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Sciences, Macquarie University, Sydney, NSW, Australia, 3 Australian Antarctic Division, Antarctic Conservation and

Management, Kingston, TAS, Australia

Quantification of microbial functional genes enhances predictions of soil biogeochemical

process rates, but reliance on low-throughput quantitative PCR (qPCR) limits the scope

of ecological studies to a handful of targets. Here, we explore whether microfluidic

qPCR (MFQPCR) is a viable high-throughput alternative for functional gene quantification,

by evaluating the efficiency, specificity and sensitivity of 29 established and 12

newly designed primer pairs targeting taxonomic, nitrogen-cycling, and hydrocarbon

degradation genes in genomic DNA soil extracts, under three different sets of MFQPCR

assay conditions. Without curation, commonly-used qPCR primer pairs yielded an

extreme range of reaction efficiencies (25.9–100.1%), but when conditions were

optimized, MFQPCR produced copy-number estimates comparable to traditional qPCR.

To guide microbial soil ecologists considering adoption of MFQPCR, we present

suggestions for primer selection, including omission of inosines, degeneracy scores

of < 9, amplicon sizes of ≤ 211 bp, and GC content of 32–61%. We conclude

that, while the nanoliter reaction volumes, rapid thermocycling and one-size-fits-all

reaction conditions of MFQPCR necessitates more stringent primer selection criteria

than is commonly applied in soil microbial ecology, the ability to quantify up to

96 targets in 96 samples makes MFQPCR a valuable tool for monitoring shifts in

functional community abundances. MFQPCR will particularly suit studies targeting

multiple clade-specific functional genes, or when primer design is informed by previous

knowledge of the environment.

Keywords: microfluidic qPCR, quantitative PCR, functional genes, nitrogen cycle, hydrocarbon degradation,

microbial community, terrestrial ecology, biogeochemical cycles

INTRODUCTION

Soil microbial communities perform a dazzling array of ecosystem services, from fixation of
atmospheric nitrogen and the release of nutrients from rocks (Landeweert et al., 2001; Levy-Booth
et al., 2014), to the degradation of organic pollutants and pesticides (Molina et al., 2009; Kumar
et al., 2016). Advances in genomic technologies are rapidly expanding our knowledge of the genetic
and taxonomic diversity of microbial communities, unearthing new biogeochemical pathways and
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revealing whole clades of undescribed bacteria, at a pace that
quantification technologies have struggled to keep up with (Jones
et al., 2013; Hu et al., 2015; Widder et al., 2016; Kuypers
et al., 2018). While high-throughput sequencing has become
the mainstay of many microbial ecology and ecotoxicology
laboratories, low-throughput quantitative PCR (qPCR) remains
the method of choice for accurate quantification of total
cell numbers, individual species or functional genes. In soil
the quantification of microbial functional genes enhances the
prediction of biogeochemical process rates (Hallin et al., 2009;
Petersen et al., 2012; Bier et al., 2015; Powell et al., 2015; Graham
et al., 2016; Breuillin-Sessoms et al., 2017), but traditional qPCR
is laborious and costly, severely limiting the scope of microbial
ecology investigations to quantification of just a handful of target
genes.

Quantitative PCR uses DNA-complexing fluorophores and
real-time detection to quantify the number of gene copies
present in an individual reaction and is currently the gold-
standard of gene quantification. By including a linear range
of standards with known numbers of gene copies, qPCR is
used to estimate starting concentrations of the target gene,
often down to 101 copies/ µL (Smith and Osborn, 2009).
In recent years a number of alternatives to traditional qPCR
have arisen which drastically improve throughput by either
miniaturizing, automating, digitalizing or multiplexing reactions
(Baker, 2010; Huggett et al., 2013). However, these methods
do not simultaneously match both the accuracy and flexibility
of qPCR. The most promising technologies that are addressing
this gap include microarrays such as Geochip, which uses
hybridization of an array of > 20,000 probes to semi-quantitate
thousands of gene variants in a small number of samples (He
et al., 2010); digital PCR, which uses sample partitioning into
droplets or nanoliter chambers to detect individual copies of rare
targets (Baker, 2012); and microfluidic qPCR (MFQPCR), which
uses nanoliter reaction volumes and a system of pressurized
valves and microfluidic channels to automate the mixing and
thermocycling of up to 96 assays and 96 samples in a single
chip (Spurgeon et al., 2008). While microarrays have proven a
powerful tool for screening soils for the presence of functional
genes (Yergeau et al., 2007), and digital PCR has its niche
in detecting a few targets with high sensitivity, both are
prohibitively expensive for ecological studies which require the
analysis of large numbers of individual samples. MFQPCR has
emerged as an attractive alternative, being cost-effective, easily
customizable, and as it uses the same chemistry as traditional
qPCR, theoretically produces directly comparable results (Miller
et al., 2016).

First developed for reverse-transcriptase quantification of
gene expression in humans (Spurgeon et al., 2008), Kleyer et al.
(2017) recently reported the application of MFQPCR to quantify
specific soil bacteria using species-specific primers in batch
cultures and sterile sand. MFQPCR has also been successfully
applied to environmental samples, detecting pathogenic bacteria
and viruses in aquatic environments and in salmon (Ishii et al.,
2013, 2014a,b; Byappanahalli et al., 2015; Miller et al., 2016; Bass
et al., 2017; Sadik et al., 2017). These studies demonstrated that
MFQPCR is sensitive to 2 copies/µL (Ishii et al., 2014a), is specific

enough to distinguish between serotypes (Dhoubhadel et al.,
2014), and per assay costs are less than half that of conventional
qPCR (Ishii et al., 2014a; Miller et al., 2016). Until now, however,
these studies have endeavored to use assays which conform to
the parameters established in MFQPCR’s development as a tool
for quantification of gene expression in humans (Spurgeon et al.,
2008). That is, using primer sets directed to highly specific target
genes for quantification in relatively homogenous, high purity
samples that have been purified of PCR-inhibiting contaminants.

Microfluidic qPCR achieves its high-throughput capacity
by sacrificing much of the flexibility of qPCR. Recommended
MQPCR conditions include primer pairs that are free from
degeneracy, produce short amplicons of < 100 bp, and have melt
temperatures close to 60◦C, thereby enabling up to 96 assays to be
run simultaneously, using identical reagent concentrations and
thermocycling conditions (Spurgeon et al., 2008). Conversely,
due to its low-throughput nature, traditional qPCR allows
for assay-by-assay modifications of reaction conditions to suit
specific primer pairs and sample types. This flexibility is
particularly valuable in the quantification of microbial functional
genes, where maximal coverage, rather than specificity, is desired
(Gaby and Buckley, 2012). As microbial functional communities
are taxonomically diverse, with several distinct clades performing
a single substrate transformation, primers targeting a specific
gene in one species have little predictive value for determining
process rates in the whole community. Instead, degenerate
primers are often used to target a single gene in one or multiple
clades, with qPCR conditions optimized to ensure acceptable
reaction efficiencies (Iwai et al., 2011; Wei et al., 2015; Gaby and
Buckley, 2017). Other commonly used deviations from qPCR
‘best-practice’ include longer amplicons to straddle an active site
combined with extended elongation times (Baldwin et al., 2003;
Lueders and Von Netzer, 2017), the combination of mismatched
bases and lower annealing temperatures (Ishii and Fukui, 2001;
Frank et al., 2008; Edwards et al., 2011), and the use of additives
to combat inhibitors such as humic acids present in soil DNA
extracts (Dandie et al., 2007). Given the need for flexibility in
primer design and the inability to customize individual assay
conditions when using MFQPCR, it is necessary to establish
what the boundaries of primer variability are for MFQPCR
before it can be considered a high-throughput alternative for the
quantification of microbial functional genes in environmental
samples.

The aim of this study was to determine whether established
qPCR primer pairs targeting microbial functional genes in soil
could be applied to MFQPCR with comparable accuracy. As
preliminary research showed a high assay failure rate (Crane,
2016), we aimed to determine which primer design parameters
were crucial to assay success, by assessing performance of a
wide variety of nitrogen cycle and hydrocarbon degradation
primers under different combinations of primer concentrations
and MFQPCR thermocycling conditions. We used soil DNA
extracts from ongoing hydrocarbon ecotoxicology studies in
subantarctic and Antarctic soils (Crane, 2016; Mcwatters et al.,
2016) to evaluate the sensitivity, specificity and reaction efficiency
of 29 established and 12 newly designed primer pairs and three
sets of MFQPCR assay conditions. We then evaluated MFQPCR
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accuracy by comparing MFQPCR and qPCR gene abundance
estimates for a subset of genes and soil samples.

MATERIALS AND METHODS

Soil Samples and DNA Extraction
To evaluate MFQPCR reaction efficiencies, we used 217
soil DNA extracts from hydrocarbon ecotoxicology studies
conducted on subantarctic Macquarie Island (Crane, 2016),
and at Casey station, East Antarctica (Mcwatters et al., 2016).
Samples from Macquarie Island were collected from a two-
year in situ mesocosm study investigating the effect of a
residual hydrocarbon mixture (spiked into clean soils) on
native microbial soil communities. Samples from four separate
biopiles at Casey Station were collected as part of a large-scale
remediation project to evaluate hydrocarbon biodegradation
rates and the effects of the active remediation treatments on
the indigenous microbial population over 5 years. Soil samples
(50g) were collected in sterile plastic 50ml tubes, immediately
sealed and stored at −20◦C until analyzed. Total community
genomic DNA (gDNA) was extracted in triplicate from 0.3 to
0.5 g soil using the FastDNA SPIN Kit for soil (MP Biomedicals)
and quantified spectrophotometrically using the PicoGreen
double-strand DNA kit (Life Technologies) on the ClarioSTAR R©

microplate reader (BMG Labtech). DNA lysates were diluted in
nuclease- free water; Macquarie Island samples to an optimal
range of 7–8 ng µL−1, (min. 3.3 ng µL−1, max 10.7 ng µL−1)
and Casey Station samples were all diluted 10-fold. An inter-plate
calibrator (IPC) was generated by mixing 10 randomly selected
Macquarie Island gDNA extracts to a final concentration of 8.7
ng µL−1.

Primers and Standard Generation
Primers targeting universal genes for Fungi, Bacteria, Archaea,
Acidobacteria, and Betaproteobacteria were selected from the
literature, in addition to a suite of primers for nitrogen cycling
and hydrocarbon degrading genes in Bacteria and Archaea
(Table 1). In accordance with qPCR best practice (Rodríguez
et al., 2015), primer pairs with minimal degeneracy and small
amplicon sizes were preferentially selected. Twelve additional
nitrogen cycle primers with no degeneracy and amplicon sizes
of < 200 bp were designed with PRISE2 (Huang et al., 2014)
using sequences downloaded from FunGene (Fish et al., 2013)
and GenBank. Standards for copy number quantification were
generated either by PCR amplification of environmental gDNA
(Shahsavari et al., 2016) or through artificially synthesized gBlock
Gene Fragments (Integrated DNA Technologies) (Table 2).
Representative sequences for gBlock standards were sourced
from NCBI using Primer-BLAST (Table S3) (Ye et al., 2012)
and each gBlock comprised of five different standard sequences.
For PCR-derived standards, PCR reactions were conducted in
25 µL volumes containing 1 µL template, 1x GoTaq Flexi
Buffer; pH 8.5 (Promega), 400 nM each primer (Integrated
DNA Technologies), 250µM each dNTP (Bioline), 160 µg ml-
1 BSA, 0.625U GoTaq polymerase (Promega) and optimized
concentrations of MgCl2 (Promega) (Table S4). Thermocycling
conditions consisted of 94◦C for 2min, then 35 cycles of 94◦C

for 45 s, annealing for 45 s, 72◦C for 45 s, with a final extension
at 72◦C for 10min. Annealing temperatures were optimized for
each primer pair (Table S4). PCR products were purified using
QIAquick PCR purification columns (QIAGEN) and quantified
spectrophotometrically. Copy numbers were calculated and
standard curves generated using serial dilution from 102 to 109

copies/µL. Standards were pooled for use with MFQPCR, with
final concentrations of 102-108 copies/µL for EUK and Eub, and
101-107 copies/µL for all other assays.

MFQPCR
MFQPCR assays were run in three separate sets using
Evagreen R© chemistry and two different Fluidigm Dynamic
ArrayTM Integrated Fluidic Circuits (IFCs): A single 48.48 IFC
(Set A), three 48.48 IFCs (Set B), and a single 96.96 IFC (Set
C). Primer selection (Table 1), primer concentration, extension
times, sample source, and method of standard generation were
different for each of the three Sets used (Table 2). An inter-plate
calibrator sample (IPC) was run in triplicate across the three
48.48 IFCs in Set B (Bi, Bii, and Biii) to enable the evaluation
of intra- and inter-run variation. Specific target amplification
(STA) and MFQPCR were conducted at the Ramaciotti Center
for Genomics (UNSW Australia, Sydney, Australia). Samples
(gDNA) and 7-point standards were pre-amplified with a 50 nM
primer pool using TaqMan PreAmpMaster Mix (ThermoFischer
Scientific). STA cycling conditions were 95◦C for 2min, then 14
cycles of 96◦C for 15 s and 60◦C for 4min. Products were treated
with 8U Exonuclease I (New England Biolabs) at 37◦C for 30min
and 80◦C for 15min, diluted 1 in 5 with DNA suspension buffer
(TEKnova) and stored at−20◦C overnight. ForMFQPCR, gDNA
and assays were loaded into the reaction chambers of a 48.48
or 96.96 IFC using an MX or HX IFC controller respectively,
according to the manufacturer’s Evagreen R© protocol. The array
was then placed in a BioMark HDTM for thermo-cycling; 95◦C
for 1min, followed by 35 cycles of 96◦C for 5 s and 60◦C for 20 s
or 25 s (Table 2), followed by melt curve analysis for 60–95◦C at
a ramp rate of 1◦C/3 s.

MFQPCR Data Analysis
Data were analyzed using the Real-Time PCR Analysis software,
version 4.1.2 (Fluidigm), using default quality threshold of 0.65
and linear baseline correction. Peak sensitivity was set at 7, peak
ratio threshold at 0.7, and melt temperature (Tm) ranges were
set individually based on the peaks observed in standards, as
per the manufacturers’ recommendations. Both Tm ranges and
threshold cycle (Ct) values were manually normalized to the
mean across intra-chip replicate assays. Individual reactions were
excluded from analysis if they failed any of the melt curve quality
parameters, were outside 0.5 Ct of other replicates, or had a peak
outside the set Tm range. Calibration curves were created in the
Calibration Curve View Module using the known copy numbers
in standards, and the R2 calculated from an OLS regression for
each assay. Calibrated relative concentrations were then exported
to MS Excel for conversion to copies/g of soil, analysis and
modeling.
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TABLE 2 | MFQPCR assay conditions varied across the three experimental sets.

Set IFCa N◦ of IFCs Reaction

volume (nL)

Primer

con-centration (nM)

Extension

time (s)

Standard

method

Sample Source Total

Samples

Total

Assaysb

A 48.48 1 10.1 500 20 PCR Macquarie Island 35 15

B 48.48 3 10.1 700 20 PCR Macquarie Island 99 16

C 96.96 1 6.7 700 25 gBlock Casey Station 83 30 + 2c

a IFC, Integrated Fluidic Circuit. bAll assays were run in triplicate. cTwo assays (nifH66 & amoA2) were run twice, with and without the additive T4 gene 32.

Traditional qPCR
Traditional qPCR was conducted with three primer pairs; amoA,
narG, and bamA, for comparison withMFQPCR results obtained
for Set B. Reactions were carried out using optimized qPCR
conditions; in 20 µL volumes containing 1× QuantiFast SYBR
Green PCR Master Mix (Qiagen), 500 nM each primer, and
1.25 µL template gDNA. Each 96-well plate consisted of a 7-
point standard curve (102-108 copies/µL), no-template control
(NTC), inter-plate calibrator sample (IPC) and 23 randomly
selected samples, all in triplicate. Thermocycling was conducted
with a CFX96 TouchTM Real-Time PCR Detection System (Bio-
Rad) with a hot start of 95◦C for 5min, followed by 40 cycles
of 94◦C for 20 s and 60◦C for 50 s, and melt curve analysis
from 50 to 95◦C at a ramp rate of 0.5◦C/5 s. Analysis of qPCR
data were conducted with the CFX manager software (Bio-Rad).
Replicates with >0.5 Ct variation were examined, and outliers
discarded. Specificity was confirmed with melt peak analysis
and reactions were discarded if non-specific amplification was
evident. The average Ct values across replicates were determined
and copy numbers were calculated based on linear regression of
the standard curve. Standard curve efficiencies and copy numbers
were converted to copies/g of soil for subsequent analysis.

Analysis of Reaction Efficiencies
Mean reaction efficiencies (percentage increase of template in
each round of thermocycling) of samples and standards were
calculated from observed increases in fluorescence using the
LinRegPCR program (version 2015.3) (Ramakers et al., 2003).
For qPCR data, non-baseline corrected data were exported from
the CFX manager software and the raw fluorescence values
imported into LinRegPCR. For microfluidic data, as the Fluidigm
software does not allow for the export of raw fluorescence data, a
constant baseline was first applied in the Real-Time PCRAnalysis
software version 4.1.2 (Fluidigm), and the data reanalyzed.
Normalized fluorescence intensity values for all samples or
standards, to 20 decimal places, were exported gene by gene,
which does not allow for the identification of individual reactions
but allows for group analysis of all samples or standards for each
assay. Computation of efficiencies in LinRegPCR was conducted
as per the program instructions (Ramakers et al., 2003). Noisy
samples, where a continuous increase could not be identified,
were excluded from “Window of Linearity” calculations and
“strictly continuous log-linear phase” criteria was applied to
baseline estimations. Samples were also excluded from mean
efficiency calculations if they had no plateau. In accordance with

qPCR best practice, we considered reaction efficiencies over 90%
to be optimal (Rodríguez et al., 2015).

RESULTS

Evaluation of MFQPCR Assay Quality
In this study, we used three different sets of assay conditions (Sets
A, B, and C), to evaluate variations in primer concentrations,
extension times, soil samples, methods of standard generation,
and the size and number of IFC chips used (Table 2). In total 41
qPCR pairs were evaluated, 29 of which were selected from the
literature as they had been used previously in qPCR (Table 1).
Additionally, 12 nitrogen cycle primer pairs with no degeneracy
and amplicons of< 200 bp in length were designed here. Overall,
primer degeneracy ranged from 0 to 96, and amplicon sizes
from 55 to 544 bp. Other factors, such as GC content, melt
temperature, homo-, and hetero- dimer complementarity, were
not considered in the selection of primers but were also found to
be variable (Table S1).

MFQPCR reaction efficiencies (Figure 1), were highly
variable, ranging from 25.9% (Cu1, Set A) to 100.1% (EUK,
Set B), with five assays failing completely to amplify the target
sequence under MFQPCR conditions (18s, alkH, BED, nifH,
nifH3). All five failed assays contained at least one inosine residue
in either the forward or reverse primer, and exclusion of primers
containing inosines in Set C eradicated further assay failure.
Moderate negative correlations between efficiency and amplicon
size (r = 0.45) and degeneracy (r = 0.38) were observed when
data from the three Sets were pooled (Figures 2A,B). Of the other
primer characteristics examined, weak, non-linear relationships
with reaction efficiency were detected (Figures 2C–E). While
the GC content of gBlock standards, analyzed in Set C, had
a moderate negative correlation with reactionefficiency (r =

−0.66, Figure 2F).
Reaction efficiencies exhibited a strong Set effect, reflecting

a combination of both assay conditions and primer selection,
with the highest median efficiency observed in Set B (Figure 1).
Increased primer concentrations in Set B (700 nM) compared to
Set A (500 nM) improved efficiency of all assays used in both
Sets. However, results varied widely from an improvement of
5% for amoA2 through to 29.1% nirK indicating that in Set
A, primer concentration was limiting the reaction. In Set C,
efficiencies of several assays were lower than in Set B, likely
due to the smaller reaction volumes (6.7 nl vs. 10.1 nl) and
the GC content of the gBlock standards used. The addition of
T4 gene 32 to a subset of six samples and two assays (amoA2
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FIGURE 1 | Distribution of reaction efficiencies across the three Sets of

MFQPCR assay conditions. Higher primer concentrations in Sets B & C

corresponded with improved efficiencies, and exclusion of primers with

inosines corresponds with the elimination of failed/zero efficiencies in Set C.

Further differences in assay conditions are outlined in Table 2. Black lines

show the medians; white lines represent mean efficiency score of individual

assays (n = 15, 48, 27, respectively); polygons represent the estimated

density of the data. Efficiencies are based on standards only.

and nifH66) in Set C did not produce a detectable effect on
efficiencies or copy numbers compared to samples without
this additive. Across the three experiments, all assays exhibited
similar reaction efficiencies for standards and samples, except
for four assays in Set C (AlkB, nirS1, nifH66, and nifD23;
Table S2). Efficiencies in these four assays were 21–28% lower in
standards compared to samples, reflecting a discordance between
the GC rich representative sequences used in the gBlock, and
those present in the environmental samples. Characteristics of
MFQPCR assays displaying optimal efficiencies (≥ 90%) are
summarized in Box 1.

Standard curves were linear over between 4 and 7 orders of
magnitude, with sensitivity ranging from 101 to 104 copies/µL
and R2 values from 0.919 to 1.000. In Set A, 13 samples exceeded
detection limits for 16S, and in one chip of Set B the maximal
value of accurate detection for AlkB, amoA2, Cu1bac, Eub, and
narG was 106 copies/µL, and 105 for EUK. Amplification in all
other standards and samples fell within the maximal range of
detection. Low levels of non-specific amplification in the NTC
was observed for 16S in Set A and Bprot and Eub in Set C, but in
all cases amplification was> 5 Ct below all standards and samples
analyzed. Non-specific amplification, determined by melt curve
analysis, was observed in most samples for BssA, NidA, SRB-
BssA, and P450, suggesting these assays were lacking specificity.
An increase in primer concentration in Sets B & C did not appear
to be associated with any increase in non-specific amplification.
The intra-run coefficient of variance ranged from 0% to 26.5%,
and the inter-run coefficient of variance ranged from 2.3% to
24.1% (Figure S1).

Comparison of MFQPCR and qPCR
Three primer pairs; amoA2, narG, and bamA, were used in a
comparison between traditional and microfluidic qPCR. Mean
efficiencies of standards and samples were higher with MFQPCR
for amoA2 and narG, and slightly lower for bamA (Figure S2).
BamA had very low efficiencies in both qPCR and MFQPCR
assays and most samples failed melt-curve analysis due to the
presence of an additional peak that did not correspond to that
observed for the standards (Figure S3). MFQPCR and qPCR
copy number estimates for amoA2 and narG were within one
order of magnitude of each other for samples diluted ≥ 4-fold
(Figure 3), while MFQPCR estimates were substantially lower
than those of qPCR for samples at dilution factors of 3 or less.
These results indicated that MFQPCR was more sensitive to
the presence of inhibitors compared to traditional qPCR, and
samples should be diluted accordingly.

DISCUSSION

Analyzing the efficiencies of a wide range of published qPCR
primer pairs under various run conditions and against over 200
soil gDNA extracts allowed us to determine which parameters
were most essential to MFQPCR assay success (Box 1). The
combination of nanoliter reaction volumes, rapid thermocycling
and one-size-fits-all reaction conditions of MFQPCR required
more stringent primer selection criteria, compared to common
practices in environmental qPCR studies. In the case of assays
targeting functional genes the most problematic requirement
outlined here was for primers with degeneracy scores of ≤

8. These constraints excluded many broad-coverage primers,
which rely on degeneracy to achieve adequate coverage
of taxonomically-diverse functional communities (Gaby and
Buckley, 2012).

In addition to assay conditions and primer parameters, we
trialed the use of artificially synthesized gBlock standards using
sequences randomly selected from databases. This use of gBlock
standards increased the accuracy of standard dilutions, produced
greater inter-assay correlation, and reduced preparation time by
eliminating the need to source representative cultures or generate
amplicons from the environment. However, as the sequences
used to design the gBlock standards were selected randomly,
several amplicons exhibited different melt peaks and significant
discrepancies in efficiencies compared to environmental samples.
This introduces new inaccuracies, as differences in standard
and sample efficiencies lead to an under- or over-estimation of
copy numbers and hence invalidate estimation of absolute copy
numbers (Ramakers et al., 2003; Bru et al., 2008).

It is important to emphasize that these guidelines are
based on observed efficiencies under specific assay conditions,
and alterations of thermocycling times, reagent concentrations
or the use of additives could be manipulated to relax the
stringent constraints outlined here (Box 1). Indeed, we found
that increased primer concentrations in Sets B and C drastically
improved assay efficiencies, ostensibly as it remedied the
reduced primer/template ratio that results from using degenerate
mixtures of primers (Figure 1) (Rose et al., 1998; Gaby and
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FIGURE 2 | Effect of amplicon size (A), and primer characteristics; degeneracy (B), GC content (C), melt temperature (D), and hetero-dimer 1G (E), on mean

reaction efficiency of samples and standards across all chips and assays. Effect of GC content of gBlock artificially synthesized standards (Set C) on reaction efficiency

are shown in (F).

Buckley, 2017). Similarly, employing additives such as T4 gene
32 (Dandie et al., 2007) or an alternative soil DNA extraction kit
(Mahmoudi et al., 2011) could potentially alleviate the inhibition
observed in undiluted samples (Figure 3). The selection of
chemistry is also clearly important; while we observed unusual
sensitivity to inosine residues compared to those reported
for qPCR (Zheng et al., 2008), this phenomenon has not
been reported for inosine-containing MFQPCR assays that

use TaqMan chemistry (Ishii et al., 2014a) or for Evagreen R©

chemistry with the Access ArrayTM (Oshiki et al., 2018).
While previous environmental studies using MFQPCR have

examined correlations between MFQPCR and qPCR copy
number estimates (Ishii et al., 2014a; Byappanahalli et al.,
2015), our study is one of the first to explicitly examine
individual MFQPCR assay efficiencies. In addition to the
discrepancies between sample and standard efficiencies discussed
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Box 1 | What makes an optimal MFQPCR assay?

The following characteristics defined assays in this study with efficiencies

greater than 90%:

� Amplicon length of 62 - 211 bp

� Individual degeneracy score of 0 - 8

� Combined degeneracy score (F+R) of 0 - 12

� No inosine residues

� GC content of 32 - 61%

� Predicted melt temperature of 57 - 71◦C

� Hetero-dimer 1G of (-9.8) – (-3.5)

� GC content of standards 33 - 59%

� Primer concentration of 700 nM

� Soil gDNA extracts diluted ≥ 5-fold

above, we also observed major variation in the efficiencies of
unoptimized assays (25.9- 100.1%). Neither of these sources
of inaccuracy would have been detected without analysis in
LinRegPCR (Ramakers et al., 2003). This finding highlights the
need for MFQPCR uptake to be accompanied by uniform and
transparent reporting of experimental data including efficiencies,
in accordance with MIQE guidelines (Bustin et al., 2009, 2013).
Efficiency analysis is currently hampered by the inability of
regular users of Real-Time PCR Analysis (Fluidigm) software
to export raw fluorescence data without a cumbersome work-
around, which may explain the lack of efficiency reporting
in most MFQPCR studies. We anticipate that with increased
adoption of MFQPCR, greater emphasis will be placed on the
establishment of MFQPCR ‘best-practice’ protocols, similar to
the Digital MIQE guidelines for digital PCR (Huggett et al.,
2013), and that qPCR efficiency analysis software like LinRegPCR
will allow data importation fromMFQPCR programs (Ramakers
et al., 2003).

To ensure MFQPCR assays are of high-efficiency while
capitalizing on the increased throughput that the platform
affords, we suggest that selection of both primers and
representative sequences for gBlock standards be informed by
knowledge of which gene variants are present in the environment
in question. This approach could be taken further, by harnessing
recent advances in high-resolution melting curve (HRM)
analysis, which allows the identification and quantification of
multiple gene variants based on differences in melt temperatures
(Hjelmso et al., 2014). In our study, assays were excluded from
analysis if there was severe separation of standard and sample
melt peaks. In the case of bamA, early samples and standards
had a different melt peak profile to later samples (Figure S3),
but the inability to confirm the identity of this new peak meant
that such data were considered to be non-specific and were thus
discarded. Such shifts in the abundance of different gene variants
potentially reflect not non-specific amplification, but adaptation
of the community. By designing gBlock standards that cover a
range of gene variants, in combination with HRM, such diversity
could be quantified reliably. This capability is not far off, with
a Single Nucleotide Polymorphism (SNP) melting curve analysis
method already available on the FluidigmBioMark platform [e.g.,
(Kim et al., 2017)].

FIGURE 3 | Effect of sample dilution on accuracy of MFQPCR copy number

estimates. Large discrepancies between qPCR and MFQPCR estimates are

evident when gDNA soil extracts are diluted 4-fold or less. Data points are a

combination of estimates for amoA2 and narG under Set B assay conditions

(summarized in Table 2).

CONCLUSION

MFQPCR is a valuable tool for quantifying microbial functional
communities in soil, provided primer pair and assay conditions
are stringently curated. When optimal conditions were met,
MFQPCR allowed reliable, simultaneous quantification of
taxonomic, nitrogen-cycling and hydrocarbon degradation genes
in over 200 gDNA extracts from subantarctic and Antarctic
soils. MFQPCR will be of greatest utility if multiple low-
degeneracy, clade-specific primers can be designed, or if
primer selection is guided by prior knowledge of the specific
environment, such as that revealed by metagenomic or predictive
metagenomic surveys (Bonilla-Rosso et al., 2016; Mukherjee
et al., 2017). Employed in such a fashion, MFQPCR will fill a
valuable niche between high-throughput taxonomic sequencing
and low-throughput functional gene qPCR, allowing accurate
quantification of microbial ecosystem services, such as clade-
specific resolution of microbial functional guilds involved in
biogeochemical nutrient cycling. We propose that MFQPCR will
be particularly useful in monitoring the response of sensitive
functional groups such as ammonia-oxidizers to environmental
disturbances (Van Dorst et al., 2014), or for the accurate
prediction of biogeochemical process rates (Breuillin-Sessoms
et al., 2017).
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