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Soil amendment with exogenous organic matter (EOM) represents an effective option

for sustainable management of organic residues and enhancement of soil organic C

(SOC) content. Optimization of soil amendment is hampered by the high variability in

EOM quality and pedoclimatic conditions. A possible solution to this problem could be

represented by spatially explicit soil C modeling. The aim of this study was the evaluation

at regional level of the long term C storage potential of EOM added to the soil under

climate change by using a modified version of the RothC specifically developed for

C simulation in amended soil. To achieve this goal a spatially explicit version of the

modified RothC model was deployed to assess at a national scale the potential for C

storage of agricultural soils amended with different EOMs. Long term model simulations

of continuous amendment (100 years) indicated that EOMs greatly differ for their soil

C sequestration potential (range 0.110–0.385 t C ha−1 y−1), mainly depending to their

degree of stabilization. Spatial explicit modeling of amended soil, taking into account

the different combinations of EOMs and application sites, indicated a high variability in

the potential of SOC accumulation at the national level (range: 0.06–0.62 t C ha−1 y−1).

EOM quality showed a larger impact on long term SOC accumulation than variability

in pedoclimatic conditions. Model simulations predicted that the contribution of soil

amendment in tackling greenhouse gas (GHG) emissions is limited: soil C sequestration

potential of compost applied to all Italian agricultural land corresponded to 5.3% of

the total annual GHG emissions in Italy. Large scale modeling enables areas with the

largest potential for EOM accumulation to be identified, therefore suggesting ways for

optimizing resources. The spatially explicit version of the modified RothCmodel improves

the predictive power of SOC modeling at regional scale in amended soils, because it

takes into account, besides variability in pedoclimatic conditions, the large differences in

EOMs quality.
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INTRODUCTION

Exogenous organic matter (EOM) is all organic material of
biological origin applied to the soil in order to fertilize, amend or
restore it and improve the environment (Marmo et al., 2004). At
European level, about 1,200 million tons of EOMs are produced
each year (with exclusion of crop residues), while the annual
production of EOMS in Italy is about 150 million tons.

The potential for soil amendments to recover and enhance
soil organic matter (SOM) content, increase soil fertility and
reduce soil degradation and atmospheric greenhouse gas (GHG)
concentrations makes soil application of EOM attractive for both
climate change mitigation and soil ecosystem sustainability (Lal,
2004; Smith, 2004a,b; DeLonge et al., 2013). The agricultural
utilization of organic amendments is further stimulated by
enhanced social awareness about the importance of protecting
the environment and by legislative and economic drivers.

Soil amendment is indeed an attractive and effective option
for solving the problems associated with EOM management,
while favoring at the same time the recovery and building-up
of soil organic C (SOC) stocks through the process of soil C
sequestration (Karhu et al., 2012). In fact, in the last decades,
significant SOC losses, mainly attributed to the cultivation of
new land and the intensification of agricultural practices, have
been recorded worldwide, with relevant consequences for both
soil fertility and climate change (Lal, 2004). Soil C sequestration
is defined as long-term (i.e., >100 years) or permanent removal
of CO2 from the atmosphere and its “lock up” into the soil
(Stockmann et al., 2013). The long term sequestration of added
EOM-C is likely to have remarkable positive impacts on soil
quality, ecosystem functioning, climate change, and economical
sustainability (Lal et al., 1998; Dumanski, 2004; Powlson et al.,
2011). The rate of potential C sequestration by soil amendment
in European soils has been estimated at 0.42 t C ha−1 y−1

(Smith et al., 2008) and 0.40 t C ha−1 y−1 by Freibauer et al.
(2004). Arrouays et al. (2002) evaluated the potential rate for C
sequestration of compost to be in the range 0.23–0.55 t C ha−1

y−1 for a period of 20 years of application.
However, the effects of EOM application on SOC stocks are

very difficult to predict and markedly differing C dynamics have
been recorded in long term experiments of soils amended with
contrasting EOMs (Bipfubusa et al., 2008). The difficulty to
predict long term SOC trajectory in amended soil is related to
different factors such as the huge variability in the composition
and properties of EOM, the slow change and high spatial
variability of SOC and the marked differences in soil properties
and environmental conditions.

EOM includes organic residues from agricultural, urban and
industrial origin, as well as, the products of their processing
(Marmo et al., 2004). As such EOMs encompass an extremely
wide range of bio-wastes from a considerable variety of sources.
EOMs may have various forms (solid, liquid, pasty) and
undergo different treatments before application to the soil. As
a consequence, the EOMs potentially applicable to soil present
highly variable physicochemical characteristics and therefore
can affect the soil ecosystem in different and unpredicted ways
(Cayuela et al., 2010). In addition, SOC changes in soil are
usually very slow and in temperate regions it is normal that

SOC variations are not statically relevant even 10–20 years after
a significant change in land management. Finally, soil physical,
chemical and biological properties, climatic conditions and land
use and management are other important factors affecting the
rate of EOMmineralization (Franzluebbers, 2004).

The high uncertainty regarding the amount of EOM-C
that would ultimately accumulate in the soil and the lack
of a thorough knowledge of the processes involved in EOM
mineralization (Foereid et al., 2014) make difficult to consider
amendment in global SOC assessments and among the
internationally agreed measures to tackle climate change. In fact,
the prerequisite for developing policies for increasing SOM by
organic amendments is the availability of data and/or tools that
can be used to demonstrate variations in C stocks due to changed
management and therefore it is of upmost relevance to assess the
potential and variability in C sequestration of EOMs. Long term
filed experiments are the ideal tool for detecting and quantifying
slow change in SOC in amended soils, but it is not feasible
to conduct long term experiments covering all the possible
combinations of climate and management options and providing
results within a reasonable time. Moreover, measuring changes
in soil C stocks by repeated measurements is time consuming
and expensive (Mäkipää et al., 2008). Soil C models represent an
effective and feasible solution to this problem as they can predict
SOC stocks, anticipate probable trends in SOC and estimate
the long term C sequestration potential of EOMs under many
different combinations of soils, environmental conditions, land
use and managements and climate change scenarios (Powlson,
1996).

Two main limitations hamper SOC model application to
amended soil.

The first one is represented by the fact that actual models
do not adequately describe the high variability in EOMs quality.
Recently, a modified version of the widely known and validated
RothC model, specifically aimed to amended soil, has been
proposed and developed to overcome this limitation (Mondini
et al., 2017).

Secondly, SOC organic C models are generally point based
and perform simulation of SOC one site at a time. However,
to support land managers and policy makers to design future
soil management options aimed to restore and enhance SOM,
more detailed spatially explicit information by SOC modeling
is required. This can be achieved by connecting Geographic
Information Systems (GIS), which contain detailed spatial
information on soils, climate, land use, and management, with
a state-of-the-art SOC model. Spatially explicit SOC modeling is
used to quantify existing soil C stocks, predict changes in soil C
as a function of several scenarios of pedoclimatic conditions and
land use and management and assess likely responses to climate
change (Paustian et al., 1997). Application of SOC models at
the regional scale enables the pedoclimatic conditions and land
use to be taken into account, makes it possible to analyse the
effect on SOC stocks of the interaction of soil properties, weather
characteristics and land-use and management and to identify
areas with larger potential for C storage.

To date, large scale applications of SOC models have mainly
dealt on the effects of land-use change. As an example the
integration of the RothC model with soil land use and climate
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data in a GIS environment was successfully illustrated by Abegaz
et al. (2016) for Ethiopia, Bleuler et al. (2017) and Farina et al.
(2017) for Mediterranean regions, Falloon and Smith (2002),
Smith J. et al. (2005), Smith et al. (2006), and Falloon et al. (2006)
for European cropland grassland and forest, Smith et al. (2007)
for European Russia, Parshotam et al. (1995) for New Zealand,
Wan et al. (2011) for China, and Jones et al. (2005) at global
level. However, information on the spatial variability of C stocks
in contrasting soil amended with different EOMs is limited to
few studies (Mondini et al., 2012; Bleuler et al., 2017). Since
SOC storage of EOM added to the soil is controlled by a variety
of biogeophysical, climatic and management factors, dynamic
models, which integrate the main mechanisms governing SOC
turnover, with information on the spatial variability of such
factors, are the most suitable tool for predicting SOC changes
at regional level due to the application of contrasting EOMs.
Large scale regional modeling of SOC in amended soils could
provide useful information to predict the C sequestration and
GHG emissions offsetting potential of EOMs, identify the relative
importance of the different factors in the SOC evolution observed
and highlight the combination of factors more conducive to the
soil storage of added C. This in turn would allow planning land
use management and agronomical practices enhancing soil C
sequestration. Moreover, it is important to note that methods
leading to reliable, transparent and verifiable changes in soil C
stock at regional level are necessary for the inclusion of soil
C sequestration from agricultural soils and land use changes
among the measures internationally allowed under the Kyoto
Protocol. Finally, as EOM availability is generally limited with
respect to the land suitable for amendment, large scale spatial
modeling of soil organic C can suggest ways to optimize such
resources by identifying the areas with the greatest potential for
the accumulation of SOC from EOM.

The aim of this study was the application of the RothC model,
modified and optimized by Mondini et al. (2017) for amended
soils, for the evaluation of long term SOC storage potential of
EOM at regional scale under climate change.

More specifically the aims were to:

- deploy a spatially explicit version of the modified and
optimized Roth C model

- estimate the long term potential for soil C storage and GHG
offsetting of contrasting EOM added to the soil at a national
scale (Italy) under climate change

- evaluate the variability in the projected long term changes of
SOC in Italian amended soils

- identify area with major potential for C sequestration by soil
amendment

- elucidate the relative importance of EOM quality and
pedoclimatic conditions on the soil C sequestration potential
of added C.

MATERIALS AND METHODS

This study is based on the application of the RothC model,
modified by Mondini et al. (2017), to the long term modeling
of SOC in EOM treated soils at regional level under climate

change. Detailed information on model features, modification to
the model structure and procedure utilized for the calibration of
the EOM pools parameters is reported in the work of Mondini
et al. (2017).

Briefly, the model structure was modified by introducing
additional pools of decomposable (DEOM), resistant (REOM),
and humified (HEOM) EOM, each characterized by specific
partitioning factors (f) and decomposition constant rates (K;
unit: y−1). The parameters of the additional EOM pools were
estimated by model fitting to respiratory curves of amended
soils incubated in the laboratory. For the laboratory incubations
30 different EOMs classified in 8 EOM groups (compost, code:
CO; bioenergy by-products, BE; anaerobic digestates, AD; meat
and bone meals, MM; animal residues, AR; crop residues, CR;
agro-industrial wastes, AW; sewage sludges, SS) were utilized
(Mondini et al., 2017). CO, AD, and AW were considered to be
characterized by 3 EOM pools (DEOM, REOM, and HEOM), the
remaining EOM groups by 2 pools (DEOM and REOM).

In the present study, the modified and optimized model
was first tested for sensitivity toward variations in EOM pool
parameters and generality, i.e., the adaptability to simulate SOC
in soils amended with various EOM utilizing a common set of
parameters. Successively, a spatially explicit version of the model
was deployed that was applied to the long term simulation of SOC
in amended soil at national level (Italy).

Sensitivity Analysis
To study the sensitivity of SOC values predicted by the modified
RothC model to the different quality of EOM inputs over
the experimental timescale, a model exercise was performed
utilizing weather (average climate data for 1901–2000) and land
management data for the S. Martino arable soil (WRB: Calcari-
Fluvic Cambisol, sand 69%, clay 3%, pH 8.3, SOC 1.0%, NTOT

0.12%) located in NE Italy at 46◦ 1′ N 12◦ 53′ E. Data relative to
weather and land use and management are described in section
Data Sets.

After an equilibrium run, the model was run for 100 years
utilizing the same model inputs, but assuming a yearly addition
of EOM at a rate of 1 t C ha y−1. Two scenarios were
simulated, i.e., addition of mixed swine bovine meat and bone
meal (SB) and household waste compost (HWC). Properties
of EOMs are reported in Mondini et al. (2017). For each
EOM, model runs were performed utilizing initial values of
the parameters derived from a model parameterization under
standard laboratory incubation conditions (defined as: 20◦C, 40%
water holding capacity (WHC), 0.5% w:w EOM application rate
and 30 days incubation period) and then individually varying
each parameters at arbitrary values, while maintaining constant
the other parameters. A sensitivity index (SI) was calculated
according to Ng and Loomis (1984) as:

Sensitivity index (SI)=% change in output variable/% change
in input variable

The input variables were fDEOM/fREOM; fDEOM/fHEOM;
fREOM/fHEOM; KDEOM and KREOM (Mondini et al., 2017), while
the variation in SOC with respect to the baseline (SOC at
equilibrium) was considered as the output variable. A large
value of SI indicates that the model output variable is relatively
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insensitive to changes in the input variable; a small SI value
indicates that the model output variable is sensitive to changes
in the input variable. A SI value of 1 indicates that changes of
1% in the input value result in a change of 1% in the output
variable. Negative SI values indicate that increasing the input
value decreases the output value; positive SI values indicate that
increasing the input value increases the output value.

Generality Tests
The aim of the test was to evaluate the degree of generality of
the modified model by looking at the difference in long term
SOC simulation when using specific and common sets of EOM
parameters.

The test was performed assuming a scenario of soil
amendment at a rate of 1 t C y−1 for 100 years (2001–2100) to the
S. Martino soil. For each of the EOM groups defined in Mondini
et al. (2017), a common set of EOM parameters was defined by
calculating the average of parameters for all the EOMs included in
the group. Therefore, a long term simulation using this common
set of parameters was compared to a simulation performed
utilizing EOM-specific parameters obtained from incubation
under laboratory standard conditions (20◦C temperature, 40%
WHC, 0.5% w:w rate of EOM application, 30 days of incubation).
Such comparison was performed for each EOM type included in
the EOM group.

The degree of generality was evaluated by looking at the
percent difference of SOC accumulation after 100 years of EOM
addition between simulations utilizing specific and common (i.e.,
mean) model parameters.

Long Term Modeling of Amended Soils at
Regional Level Under Climate Change
Data Sets
The geographic window, within which the study was performed,
covers the area: longitude 6.750–18.417 E, latitude 36.750–
46.917N. The GIS platform used was ARCMap 9.3.

Information on soil properties and spatial distribution
and land use classes were derived from the Soil Geographical
Database of Europe (SGDBE) (European Soil Database
Distribution Version, 2004). The database represents a digital
version of the 1:1,000,000 Soil Map of Europe and presents
geometric and semantic components, soil information being
presented in the form of Soil Map Units (SMUs), with each
polygon unit on the map being assigned to a single SMU. Each
SMU comprises a number of soil types or Soil Typological Units
(STUs) which are associated together within the SMU landscape,
but cannot be separated spatially at the 1:1,000,000 map scale.
The number of SMU polygons for Italy was 1,314.

Weigthed average SOC stocks (t C ha−1) and clay content (%)
to fixed depth (25 cm) were derived from SPADE2 soil profile
analytical database for Europe (Hannam et al., 2009). To calculate
SOC stocks at fixed depth (25 cm) the SOC stocks of horizons
included within the first 25 cm were composited using weighted
averaging according to the following equation:

SOC25cm(t ha
−1) = 6OCi×BDi×hi (1)

Where OC= organic C (%), BD= bulk density (g cm−3), h= soil
depth (cm) for the ith horizon included within the first 25 cm.

SPADE 2 was developed to be used in conjunction with the
SGDBE database, providing the soil property data for each STU.
The window contained 295 representative soil profiles.

SPADE2 also provides the dominant and secondary (when
present) land use class according to the Corine Land Cover
nomenclature for each STU. In the database 22 different
land class uses are present of which 10 were present in the
STU associated with Italy. Of these, 6 represent agricultural
land uses classes (grassland, arable, horticulture, vineyards,
olive trees, and industrial crops), covering 63.8% of the total
land.

Monthly temperature and precipitation data for Italy were
extracted from CRU 1.0 (for the range 1901–2000) and
TYN SC 1.2 (for the range 2001–2100) European climate
databases at a 10′ × 10′ resolution downloaded from the
Climate Research Unit of the University of East Anglia
(Mitchell et al., 2004). The climate data for the geographic
window (Italy) were extracted utilizing the TETYN software
(Solymosi et al., 2008).

Monthly climate values for 2001–2100 were provided using
outputs from 3 different Global Circulation Models (GCMs),
namely HadCM3, PCM, and GCM2 (Mitchell et al., 2004),
forced by 4 different CO2 emissions scenarios, A1FI, A2,
B1, B2, as defined in the IPCC Special Report on Emissions
Scenarios (SRES) (Nakicenovic et al., 2000) for a total of 12
different climate scenarios (Nakicenovic et al., 2000; Smith
and Powlson, 2003). The emissions scenarios estimate future
concentrations of GHG in the atmosphere to which climate
is sensitive based on assumptions about patterns of economic
and population growth, technology development and other
factors.

Monthly potential evapotranspiration (ET) for each point of
the 10′ × 10′ grid for the 1901–2100 period were calculated from
temperature, precipitation and diurnal temperature range data
according to the Hargreaves method (Allen et al., 1998).

For themodeling exercise, averagedmonthly values of climatic
data for the period 1901–2000 and averaged decennial values for
the period 2001–2100 were utilized.

Point layers containing the meteorological data were created
in ArcMap with each layer consisting of 1,191 grid points.

Layer Linkages
An ArcMap built-in functionality was utilized to find the center
of all SMU polygons. The SMU centers were then linked through
a spatial join to the nearest point of the meteorological layer,
resulting in a linked soil mapping unit/meteorological layer
constituted by 1,314 polygons. The SMU/climate layer were
then linked with the soil and land use data through a query
operated in MS Access utilizing information provided by the
geographic and semantic components of SGDBE. This provided
a linked soil, land use and meteorological database constituted by
10,130 rows representing a unique combination of soil, land use,
and meteorology (Falloon et al., 1998b, 2002). Simulations were
performed for each of the 10,130 combination of climate and soil
data.
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Running the Modified RothC Model
RothC input and setup files were created for each one of the
unique 10,130 combinations of soil, land use, and meteorology
data. For each combination, the initial C content of the different
SOC pools and the annual plant addition to the soil were obtained
by running the RothC model to equilibrium (Coleman and
Jenkinson, 1996) using average climate data for 1990–2000 and
by using the clay and SOC content provided by the SPADE2
database.

The monthly distribution of plant input was calculated in two
stages. Initially, the total annual plant input was assumed to be
1 t C ha−1 and the proportions of plant material added to the soil
in each month were set to describe the typical pattern of inputs
for each land use class. After RothC was run to equilibrium,
the annual C input from plant residues was adjusted to give the
measured soil C content provided in the soils database using the
following equation:

Preq = Pi×[(Cmeas − IOM)/(Csim − IOM)] (2)

where Preq is monthly C input, Pi is the initial monthly total C
addition (the sum of the proportions of the C input in the first
equilibrium run is 1), Cmeas is the measured soil C given in the
soils database, Csim is the simulated soil C after the equilibrium
run, and IOM is the C content of the inert organic matter fraction
in the soil (all in t C ha−1). The size of the IOM fraction was set
according to the equation given by Falloon et al. (1998a):

IOM = 0.049×C1.139
meas (3)

Having determined the plant additions and C contents of SOC
pools, the simulations were run between 2001 and 2100 using the
predicted climate and land use data.

Two predicted land management scenarios were chosen for
estimation of C sequestration potential: annual addition of EOM
at a rate of 0 (baseline) and 1 t C ha−1.

The model was run for each of the EOM groups (compost,
bioenergy by-products, anaerobic digestates, meat and bone
meals, animal residues, crop residues, agro-industrial wastes,
sewage sludges) defined in Mondini et al. (2017) utilizing mean
EOM parameters calculated from all the EOMs included in the
group. The model was run to the year 2100 for the 12 climate
scenarios considered and for the two land management scenarios
described above, giving 108 combinations of EOM groups ×

climate scenarios × management scenarios. For each polygon,
the change in SOC under the baseline run was subtracted from
the change in SOC under a land management scenario including
EOM addition to give the net soil C sequestration due to the
change in land management.

Application of EOMwas only considered for agricultural land
use classes. Soils with natural land use classes were therefore
excluded from the simulations. Similarly, organic soils with a
SOC content >200 t ha−1 were also excluded from simulation
as RothC has not been parameterised for organic soils (Coleman
and Jenkinson, 1996). Consequently, land for which EOM
addition was simulated was 60% of total constituted by a linked
soil database of 7,392 unique combination of soil, land use, and
meteorology.

On the basis of the simulations performed for the whole
agricultural land, further simulations were performed by
applying EOMs to either the land with the greatest or lowest
C storage potential. The area interested in the simulation was
estimated on the basis of the predicted total production of
compost in Italy for the year 2020 (1,800,000 t; CIC-Italian
Composting Biogas Association, 2010). According to mean
analytical data for compost produced from food wastes (CIC-
Italian Composting and Biogas Association, 2000) and an
application rate of 1 t C ha−1 y−1, this amount could be spread
on 213,750 ha of agricultural land. Therefore, model runs were
performed for the climate scenarios PCM B1 and GCM2 A1FI
simulating 100 years of annual additions of two different EOMs
(compost and meat and bone meal) to 213,750 ha of either the
area with the greatest or lowest potential for C sequestration, as
determined by simulations performed on the whole agricultural
land.

Data Treatment
Model runs were performed for each combination of STU and
Land Use within each SMU. This was done in order to obtain the
higher amount of information possible from the available data.

However, the SPADE database does not provide information
on the percentage of land covered by each land use classes.
Conversely this information is provided for each STUs within the
corresponding SMU, however STUs cannot be separated spatially
at the 1:1,000,000 map scale. Therefore, for visualization it is
necessary to obtain a reduction of available information at SMU
level. This was obtained for SOC utilizing the following criteria:

Land use: the fraction of STU area that is occupied by
their defined dominant and secondary land use was estimated
according to Hannam et al. (2009). In the case of STU presenting
only the dominant land use that use was attributed to 80% of
the total area of the STU. In the case of STU presenting both
dominant and secondary land use it was assumed that the STU
is covered by 60% from the dominant land use and 30% from
secondary land use.

STU: SOC content of each SMU was calculated operating a
weighted average of the C content of each STU, considering the
STU’s percent area distributions within the SMU reported in the
SGDBE database.

Uncertainty
Uncertainty analysis was performed to evaluate the effect of EOM
quality on model output. For this aim, long term simulation
runs were performed utilizing weather (average climate data
for the period 1901–2000) and land management data for the
S. Martino soil. After an equilibrium run, the model was run
for 100 years utilizing the same model inputs, but assuming a
yearly addition of EOM at a rate of 1 t C ha y−1. The evaluation
of the influence of the variation in the model input on the
output was performed with one-at-a-time analysis, where the
input parameter was varied within the range of its variability,
while all other inputs were kept constants. The input parameters
considered for uncertainty analysis were partitioning factors and
decomposition rates of EOM pools, while the output value was
the EOM C sequestered at the end of the simulation period
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(i.e., SOC in amended soil minus SOC in the unamended
soil). For each pool parameter and EOM-group, runs were
performed utilizing the average, maximum and minimum value
of the parameter resulting from the optimization procedure,
considering such parameter values as probability distributions
for input variables, e.g., the range of values that such parameter
can assume. The uncertainty in C sequestration potential for the
different EOM groups was expressed by the standard deviation
of the different estimates of C sequestration using the range of
pool parameters derived from the optimization procedure. The
uncertainty of prediction in C storage potential associated to the
different inputs was expressed as the percentage change in the
C sequestered at the average pool parameter value (Smith et al.,
2014).

RESULTS

Sensitivity Analysis of Modified Model
Two contrasting EOMs were selected to test the modified model
sensitivity to the variation in the parameters defining EOM
quality, namelymixed swine bovinemeat and bonemeal (SB) and
household waste compost (HWC).

In the case of SB, characterized by two EOM pools, DEOM
and REOM, the parameter presenting the greatest effect on
the simulated SOC was KREOM (Figure 1; Table S1). The SI
index was negative indicating an inverse relationship between
the parameter and the output. Moreover, SI for KREOM was
not constant and displayed the lowest absolute values in
correspondence to the lowest values of KREOM. Consequently,
SOC values predicted with RothC are more sensitive to
differences in KREOM at smaller values of the parameter. The
model output was sensitive to KDEOM only at very low values
(<1). The model displayed a moderate sensitivity to variations
in the fDEOM/fREOM ratio. Variation of the ratio from 9 to 0.11
resulted in 2.4 C t ha−1 increase, with larger differences at lower
values of the ratio.

In the case of EOM characterized by 3 pools, typically the
composted substrates, the most influential parameter on the
model output was the fREOM/fHEOM ratio, especially at lower
values (i.e., high contents of humic-like substances) (Figure 2;
Table S2). The model output was also sensitive to variations in
the fDEOM/fHEOM ratio; such sensitivity was higher at low values
of the ratio. Variations in KREOM presented a moderate effect on
the model output. Changing the value from 0.75 to 0.15 resulted
in a SOC increase of 2.31 t C ha−1, corresponding to 3.3% of the
initial value.

Generality Test of Modified and Optimized
Model
The results of the generality test are reported in Table 1 and
show that the difference in terms of SOC accumulation between
simulations of 100 years of consecutive EOM addition at a rate of
1 t C ha−1 y−1 carried out with common and specific sets of EOM
parameters was in the range −9.2 to 4.7%, i.e., the absolute error
in SOC by taking the EOM-group mean parameters instead of
the specific EOM-type was <10%. The EOM group showing the

FIGURE 1 | Roth C EOM pool parameters sensitivity analysis for meat and

bone meal amended soil.

larger variability between simulations performed with common
and specific sets of EOM parameters was compost.

Long Term Modeling of Amended Soil
Climate Change
Variations in temperature, precipitation and ET for Italy, between
2001 and 2100, foreseen by the 12 different climate scenarios
used for the model simulations are reported in Table 2. The
temperature in 2100 was anticipated to increase on average by
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FIGURE 2 | Roth C EOM pool parameters sensitivity analysis for household waste compost amended soil.

3.2◦C (range 1.5–6.0◦C) with respect to the baseline (2001).
Similarly, ET was also predicted to increase, on average, by
14.1mmmonth−1 (range 5.7–28.6mmmonth−1). On the whole,
precipitation slightly decreased by 1.7mm month−1, although
there were significant distinctions among climate scenarios, as
the variations in precipitation ranged from negative (−7.7mm
month−1 for HadCM3 A1FI) to slightly positive (1.9mm
month−1 for GCM2 B1). HadCM3 A1FI was the climate scenario
showing the largest variation with respect to the baseline, while
PCM B1 was the one presenting the lowest change. Considering
the SRES emissions scenarios, A1FI and B1 showed the largest
and smallest increase of temperature and ET, respectively.

Potential C Sequestration and GHG Offsetting of Soil

Amendment
The results of the simulations performed at national scale with
the model optimized for 8 different EOM groups and 12 climate
scenarios are reported inTable 3. The 8 EOMgroups significantly
differed for their potential to build-up SOC stocks. Yearly C
sequestration potential varied from 0.110 to 0.385 t C ha−1 y−1

for meat and bone meal and compost treated soils, respectively.
Exogenous organic matter quality had a great impact on the
proportion of added C ultimately remaining in the soil, as the
same amount of added C resulted in a 3.5-fold difference in SOC

sequestration potential. The largest C sequestration was predicted
in compost amended soil, while the smallest was anticipated in
the soil amended with meat and bone meals and animal residues.
Bioenergy by-products showed values of yearly sequestration
rates very similar to animal residues (0.121 t C ha−1 y−1). A
good potential for SOC sequestration was recorded for anaerobic
digestates (0.262 t C ha−1 y−1) and agro-industrial waste (two-
phase olive mill waste) (0.203 t C ha−1 y−1).

A significant power correlation was found between the
cumulative respiration of amended soil under standard
laboratory conditions (Mondini et al., 2017) and the mean
potential for C sequestration of each EOM group (Figure 3).

For each EOM group, the variability in the potential to build
up SOC stocks considering all the combination of soil, land use
and climate data at the national level (7,392 combinations) was
very large. As an example, in the case of the compost group,
minimum and maximum annual SOC increases were 0.22 and
0.62 t C ha−1 y−1, respectively. Considering all the combinations
between the different EOM groups and the application sites,
the variability in the potential C sequestration further increased,
spanning over 1 order of magnitude (range 0.06–0.62 t C ha−1

y−1).
The variations among the different future climate scenarios

utilized in this study had a moderate effect on the C sequestration
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TABLE 1 | Results of RothC generality test: simulation of 100 years of amendment utilizing EOM-type and EOM-group pool parameters.

EOM group EOM type EOM Code fDEOM fREOM fHEOM KDEOM KREOM SOC t C ha−1 Difference m-s (%)

Compost (CO) Vine shoots compost (VSC) VSC_CO_s 0.02 0.39 0.59 45 0.35 70.6 −3.4

Household waste compost

(HWC)

HWC_CO_s 0.02 0.37 0.61 43 0.35 71.5 −4.6

Green waste compost

(GWC)

GW_CO_s 0.01 0.52 0.47 200 0.42 65.2 4.7

Straw/cotton cardings/meat

and bone meal compost

(CMC)

CMC_CO_s 0.00 0.31 0.69 105 0.36 75.1 −9.2

Straw/cotton cardings/meat

and bone meal/hoof and

horn meal compost (CBC)

CBC_CO_s 0.01 0.35 0.64 99 0.38 72.8 −6.2

CO_m 0.03 0.44 0.53 79 0.30 68.2

Bioenergy by-products (BE) Bioethanol residue (BR) BR_BE_s 0.12 0.88 147 0.68 43.3 3.6

Rape seeds meal (RSM) RSM_BE_s 0.11 0.89 44 0.32 45.0 −0.4

BE_m 0.13 0.87 92 0.33 44.8

Anaerobic digestates (AD) Pig slurry digestate (PS) PS_AD_s 0.08 0.62 0.30 26 0.15 60.6 −4.8

Two-phase olive mill waste

digestate (OW)

OW_AD_s 0.01 0.83 0.16 64 0.17 54.9 5.0

AD_m 0.02 0.73 0.25 220 0.20 57.7

Meat and bone meals (MM) Bovine meat and bone meal

(BV1)

BV1_MM_s 0.16 0.84 66 0.23 46.0 −4.4

Mixed swine bovine meat

and bone meal (SB)

SB_MM_s 0.21 0.79 27 0.36 44.3 −0.7

Bovine meat and bone meal

(BV2)

BV2_MM_s 0.16 0.84 75 0.18 47.2 −6.8

Defatted bovine meat and

bone meal (DE)

DB_MM_s 0.20 0.80 68 0.16 47.6 −7.6

MM_m 0.21 0.79 74 0.41 44.0

Animal residues (AR) Hydrolyzed leather (HL) HL_AR_s 0.13 0.87 28 0.58 43.5 1.6

Blood meal (BLM) BM_AR_s 0.04 0.96 132 1.20 42.7 3.6

Horn and hoof meal (HHM) HHM_AR_s 0.33 0.67 14 0.15 47.0 −6.1

AR_m 0.15 0.85 110 0.41 44.2

Crop residues (CR) Cotton cardings (CC) CC_CR_s 0.08 0.92 32 0.16 48.5 −5.4

Wheat straw (WS) WS_CR_s 0.08 0.92 37 0.17 48.1 −4.6

CR_m 0.05 0.95 63 0.27 45.8

Agro-industrial wastes (AW) Two-phase olive mill waste

(TPOMW)

TPOMW_AW_s 0.05 0.76 0.19 132 0.31 53.5 −2.7

AW_m 0.04 0.78 0.19 126 0.56 52.0

Sewage sludges (SS) Wastewater sewage sludge

(WW)

WW_SS_s 0.04 0.96 45 0.31 45.3 3.3

SS_m 0.04 0.96 63 0.22 46.8

EOM, exogenous organic matter; f, partitioning factor; K, decomposition constant; DEOM, decomposable EOM; REOM, resistant EOM; HEOM, humified EOM; s, model parameters

derived from EOM-type specific incubation under standard conditions; m, model parameters derived from the mean of all the incubations for the EOM group. Simulation scenario: 100

years of EOM addition at 1 t C ha-1 y-1.

potential predicted by the model for the different EOMs. The
coefficients of variation (c.v.) of mean yearly sequestration
potential for the 12 climate scenarios were in the range 2.1–
3.8% depending on the EOM group (Table 3). The variability
was larger among SRES emission scenarios (c.v. range 1.9–3.5%)
than among GCMs models (c.v. range 1.3–2.2%). Considering

SRES emission scenarios, B1 was the one promoting the larger
EOM C accumulation, while smaller sequestration potentials
were recorded for A1FI.

A significant inverse relationship was found between the
increase in temperature and evapotranspiration for each of the
12 climate scenarios and the soil C sequestration potential of
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TABLE 2 | Variation in climate parameters for Italy between 2001 and 2100 for 12 different climate scenarios.

Climate parameter HadCM3 PCM GCM2 Mean

A1FI A2 B1 B2 A1FI A2 B1 B2 A1FI A2 B1 B2

Temperature (◦C) 6.0 4.9 2.9 3.4 3.2 2.7 1.5 1.9 4.2 3.5 1.9 2.4 3.2

Precipitation (mm month−1 ) −7.7 −5.9 −4.9 0.0 −0.8 −0.4 −0.3 −1.0 −2.0 −1.3 1.9 1.8 −1.7

Evapotranspir. (mm month−1) 28.6 22.9 14.6 16.6 16.6 10.5 5.7 7.4 16.6 13.8 6.9 8.8 14.1

HadCM3, PCM, GCM2: general circulation climate models. A1FI, A2, B1, B2: emissions scenarios.

TABLE 3 | Modeled soil C sequestration potential for different EOM groups and climate scenarios in Italian agricultural soils amended for 100 years at a rate of 1 t C ha−1

y−1.

GCM SRES EOM group

scenario CO BE AD MM AR CR AW SS Mean SD CV

SOC sequestration rate (t ha−1 y−1) (%)

HADCM3 A1FI 0.375 0.116 0.253 0.106 0.108 0.129 0.197 0.141 0.178 0.095 53.1

A2 0.378 0.118 0.256 0.107 0.109 0.131 0.199 0.144 0.180 0.095 52.8

B1 0.395 0.126 0.271 0.114 0.117 0.141 0.210 0.156 0.191 0.098 51.4

B2 0.383 0.120 0.261 0.109 0.111 0.134 0.202 0.147 0.183 0.096 52.3

PCM A1FI 0.385 0.121 0.262 0.110 0.112 0.135 0.204 0.149 0.185 0.097 52.2

A2 0.386 0.121 0.263 0.110 0.112 0.135 0.204 0.149 0.185 0.097 52.3

B1 0.397 0.128 0.273 0.115 0.118 0.143 0.211 0.158 0.193 0.099 51.2

B2 0.394 0.126 0.270 0.114 0.116 0.141 0.209 0.155 0.191 0.098 51.5

GCM2 A1FI 0.372 0.116 0.252 0.105 0.107 0.128 0.196 0.141 0.177 0.094 52.9

A2 0.379 0.119 0.258 0.108 0.110 0.132 0.200 0.145 0.181 0.095 52.6

B1 0.389 0.124 0.266 0.112 0.115 0.138 0.206 0.152 0.188 0.097 51.7

B2 0.384 0.121 0.262 0.110 0.112 0.135 0.203 0.149 0.185 0.096 52.1

Mean 0.385 0.121 0.262 0.110 0.112 0.135 0.203 0.149 0.185

SD 0.008 0.004 0.007 0.003 0.004 0.005 0.005 0.006

CV (%) 2.1 3.3 2.6 3.1 3.1 3.6 2.3 3.8

EOM, exogenous organic matter; GCM, general circulation climate model; SRES, special report on emissions scenarios; SD, standard deviation; CV, coefficient of variation; CO, compost;

BE, bioenergy by-products; AD, anaerobic digestates; MBM, meat and bone meals; AR, animal residues; CR, crop residues; AW, agro-industrial wastes; SW, sewage sludges.

FIGURE 3 | Relationship between net CO2-C mineralization and soil C

sequestration potential for 8 different EOM groups.

amended soil (Figure 4). No significant relationship was found
between changes in precipitation and C sequestration potential.

Regarding the soil C sequestration potential of soil
amendment at national level, Table 4 reports the total amount

of SOC accumulated in the soil after 100 years of consecutive
application of EOM at a rate of 1 t C ha−1 to all the area of
agricultural land in Italy. Results showed a high variability in
the average increase of SOC stocks ranging from 175 to 615 Mt
(annual increase 1.75–6.15 Mt y−1), depending on the EOM
group. The percentage of increase with respect to the baseline
varied from 25.1% for meat and bone meal to 88.6% for compost
amended soils.

Spatially Explicit Modeling of SOC in Amended Soils
The procedure adopted in this work allows the intensity in SOC
changes in amended soils due to variations in climate, land use
and soil management to be visualized on a map. As an example,
on Figure 5 is reported a map of Italy showing the expected
increase in SOC stocks (expressed in t C ha−1) that could be
achieved in 2100 due to repeated annual addition of compost
to all agricultural land for a specific climate scenario (PCM B1).
Areas with a SOC increase of 51–62 t C ha−1 are all located in
the mountain areas of Northern Italy characterized by grassland
land use. The places on the map with the SMUs having a SOC
increase in the range 41–50 t C ha−1 are mainly situated in the
eastern portion of Po valley. The main areas with an intermediate
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FIGURE 4 | Correlations between changes in temperature (T) and evapotranspiration (ET) predicted by 12 different climate scenarios between 2001 and 2100 and

mean C sequestration potential of amended Italian agricultural soils.

TABLE 4 | Modeled total SOC (Mt) increment in Italian agricultural soils amended for 100 years at a rate of 1 t C ha−1 y−1 with different EOM groups and under different

future climate scenarios.

SRES GCM

scenario HADCM3 PCM GCM2

CO BE AD MM AR CR AW SS CO BE AD MM AR CR AW SS CO BE AD MM AR CR AW SS Mean SD CV

SOC increment (Mt) SOC increment (Mt) SOC increment (Mt) (%)

A1FI 600 184 404 168 171 204 316 223 620 193 420 176 180 215 327 236 592 182 398 166 169 201 312 220 287 146 50.9

A2 605 186 408 170 173 206 319 226 617 191 417 174 178 213 325 233 604 186 407 170 173 206 318 226 289 147 50.8

B1 634 200 432 182 186 223 336 245 633 200 432 182 186 223 335 245 620 195 421 177 181 217 328 238 302 150 49.8

B2 615 192 417 175 178 213 325 234 628 198 428 180 183 220 332 242 612 191 415 174 177 212 323 233 296 148 50.2

Mean 613 191 415 174 177 212 324 232 625 196 424 178 182 218 330 239 607 188 410 172 175 209 320 229

SD 15 7.2 13 6.1 6.3 8.6 8.7 9.9 7.5 4.0 6.6 3.4 3.5 4.8 4.5 5.5 12 5.7 9.9 4.8 5.0 6.8 6.9 7.8

CV (%) 2.5 3.8 3.0 3.5 3.6 4.1 2.7 4.3 1.2 2.1 1.6 1.9 1.9 2.2 1.4 2.3 2.0 3.0 2.4 2.8 2.9 3.3 2.2 3.4

EOM, exogenous organic matter; SRES, special report on emissions scenarios; GCM, general circulation climate model; SD, standard deviation; CV, coefficient of variation; CO, compost;

BE, bioenergy by-products; AD, anaerobic digestates; MBM, meat and bone meals; AR, animal residues; CR, crop residues; AW, agro-industrial wastes; SW, sewage sludges.

SOC accumulation potential (31–40 t C ha−1) are situated in:
(i) the river Po valley, (ii) the coastal area of Emilia Romagna,
Abruzzo, Marche and Apulia, (iii) the area between Apulia and
Basilicata, (iv) the interior part of Tuscany, (v) central Sicily,
and (vi) western part of Sardinia. SOC increments due to the
repeated annual addition of meat and bone meal are reported on
Figure 6. In comparison to compost addition, practically only the
two lower classes of SOC increment (1–10, 11–20 t C ha−1) are
predicted by model simulation of SOC trends in meat and bone
meal amended soil.

Figure 7 shows the simulated increase in SOC stocks
considering compost addition only to arable soils, in order to
simulate a more realistic scenario of compost application to
the easier accessible plain areas. The arable land with higher
sequestration potentials is located in the North-Western part of
Italy.

Simulations performed by applying EOMs to either the land
with the greatest or lowest C storage potential showed, in the
case of compost, an average increase of SOC per unit area of
55.7 and 26.9 t C ha−1, respectively (Table 5). In the case of

meat and bone meal the simulated increases of SOC after 100
years of amendment were 18.9 and 7.2 t C ha−1, respectively.
Similar simulations were performed for the climate scenario
GCM2 A1FI and the results for compost were 52.4 and 26.3 t
C ha−1 and for meat and bone meal 16.5 and 6.8 t C ha−1 for
the area with the greatest and lowest C sequestration potential,
respectively (Table 5). The two climate scenarios were selected on
the basis that they resulted in the largest (PCM B1) and smallest
(GCM2 A1FI) C sequestration potential of added C (Tables 3,
4). In general, the ratio between SOC accumulation in soil with
the greatest and lowest C storage potential was at around 2.5
(Table 5).

Calculation of SOC stocks were performed at fixed soli depth.
It is known that soils are characterized by a great variability
in profile thickness and consequently conversion to a standard
depth could affect the accuracy of prediction of total SOC stocks,
especially in grassland use. However, we were mainly interested
to assess the variability of the SOC increase due to EOM addition
and this is not affected by soil depth. Considering that taking into
account the actual soil depth would have required an increase in
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FIGURE 5 | Map of modeled increase in soil organic C (SOC, t ha−1) after 100

years of compost addition (1.0 t C ha−1 y−1) to all the Italian soils with

agricultural land use (climate scenario PCM B1). The increase in SOC refers to

the business as usual scenario in 2100.

the complexity of the procedure, we chose to keep the procedure
the simpler as possible compatible with the aim of the work.

Uncertainty
Figure 8 reports the uncertainty in C sequestration (expressed
by the standard deviation bars) for the different EOM groups
based on long term simulations considering default climate and
soil data for the S. Martino soil and using the range of values for
pool parameters derived from the optimization procedure of the
modified model. The percent uncertainty with respect the mean
soil C sequestration value for the different EOMs groups varied
from 5.3 (agro-industrial wastes) to 38.4% (compost).

The uncertainty introduced by each specific pool parameter
(calculated as percentage change in C sequestration at the
average parameter value using the range of pool parameter
from the optimization procedure) is depicted in Figure 9. Such
uncertainty varies from 0 to 48.6%. In the case of EOM
groups characterized by 3 EOM pools (CO, AD, and AW) the
uncertainty is mainly attributable to the partition coefficients
of EOM in the REOM and HEOM pool, while in the EOM
groups presenting only two pools, uncertainty is almost entirely

FIGURE 6 | Map of modeled increase in soil organic C (SOC, t ha−1) after 100

years of meat and bone meal addition (1.0 t C ha−1 y−1) to all the Italian soils

with agricultural land use (climate scenario PCM B1). The increase in SOC

refers to the business as usual scenario in 2100.

introduced by variability in the decomposition rate of resistant
pool (KREOM).

DISCUSSION

Sensitivity Analysis
To test the effect of the modifications carried out on the standard
RothC model, a sensitivity analysis (SA) was performed to assess
the effects of varying EOM model parameters on model outputs.
This analysis allows the EOM parameters which have a major
impact on the simulated C accumulation to be identified.

Results of SA for SB, characterized by two EOM pools,
indicated KREOM as the more sensitive parameter (Figure 1;
Table S1). Such outcome is in agreement with findings of Stamati
et al. (2013) who showed that total plant litter input and RPM
decomposition rate constant were the RothC parameters with
the highest sensitivity. This result confirms the importance that
the stabilization degree of EOM exerts on the long term storage
of added C. Moreover, it is also important to consider that
the inverse relationship between KREOM and C sequestration
potential is not linear, asmodel output is more sensitive at smaller
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values of the parameter, i.e., little decreases in the decomposition
rates results in a more than proportional increase in EOM-C
storage (Figure 1).

FIGURE 7 | Map of modeled increase in soil organic C (SOC, t ha−1) after 100

years of compost addition (1.0 t C ha−1 y−1) to Italian arable soils (climate

scenario PCM B1). The increase in SOC refers to the business as usual

scenario in 2100.

In the case of EOM characterized by 3 pools, typically the
composted substrates, the most influential parameter on the
model output were the fREOM/fHEOM and fDEOM/fHEOM ratio,
especially at lower values (i.e., high contents of humic-like
substances) (Figure 2; Table S2). This result was expected given
the slow degradation rate of HEOM. For the same reason the
model output is highly sensitive to variations in the fDEOM/fHEOM

ratio especially at low values. These results underline the
relevance that even small increases in the degree of stabilization
may have on the long term conservation of added C.

Conversely to the case of EOM presenting 2 pools, model
output was not very sensitive to the decomposition rate of REOM
pool.

Generality Test
Generality, for the specific case of EOM amendment, implies
the capacity of the model to simulate a large number of EOMs
acceptably, rather than to predict excellently only few EOMs
added to the soil (Petersen et al., 2005). This could be achieved by
identifying a common set of EOM parameters for EOM groups
characterized by organic materials with similar origin, treatment,
and characteristics.This would extend the range of applicability
of the model, because it would avoid the necessity to perform
specific optimization for every EOM type.

The generality test showed that the difference in terms of SOC
accumulation utilizing mean and specific pools parameter was
reasonably low, being lower than 10% (Table 1). These results
indicate that the range of SOC variability within each group is
limited and therefore a common set of parameters for EOM
group can be used to simulate SOC in soils amended with each
of the EOM type belonging to the group with an acceptable level
of confidence.

Long Term Modeling of Amended Soil
Potential C Sequestration and GHG Offsetting of Soil

Amendment
Result of long term SOC simulations of amended soils showed
that EOM quality exerts a significant impact on the amount
of EOM-C that ultimately will remain in the soil (Table 3),

TABLE 5 | Modeled mean SOC increment (t ha−1) after 100 years of soil amendment with different EOM type to the Italian agricultural soils (213,750 ha) with the highest

and lowest potential for soil C sequestration.

Climate Land potential for SOC sequestration EOM group Average

scenario CO BE AD MM AR CR AW SS

SOC increment (t ha−1)

PCM B1 Land with largest SOC sequestration potential 55.7 22.0 42.4 18.9 19.5 25.8 30.5 29.4 30.5

Land with smallest SOC sequestration potential 26.9 7.8 17.7 7.2 7.3 8.6 14.0 9.3 12.3

Ratio 2.1 2.8 2.4 2.6 2.7 3.0 2.2 3.2 2.6

GCM2 A1FI Land with largest SOC sequestration potential 52.4 18.9 38.4 16.5 17.0 21.9 28.1 24.9 27.3

Land with smallest SOC sequestration potential 26.3 7.4 17.2 6.8 7.0 8.1 13.5 8.8 11.9

Ratio 2.0 2.5 2.2 2.4 2.4 2.7 2.1 2.8 2.4

EOM, exogenous organic matter; PCM, GCM, general circulation climate models; B1, A1FI, emissions scenarios; CO, compost; BE, bioenergy by-products; AD, anaerobic digestates;

MBM, meat and bone meals; AR, animal residues; CR, crop residues; AW, agro-industrial wastes; SW, sewage sludge.
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FIGURE 8 | Uncertainty in soil C sequestration for different EOM type added

to the S. Martino soil at a rate of 1 t C ha y−1 for the period 2001–2100. CO,

compost; BE, bioenergy by-products; AD, anaerobic digestates; MBM, meat

and bone meals; AR, animal residues; CR, crop residues; AW, agro-industrial

wastes; SW, sewage sludges. Error bars represent standard deviation of the

different estimates of C sequestration using the range of pool parameters

derived from the optimization procedure.

FIGURE 9 | Uncertainty in soil C sequestration introduced by the different

EOM pool parameters describing EOM quality. CO, compost; BE, bioenergy

by-products; AD, anaerobic digestates; MBM, meat and bone meals; AR,

animal residues; CR, crop residues; AW, agro-industrial wastes; SW, sewage

sludges. The uncertainty introduced by DPM was extremely low (<1.1%) and

therefore not included in the graph.

as application of the same amount of C may result in a 3.5-
fold difference in the potential for C sequestration. Compost
and anaerobic digestates were the EOM groups for which
the model runs anticipated the larger SOC accumulation.
The potential of compost for soil C accumulation is widely
recognized (Smith P. et al., 2005) and is mainly attributed to
the presence of humic-like substances, whose extreme diversity
and lack of regular polymeric structure impair efficient enzymatic
degradation (De Nobili et al., 2001). In the case of anaerobic
digestates the degradation of cellulose, soluble starch and glucose
in the acidogenic phase of the anaerobic process leads to
the formation of a partially stabilized residue. The potential
of two-phase olive mill waste as a C source to promote C
sequestration is well-recognized and mainly attributed to its high

content of ligno-cellulosic substances (Sanchez-Monedero et al.,
2008). Conversely, meat and bone meals, animal residues and
bioenergy by-products were the EOMs less indicated to foster
C sequestration. The potential yearly C sequestration rate per
unit area found in the present study for compost (0.385 t C
ha−1 y−1) is similar to the values reported by Smith P. et al.
(2005) for compost (0.4 t C ha−1 y−1), Smith et al. (2008) for
manure/biosolid application (0.42 t C ha−1 y−1) and Freibauer
et al. (2004) for amendment (0.40 t C ha−1 y−1) in European
soils, Yokozawa et al. (2010) for Japanese arable soils (0.30 t C
ha−1 y−1) andMinasny et al. (2017) for paddy soils in Asia (0.24–
0.46 t C ha−1 yr−1). The potential yearly C sequestration rate
determined in the present study for Italian compost amended
soil is markedly higher of that reported by Mondini et al.
(2012) (0.13 t C ha−1 yr−1). Nevertheless, such evaluation
was performed utilizing the standard version of RothC, which
considers organic matter entering in the soil to be composed only
by decomposable and resistant material. These results suggest the
inadequacy of the standard RothC model for the simulation of
SOC in amended soil, because its structure does not allow the
huge variability in the composition and properties of EOM to
be taken into account. As a matter of fact, a sensitivity analysis
performed by Falloon (2001) on the standard RothC showed that
the model is relatively insensitive to variations in the quality of
C inputs, as varying DPM/RPM ratio for plant inputs from 0.1
to 2.0 (i.e., 20-fold variation) resulted in a SOC decline from 29.0
to 24.3 t ha−1 (i.e., 16% variation). Conversely, the possibility to
define specific partition coefficients and constant decomposition
rates for EOM pools in the modified model caused variations
in the SOC accumulation up to 1.8-fold: addition of 1 t C ha−1

y−1 of either CMC compost or blood meal to the same soil
for 100 years resulted in SOC contents of 75.1 and 42.7 t ha−1,
respectively (Table 1).

The Carbo-PRO web-tool for simulation of C sequestration in
amended soil developed by INRA and based on RothC (Carbo-
PRO, 2012) gives a maximum yearly sequestration potential of
0.27 t C ha−1 y−1 for a yearly application of 1 t C ha−1 of compost
with a good degree of stability for a period of 100 years. Model
parameterization of the web-model was based on biochemical
properties of EOM evaluated by the Van Soest method. Thuriès
et al. (2002) suggest that in very stable compost part of the lignin
pool can be transformed into soluble humic substances resistant
to microbial degradation. Consequently, biochemical fractions
based on the Van Soest method may lead to an overestimation of
the labile fraction and an underestimation of the stable fraction,
mainly responsible for the build up of SOC stocks.

Peltre et al. (2012) reported values of potential C sequestration
in compost amended soil similar to those evaluated in the
present study. However, such values were calculated considering
a period of application of 20 years and it is well-known that the
effectiveness of strategies such as compost application in building
up SOC stocks tends to decrease after several decades, as the soil
approaches saturation (Stockmann et al., 2013). The most stable
compost in the study of Peltre et al. (2012) presented partition
coefficients of 0.0, 0.8, and 0.2 for DEOM, REOM and HEOM,
respectively. These values do not seem to properly reflect the
nature of stable composts, considering that in mature composts
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lignin, assumed as a proxy for the resistant pool of EOM (Thuriès
et al., 2002), ranges from about 30% up to 54% of organic matter
(Sanchez-Monedero et al., 1999; Thuriès et al., 2002; Francou
et al., 2008; Doublet et al., 2011).

The significant power correlation between net CO2

cumulative emission and potential for C sequestration of each
EOM group (Figure 3) suggests that the net C mineralization
of residues during laboratory incubation is an indicator of
their potential for C sequestration, but that such relationship is
not linear. Results confirm the well-known importance of the
degree of stability (as indicated by the rate of mineralization) in
determining the long term potential of C sequestration of EOM
added to the soil (Katterer et al., 2014). The power correlation
between C mineralization and simulated C sequestration
indicates how large increases in SOC accumulation could result
from slight increases in the degree of stabilization of added EOM
and suggests increased stabilization of organic amendments
prior to soil application as an option to enhance C sequestration
(Kirchmann and Bernal, 1997). In particular, the occurrence of
a stable C pool (humic substances-like) greatly enhances the
capacity of the residue to build up SOC stocks, as indicated by
the results of the sensitivity analysis (Figure 2; Table S2).

Results of long term simulation, besides to highlight the
importance of EOM quality, indicate the overall effect of the
different pedoclimatic conditions in determining the variability
in the potential to build up SOC stocks, as the combination of
the different EOMs and pedoclimatic conditions resulted in a
range of annual potential of C sequestration exceeding 1 order of
magnitude. This evidence suggests spatial explicit SOC modeling
as a key tool for the optimization of soil amendment at large
scale (see section Spatially Explicit Modeling of SOC in Amended
Soils).

The effect of the different climate scenarios on the C
sequestration potential predicted by the model is consistent
with the anticipated consequences of these scenarios on
climate paeameters (Table 2). The relationship between climate
parameters and SOC accumulation potential (Figure 4) could
be explained on the basis that changes in T and ET predicted
by all 12 climate scenarios were always positive, while in the
case of precipitation contrasting estimates (i.e., positive and
negative variations) were provided by the different climate
scenarios (Table 2). Furthermore, it has to be considered that
an adequate soil water content increases SOM decomposition,
but in the presence of an optimal temperature, i.e., the effect
of precipitation on SOM mineralization is best elucidated by
considering the interaction of precipitation and temperature
(Smith J. et al., 2005), as indicated by the significant relationship
between potential SOC sequestration and ET (Figure 4).

The annual rate of GHG emissions for Italy in 2016
was estimated by the European Environment Agency (EEA-
European Environment Agency, 2018) to be 117 Mt CO2-Ceq

y−1. Therefore, the range of average annual potential of C
sequestration in Italy in response to the application of EOM
estimated in the present work (1.75–6.15 Mt C y−1) only
represents 1.5–5.3% of the total annual GHG emissions in Italy. It
is also important to consider that the available EOM in Italy is not
sufficient to cover all the suitable land. For instance, the estimated

annual production of compost for 2020 in Italy is 1,800,000 t.
At a rate of 1 t C ha−1, this could be applied to 213,750 ha,
representing about 1.66% of the total Italian agricultural land
(12,885,186 ha). Considering the mean annual C sequestration
rate of compost predicted by the simulation performed with the
modified RothC (0.385 t C ha−1 y−1; Table 3) the total C that can
be sequestered every year in soil by compost amendment is about
82,300 t (corresponding to <0.1% of the annual rate of GHG
emissions for Italy). This value is consistent with an amount
of 98,200 t of C estimated by Arrouays et al. (2002) for France
considering the actual compost production of France. Therefore,
even in the non-realistic hypothesis to apply compost, which is
one of the EOMs with larger potential for C sequestration, to all
the Italian agricultural land, the contribution of soil amendment
in tackling GHG emissions is limited. These results are in
agreement with those of Smith (2004a) who concluded that C
sequestration can play only a minor role in offsetting GHG
emissions. However, it is important to consider that even if soil
C sequestration by EOM application may have little benefit for
climate change mitigation, the increase in SOC content is likely
to have several beneficial and important impacts on soil quality
and ecosystem functioning (Powlson et al., 2011).

Spatially Explicit Modeling of SOC in Amended Soils
Spatially explicit modeling of SOC in amended soils clearly
showed the relevance of EOM properties in determining the
amount of added C that will be stored in the soil, as in the case
of addition of compost and meat and bone meal (Figures 5, 6).
Large scale SOCmodeling also underlined that the characteristics
of the agricultural land play an important role in determining
the C storage potential of EOM (Figures 5, 7). Spatially explicit
modeling can be useful for the evaluation of the effects of site
properties on EOM-C accumulation and in elucidating the role
of the interactions between the different factors involved in
determining future SOC stocks in amended soils.

A first important interaction is that between temperature and
precipitation (Figure 4). It is largely acknowledged that there is
a direct relationship between temperature and the rate of EOM
decomposition due to the effect of temperature on bothmetabolic
activity of soil organisms responsible for EOM decomposition
and hydrolytic enzymatic activity (Franzluebbers, 2004). But also
soil water content, which is influenced among others factors by
precipitation, may affect the rate of EOMmineralization. The soil
moisture content is not linearly correlated with decomposition,
as suggested in the present work by the lack of correlation
between precipitation and SOC accumulation, but affects the
storage of added C when the soil water content is out of
the optimal range for decomposition, generally considered
to be between 10 and 50 kPa (or 30–60% water-filled pore
space) (Franzluebbers, 2004). Low water contents may offset
the effect of temperature on decomposition by reducing soil
water films, which in turn inhibits extracellular enzyme activity
and decreases substrate availability and microorganisms mobility
(Franzluebbers, 2004; Davidson and Janssens, 2006). Leiros et al.
(1999) demonstrated that the effect of a 2◦C temperature increase
on the rate of EOMdecomposition is roughly counterbalanced by
a simultaneous 10% decline in soil water content. On the other
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hand, also excessive soil moisture can decrease the rate of EOM
mineralization due to limited O2 availability into the soil (Gabriel
and Kellman, 2011). Therefore, a better understanding of EOM
decomposition can be achieved by considering the interaction
of temperature and moisture. The relevance of the interaction
between these two factors is illustrated in the present study
by the significant correlation between ET and the potential for
SOC sequestration (Figure 4), as ET reflects the effect of both
temperature and soil moisture, with the latter being influenced by
precipitation. The significant inverse relationship indicates that
SOM mineralization is affected by temperature as long as soil
moisture is within an optimal range for decomposition process.
Furthermore, in the present research, while there is a general
inverse relationship between SOC accumulation and temperature
(Figure 4), there are also notable exceptions to this behavior,
with soils presenting a high potential for C accumulation located
in areas characterized by high temperatures, such as Southern
Italy (Figure 5). However, these areas are characterized by low
precipitation and the restriction exerted by low soil water
content on EOM decomposition could explain why significant
potential for C sequestration were also predicted for some of
the hottest areas of Italy. The relevance of interaction between
temperature and precipitation was also highlighted in previous
studies. Smith J. et al. (2005) predicted faster SOC decomposition
rates in areas where temperature increased, but at the same
time, soil water moisture remained sufficiently high to enable
mineralization. Likewise, Fantappiè et al. (2011) found that
variations in SOC recorded in Italy between 1961 and 2008
were significantly affected by the interaction of temperature
and precipitation. The importance of soil moisture as a key
factor in regulating SOC mineralization has been emphasized
by Fuentes et al. (2012) in a SOC simulation study performed
for the 2007–2087 period in Northeastern Spain. The authors
suggest that the simulated increase in SOC stocks in the
studied area, characterized by prevailing semiarid conditions,
is due to the effect of low soil moisture content on SOC
decomposition, alongwith the likely increase in plant net primary
production due to the rise in CO2 content caused by climate
change.

The combined impact of temperature and precipitation on
EOM-C storage could also be seen in the SMU with the largest
C accumulation potential that are all situated in the mountain
region of Northern Italy (Figure 5), characterized by mean
annual low temperatures and high precipitation. In these areas
the climatic conditions are favorable to a slow down of the
decomposition process by decreasing microbial activity and
limiting O2 availability. These results are in agreement with
findings of Saby et al. (2008) and Lemenih and Itanna (2004),
who demonstrated a trend in SOC that is directly proportional
to the mean annual precipitation and inversely proportional to
the mean annual temperature.

Another important interaction in determining EOM-
C storage is between land use and climate. It is widely
acknowledged that grassland promotes C sequestration with
respect to arable soils, mainly due to avoided soil disturbance,
larger input of plant residues and higher production of root
biomass.

Goidts et al. (2009) accounted for Southern Belgium a mean
SOC content of 36.4 and 92.2 t C ha−1 for cropland and grassland,
respectively. In the present study, all the SMUs with the largest
SOC increase (50–60 t C ha−1, for compost amended soils)
presented grassland as land use and low temperatures and large
precipitation. It is generally acknowledged that evaluation of
plant-derived C input in grassland soils is affected by a large
degree of uncertainty and therefore this source of variability
could affect the accuracy of predicted SOC for grassland
systems. However, the effect of this uncertainty is relevant
when considering SOC prediction in absolute terms, but has
a lower impact when considering SOC in relative terms (i.e.,
difference between amended and not amended soil), as in
the case of our work, because the same C input from plant
residues were attributed for the amended and not amended soil.
When considering the different SOC increase due to amendment
this mainly reflects the interaction of EOM with pedoclimatic
conditions (Figures 5–7). Therefore, the higher SOC increase
per unit area recorded in grassland soils amended with compost
could be mainly attributed to the fact that grasslands are
situated in areas characterized by a combination of climatic
conditions (low temperatures and large precipitation) favoring a
low rate of EOM mineralization. Accordingly, Smit et al. (2008)
found grassland productivity to be positively correlated with
precipitation and negatively correlated with temperature.

Taking into account the limited potential production of EOM,
it is clear that the studied scenario (EOM application to all
agricultural land) does not reflect a realistic soil management
option. However, the creation of a relation between spatial data
and a dynamic soil Cmodel represents a valuable tool for farmers,
land managers, and policy makers for the optimization of the
available resources. Simulations considering EOMs addition to
all agricultural land, despite EOM scarcity, are significant as they
enable obtaining a spatial representation of the potential of land
for EOMC accumulation that can provide useful information for
an effective management of EOMs. As an example, application of
the estimated production of compost for 2020 to either the soil
presenting the largest or the smallest C sequestration potential
resulted in a 2.1-fold difference in SOC increase (climate scenario
PCMB1) (Table 5). Spatially explicit modeling indicates the areas
where the combination of climate, soil properties and land use
results in the largest increase in SOC and therefore maps such
as those reported in Figures 5–7 can be useful for resource
optimization by providing advice as to where EOM might be
applied to obtain larger C sequestration.

The simulations performed on the land with contrasting
capacity for C sequestration could also provide an indication
on the relative importance in determining C accumulation of
the different pedoclimatic conditions present at national level.
Such results indicate that in soils amended with the same
EOM, contrasting pedoclimatic conditions may cause a 2.5-fold
differences in SOC accumulation (Table 5). These variations may
be compared with those caused by the different EOM groups
(3.5-fold difference, Table 3) and suggest that the quality of
EOM added to the soil exerts a larger impact in determining
SOC accumulation than variations in pedoclimatic conditions at
national level.
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Uncertainty of Long Term Modeling Due to the

Different Quality of EOM
Regional modeling of amended soil under climate change is
affected by different limitations and sources of uncertainty,
but a quantification of all sources of uncertainty in the
long term RothC prediction of C sequestration potential
was beyond the scope of the present work. Limitations and
sources of uncertainty related to simulations performed on
unamended soils under climate change at regional scale will
not be discussed here. A thorough evaluation of uncertainty
of RothC following land use change was already performed by
Stamati et al. (2013).

Given the aim of the present study, uncertainty analysis
was focused on how the range of variability in EOM quality
(i.e., partitioning factors and decomposition rates) is propagated
along the model and it is translated into variability in the
model output (Smith and Smith, 2007). Uncertainty analysis
associated to the variability in EOMs was performed in a
similar way to the sensitivity analysis. The main difference is
that sensitivity analysis was aimed to test the behavior of the
modified model, i.e., to determine how the model responds to
variation in its components, while the purpose of uncertainty
analysis was to determine how much variability is introduced
into the model output due to the actual range of variation in the
inputs. For this reasons input values during sensitivity analysis
were changed arbitrarily using also unrealistic values, whereas
input values in uncertainty tests were altered according to the
range of variability of pool parameters determined during the
optimization procedure.

The uncertainty in C sequestration for the different EOM
groups (range 5.3–38.4%) was lower than the variability reported
by Smith et al. (2014) for differently treated organic residues,
as uncertainty in their work was always higher than 50%.
The EOM group presenting the higher uncertainty is compost
(Figure 8) and this can be attributed to the fact that the data set
utilized for the analyses includes soil amended with compost with
different degree of stabilization. The variability in the long term
prediction of SOC trends at national scale under climate change
associated to the different levels of EOM quality estimated in the
present study is below the range of overall uncertainty in the
model (65.6–70.8%) evaluated by Stamati et al. (2013) in a long
term RothC simulation of C sequestration potential following
conversion from cropland to set-aside.

The results concerning the evaluation of variability introduced
by the different pool parameters indicate a clear difference
between EOMs characterized by two or three EOM pools.
In the first case the parameter showing the higher effect on
C sequestration uncertainty is the decomposition rate of the
resistant pool. In the latter case, uncertainty is mainly affected by
the partition of the EOM between the resistant and humus pool
(Figure 9).

The performed uncertainty analysis allows themodel response
to a broad range of EOMs (DeLonge et al., 2013) to be evaluated.
Furthermore it provides an evaluation of the error on the
estimate of SOC stocks, accounting for all possible variation in
the models inputs regarding EOM quality (Wattenbach et al.,
2007).

CONCLUSIONS

The main outputs of the study on the application of the modified
RothC to the long term SOC modeling of amended soils at
national (Italy) scale under climate change can be summarized
as follows:

- EOMs greatly differ for their long term (100 years) soil
C sequestration potential (range of annual rate of C
sequestration: 0.110–0.385 t C ha−1 y−1; 3.5-fold difference)

- the contribution of soil amendment in tackling GHG
emissions is limited: soil C sequestration potential of compost
applied for 100 years to all Italian agricultural land at a rate of
1 t C ha−1 y−1 (climate scenario PCM B1) was 6.15 Mt C ha−1

y−1 corresponding to 5.3% of total annual GHG emissions in
Italy

- spatial explicit modeling of amended soil indicated a high
variability in long term potential of SOC accumulation (1
order of magnitude) due to the combination of EOM type,
environmental properties (soil, climate) and management
options (land use and management)

- large scale spatial modeling of soil organic C can suggest ways
to optimize resources by identifying the areas with the largest
potential for EOM accumulation: 100 years of application of
the whole compost produced in Italy to the land with the
smallest and largest potential for C sequestration resulted in a
mean SOC increment of 27 and 56 t C ha−1, respectively (i.e.,
2-fold increment)

- spatially explicit modeling of SOC in amended soils could be
useful to highlight the relative importance of EOM quality and
pedoclimatic conditions in the SOC evolution observed: in the
present study the different EOMproperties had amajor impact
than variability in pedoclimatic conditions in determining
long term SOC accumulation

It has been underlined by several authors that there are
considerable differences in the turnover rates and substrate
utilization efficiencies of EOM between laboratory and field
conditions. Consequently, the transfer of the optimized
parameters resulting from laboratory studies to field sites has to
be done with caution and the model based analysis of amended
soil cannot be interpreted in terms of absolute values for certain
sites and management practices. The reliability of the approach
proposed in this study could only be validated by comparing the
results of the simulation with data from long term experiments
dealing with soil amendment with different EOMs. This step is
essential to ensure the transferability to field conditions of the
proposed procedure for the evaluation of soil C sequestration in
amended soil and represents the main future development of the
present work.

The relevance of this works is that it quantifies the relative
differences of several types of EOM in their potential to
build up SOC stocks at national scale under climate change
and therefore can be useful to identify EOM properties,
agricultural management options and environmental conditions
more conducive to soil C retention of EOMs.

Model simulations indicate a wide range of variation in
C sequestration potential as a consequence of long term
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amendment with contrasting EOMs. A reliable estimation of
SOC accumulation by soil amendment at country-scale therefore
requires that soil models should be capable to accommodate
the huge variability in EOMs quality. Findings of this study
highlight the importance of specific calibration and modification
of existing soil C models for amended soils to enhance the
reliability of soil C modeling to warranty the sustainability of
agricultural ecosystems.
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