to non-toxic compounds through the respiratory electron
transfer chain (Williams et al., 2013; Nancharaiah and Lens
2015). This process plays an important role in the removal

of contaminants and the remediation of soils. Several forms
of bacterial anaerobic respiration and electron transfer related
to the biotransformation of pollutants, including respiration
with humic substances, sulfonates, halogenated chemicals, azo
compounds, metallic elements, and non- metallic elements, were
deeply reviewed by Hong and Gu (2009).

Non-metallic TEAs, such as As(V) and Se(IV), can be
rendered unavailable from contaminated soils by anaerobic
bacterial respiration. Indeed, As(V) is the major species of
adsorbed arsenic found in contaminated-soils (Bissen and
Frimmel, 2000). The reduction of this absorbed As(V) in
more mobile and less adsorptive As(III) by dissimilar arsenate-
reducing bacteria can facilitate As removal from soil’s solid phase
to an aqueous one and thus contribute to soil decontamination
(Yamamura et al., 2007). In selenium-contaminated soils, highly
toxic Se(V) can be reduced to less toxic Se(III) by certain
selenium-reducing bacteria (Gerhardt et al., 1991). They so
participate in the bioremediation of soil from Se(V). For certain
bacteria, anaerobic reduction of toxic compounds does not
always support growth in anaerobic conditions. In this case,
anaerobic reduction of toxic oxyanions is coupled with another
anaerobic respiration, such as Fe(III) and denitrification (Hunter
and Kuykendall, 2007; Lee et al., 2012; Subedi et al., 2017).

Anaerobic Respiration for Bacterial
Persistence in the Environment
The persistence of microorganisms relies on the ability to
survive in the environment at low population density until
conditions are more favorable (Kluepfel, 1993). Indeed, Fierer
et al. (2012) suggested that adaptive mechanisms that facilitate
better persistence for bacteria in adverse abiotic conditions
are more important than competitive ones in shaping the
microbial communities. In this respect, the ability of bacteria to
grow in anaerobic conditions can be considered a persistence
trait. Indeed, denitrification has been shown to contribute to
bacterial persistence in extreme environments, such as the desert.
Also, denitrifying enzymes are capable of tolerating extended
periods of desiccation, allowing denitrifiers to better persist
and to quickly respond to favorable conditions (Peterjohn,
1991). Regarding these results and the important differences
of pO2 occurring in the rhizospheres, it is of great interest to
demonstrate in what extant the anaerobic respiration of available
TEAs contributes to bacterial persistence in this particular
biotope.

CONCLUDING REMARKS

The diversification of respiration in prokaryotes has made a
major contribution to the ability of these microbes to colonize
a wide range of environments from the oceans to the earth’s crust
and to adapt to changing environments, such as the rhizosphere.
Improving our knowledge of bacterial respiratory flexibility in
the rhizosphere is a major challenge, requiring a combination
of a wide range of scientific expertise. Currently, the emergence
of molecular approaches offers great potential for understanding
respiratory processes at a rhizosphere scale. Approaches such
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as TnSeq (Perry and Yost, 2014) and CRISPR cas9 (Hsu et al.,
2014) can be used for characterizing respiratory pathways in
rhizospheric model strains, whereas metagenomics (Delgado-
Baquerizo et al., 2018) and RNAseq (Newman et al., 2016)
approaches can be applied to rhizospheric bacterial communities.
Gaining a greater understanding of how bacterial anaerobic
respiration participates in root colonization and environmental
adaptation and persistence is an exciting research challenge.
Finally, to better understand anaerobic respiration in the
rhizosphere, it is crucial to consider all the participants, such as
fungi and archaea.
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