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The history of ideas, which lead to the now matured concept of empirical downscaling,

with various technical procedures, is rooted in two concepts, that of synoptic climatology

and that of spatial interpolation in a phase space. In the former case, the basic idea is to

estimate from a synoptic weather map the regional details, and to assemble these details

into a regional climatology. In the other approach, a shortcut is made, in that samples of

(monthly, seasonal, or annual) large-scale dynamical statistics (i.e., climate) are linked to

a sample of local statistics of some variables of interest.

Keywords: downscaling, spatial interpolation, synoptic dynamics, history of ideas, empirical downscaling

ROOTS

When talking about “downscaling,” a reference is made to the observation that it is possible to
estimate small-scale states from the large-scale state. This expectation is included in all dynamical
models, which describe the dynamics of the atmosphere and the ocean. The unavoidable truncation
of the description, be it a grid point space or in a Galerkin (spectral) formulation, leads to
disregarding the dynamics of unresolved scales. The concept, expressed in scales, is demonstrated
in Figure 1. However, those unresolved scales, such as the boundary layer turbulence, are essential
for the correct formation of the large scales. This seeming paradox is, however, routinely overcome
by the use of “parametrizations,” which is an empirically informed (and possibly dynamically
motivated) shortcut to condition the expected influence of the small scales on the large scales, by
the state of the large-scales themselves. Thus, the large-scale somehow “knows” with which small
scales it is associated.

This observation was the key for modern weather forecasting, as was expressed by Starr (1942):

“The General Nature of Weather Forecasting. The general problem of forecasting weather Conditions
may be subdivided conveniently into two parts. In the first place, it is necessary to predict the state of
motion of the atmosphere in the future; and, secondly, it is necessary to interpret this expected state
of motion in terms of the actual weather which it will produce at various localities. The first of these
problems is essentially of a dynamic nature, inasmuch as it concerns itself with the mechanics of the
motion of a fluid. The second problem involves a large number of details because, under exactly similar
conditions of motion, different weather types may occur, depending upon the temperature of the air
involved, the moisture content of the, air, and a host of, local influences’.”

First ideas along the lines of this article were presented in a conference proceeding by Von Storch
(1999).

It may be useful to define, what we mean with the word “downscaling,” and the “attributes”
empirical” and “dynamical.” The basic idea of downscaling is the observation that in amny case,
the statistics of variables of interest at smaller scales may be skillfully estimated by relating it to
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the state of larger scales. Thus, the state of large sclaes becomes
the “predictor,” or maybe better: the “conditioner” of the smaller
scale statistics. The downscaling is empirical, when the link is
empirically determined, in particular by fitting statistical models;
it is dynamical, when the link is established by process-based
models, in particular limited area models of the hydro- and
thermodynamics of the atmosphere or the ocean. The main focus
of our article is on the empirical part, but the dynamical one is
also dealt with.

The purpose of this article is to present the roots of ideas,
which were used to build the concept of downscaling, namely
synoptic climatology and spatial interpolation. As such, the
article dos not present new ideas of how to do downscaling,
nor an improved systematic of the various avenues available to
do downscaling. Instead it is an account of the history of ideas
behind something like an “industry” in climate sciences, which
began with first publications in the early 1990s, but exploited
earlier work, such as that of the above-mentioned Victor Starr.

The technical aspects of implementing downscaling is subject
to books and articles in encyclopedias, as will is listed below.

Empirical Procedures
The term “downscaling” was introduced by von Storch et al.
(1991)—it refers to a statistical approach that relates statistics of
large scales to statistics of small scales, or impacts

SCt = F(LCt ,η
s
t) (1)

with small scale climate states SCt , large-sale climate states LCt ,
and small-scale physiographic details ηS

t , which are external
to the dynamics. The superscript C refers to “climate,” and F
represents a statistical model. This model, possibly based on a
phenomenological motivation, is fitted to recorded samples of
the statistics of the large scales and the small scales (or impacts).
F can take various forms, but it is always a kind of interpolated
map, with LCt as coordinates (more on this later). The time t
is no longer a time instance, but represents monthly or annual
means. For early reviews, refer to von Storch et al. (2000a) or
Zorita and von Storch (1997).

The link (2) is not a direct dynamical link, i.e., it may be
that the large-scale “predictor,” say the monthly mean intensity of
westerly, has nothing directly to do with the forming of the state
of the predictand, such as the height of storm surges at a certain
location. Instead the link exploits the empirically derived fact that
in months with on average stronger westerly winds, higher storm
surges are observed in Cuxhaven (by referring to a later example).
The main wind does nothing with the water, but embedded in an
intensified westerly wind, more and heavier storms travel. And
these, the embedded storms, cause the accumulation of coastal
waters (von Storch and Reichardt, 1997).

This indirect statistical link can be more explicitly resolved
by including in SCt not only the expected mean of the small-
scale variables (conditioned on the large-scale flow), but instead
parameters that describe a full probability distribution or a
stochastic process. These parameters are the ones that are
conditioned on the large-scale dynamics (Wilby et al., 1999, 2002;
Busuioc and von Storch, 2003).

In the following sections The Interpolation Problem and
Example: Fitting surfaces, we address and illustrate the concept
of extending a cloud of data into a mapping, in case of a 2-
dimensional problem a surface, by interpolation. Before doing so
we discuss the closely related concept of dynamical downscaling.

Dynamical Procedures
Empirical downscaling is related to dynamical downscaling,
which grew from limited area modeling. However, in the
conventional set-up this latter procedure is nor really
“downscaling,” i.e., deriving estimates of smaller-scale states
from larger-sale states, but all scales along a lateral boundary
zone. The introduction of large-scale constraints overcame this
limitation, and allowed eventually global dynamical downscaling.

This principle describes downscaling “weather.” In a formal
nutshell, it may be expressed as

Swt = M(Lwt ,η
s
t) (2)

With the large-scale weather state Lwt , the small-scale weather
state Swt, and some physiographic details ηst at small scales, which
are external to the dynamics.M represents a dynamical model.

A “climate” downscaling may be obtained by applying the
model (2) repeatedly to a sufficiently large number of large-
scale states, which sample the “climate” (the statistics of weather)
sufficiently completely.

In a pure form, this concept was implemented by the
stochastic-dynamic method [SDM; e.g., (Frey-Buness et al.,
1995)], which ran a limited area model covering, for instance, the
Alps with a set of characteristic weather variables, such as wind
direction or vertical stability. This approach was computationally
efficient, as a large number of (short term) simulations were
feasible, even if a very high resolution was as implemented.

Later this concept was replaced by running regular “limited
area models” (LAM, Dickinson et al., 1989), originally derived
from regional atmospheric forecast models. These models, forced
along the lateral boundaries with time-variable atmospheric
states (and lower boundary values), were run for sufficiently long
time, so that statistics could be derived from the small-scales
simulated by the LAM. The LAMs replaced the SDM method
after more and more computing time became available, and
the heavy computational costs needed for running LAMs for
extended times became affordable.

Dynamical downscaling has been studied and extensively
pursued in big internationally coordinated projects, such as the
the European projects PRUDENCE (Christensen et al., 2002)
and ENSEMBLES (Christensen et al., 2007) or the international
CORDEX (Giorgi and Gutowski, 2015; Souverijns et al., 2019).

In the beginning the LAM method was not labeled as
“downscaling,” and indeed it does not represent a downscaling
in a strict sense—the model does not process given large-scale
states, but all scales along a narrow boundary (“sponge”) zone.
A consequence is that the state in the interior is not uniquely
determined by the boundary values—a mathematical fact long
known. If the area is relatively small, and the region is well-
flushed (i.e., disturbances travel quickly through the region, as
is the case with most mid-latitude regions), multiple solutions
rarely emerge. However, if the region is large, say covering the
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FIGURE 1 | Distribution of atmospheric dynamical processes in the weather system, sorted according to spatial and temporal scales. The stippled part, with small

scale processes, is usually not explicitly described in models of the system, but “parametrized.” von Storch and Zwiers (1999); ©Cambridge University Press.

entire contiguous US, then the steering of the interior state by
the boundaries becomes weak (Castro and Pielke, 2004) and the
model shows often tendencies of “divergence in phase space.”

Much later, a truly downscaling methodology was developed
by introducing a large-scale constraint (e.g., scale-dependent
spectral nudging; Waldron et al., 1996; von Storch et al., 2000b)
into the LAMs; with this modification, the model was no longer
used to solve a boundary value problem but as a data assimilation
scheme, which blended dynamical knowledge (the equations of
motions etc.) with empirical knowledge (the large-scale state).
The success of doing so was illustrated by the case of the
contiguous US (Rockel et al., 2008).

Even later, the obvious extension of using the large-scale
constraint in a global model (Yoshimura and Kananitsu, 2008;
Schubert-Frisius et al., 2017; von Storch et al., 2017) was
implemented, which then generates details in all regional states,
consistently with the large-scale (global) state. This cannot be
done with regular unconstrained global models (GCMs), because
there is no way of enforcing a particular large-scale state.
This illustrates that conventional unconstrained LAMs are not
really “downscaling.”

State of the Art
Downscaling has become a household term and hardly needs
an explanation when used in scientific papers and reports.
Encyclopedias, as well as similar collections of articles, feature
accounts of the concept and issues (Rummukainen, 2009,
2015; Wilks, 2010; Ekström et al., 2015; Benestad, 2016), and

books have been published (Benestad et al., 2008; Maraun and
Widmann, 2018).

While (2) describes “weather downscaling,” in most cases
by exploiting dynamical models, the relationship (1) represents
“climate downscaling,” which by using empirical links relates a
predictand to a predictor. The advantage of methods based on (2)
is that they may be better for studying so far unobserved states,
assuming that the considered processes describe the dynamics
of the unobserved states well, while (1) allows building links
between variables which can hardly be linked dynamically, such
as winter mean temperatures and the timing of flowering of a
plant (Maak and von Storch, 1997).

THE INTERPOLATION PROBLEM

Today, we are used to present spatial distributions as
geographical maps, implicitly assuming that we would have
data at all locations—but we have only data at some locations;
the rest is achieved by spatial interpolation. It was Alexander von
Humboldt, who pioneered this practice in 1817 (e.g., Knobloch,
2018). Humboldt himself saw the introduction of the concept
as one of his major achievements (details: Knobloch, p. 21). He
explained in a 1853 book: “Kann man verwickelte Erscheinungen
nicht auf eine allgemeine Theorie zurückführen, so ist es schon
ein Gewinn, wenn man das erreicht, die Zahlen-Verhältnisse
zu bestimmen, durch welche eine große Anzahl zerstreuter
Beobachtungen miteinander verknüpft werden können, und
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den Einfluß lokaler Ursachen der Störung rein empirischen
Gesetzen zu unterwerfen.“ 1 (Humboldt 1853, S. 207; quoted after
Knobloch, 2018).

Humboldt named these lines “isotherms.” Von Storch
(1999) noted: “These contour lines chiefly served the purpose of
visualizing the quantitative data. Inside the 20 degree isotherm all
stations report temperature larger than 20 degrees, whereas outside
the area enclosed by this isoline the temperature at all stations
would be less than 20 degrees. The isotherm itself is imaginary;
in principle there is such a line, but it can be determined only
approximately; it is the art of spatial interpolation to describe this
unknown unobservable line.”

Obviously, the concept can, and was generalized to show
“isolines” of other geophysical quantities, such as frequency of
winds with gale speeds or amounts of rainfall. Prominent names
were Vladimir Köppen and his coworker Rudolf Geiger, who
presented their climate classification maps in this way.

However, whenmore andmore mathematical thinking spread
in the scientific community, the link to geographical maps
weakened, and more general coordinates were introduced. Von
Storch (1999) introduced as an example Osborn’s et al. (1999)
analysis of precipitation in Central England given as a function
of vorticity and flow direction (Figure 2). We use this example
here not because of specific physical interest—this has been dealt
with in the original paper by Osborn et al. (1999)—but because it
allows to transparently and imply illustrate the issues.

Of course, continuously distributed data did not exit for
preparing this map; instead the limited number of scattered data
points were binned into a finite number of boxes, and after
interpolation isolines were plotted. Figure 2 informs that a value
of −2.5 mm/day for flow strength of 20 m/s and a flow direction
of 100◦ is the mean anomaly (difference from long termmean) of
precipitation amounts across all available reports on days with a
flow strength of about 20 m/s and a flow direction of about 100◦.

Figure 2 shows a 2-dimensional representation, as
geographical maps do. But once more general coordinates
were introduced, the generalization to more dimensions became
possible (even though the graphical presentation is lost, when
four and more dimensions are employed).

Von Storch (1999) formalized the concept by asking for
an interpolation of K data points, labeled as Gk at “locations”
xk = (xk1, . . . x

k
n) in an n-dimensional space. The result of the

interpolation is a “surface” I, with values for all points x =

(x1, . . . xn) in the n-dimensional space, with the property
that the difference of this surface at the given data points
is limited by some values, say || I(xk)—Gk || < δ. The
maximum accepted deviation δ is in most cases zero. In case
of kriging, when a “nugget effect” is considered, δ may is non-
zero (Wackernagel, 1995).

Implicitly it is assumed that there is a “true” surface I, with
accurate manifestations Gk

= I(xk) at the locations xk. This is
meaningful in traditional geographical problems, but in some

1“If complex phenomena cannot be explained by a general theory, then a
description is helpful, how a large number of scattered observations are
interrelated, and to explain deviations by local empirically formulated causes.

FIGURE 2 | Mean precipitation anomalies (i.e., deviations from the long term

mean; in mm/day) in Central England given as function of flow direction

(degree) and flow strength (m/s). From Osborn et al., 1999; © Inter-Research

1999.

cases Gk may be considered a random realization of I(xk)—
for instance, when the data are collected during different times,
and the distribution varies in randomly in time. Then I may
represent the localized expectation of G, i.e., I(x) = E(G|x), with
the expectation operator E.

In Figure 2 Middle England precipitation is presented as
being determined by direction and strength, but there are
certainly other factors—thus, precipitation is not determined by
the two considered factors, but conditioned, in a stochastic sense.

Von Storch (1999) notes that “the result of the interpolation
is an approximate or estimated surface IE, which differs to some
extent from the “true” surface of conditional expectations. The
purpose of the spatial interpolation is the determination of the
surface I(x) and not the reproduction of the pointsGk. Therefore,
the success of IE as an estimator of I may be determined only
by comparing the estimates IE(x) with the additionalG(x)-values
at a number of data points x, which have not been used in the
estimation process.”

EXAMPLE: FITTING SURFACES

The question is how such surfaces may be constructed. The
interpolation itself can be done in various ways; they differ with
respect to a-priori assumptions made about the structure of
the surface.

The strongest assumption specifies the global structure. A
frequent case refers to multiple regression, which suggests that
the surface is a (linear) plane. Often the regression is based on
Canonical Correlation Analysis or Redundancy Analysis (cf. von
Storch and Zwiers, 1999).
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FIGURE 3 | Dominant patterns of interannual variability of summer season barotropic stream function in the South China Sea, the coefficients of which are used in the

presentation in Figure 4 and in the mapping efforts shown in Figure 5. Currents follow the gradients of the stream function, clockwise around a center of high (red)

values, and counterclockwise around centers with negative (blue) values. Unit: kg s−1 (kg/s). Courtesy: Zhang Meng.

FIGURE 4 | Seasonsal means of cyclonic eddies’ diameter in the South

China, 1960–2010, given as function of the principal components of the first

two EOFs of the barotropic stream function in the South China Sea as shown

in Figure 3.

If the assumption deals only with local properties, the fitting
process is considerably more flexible. Straight forward linear
interpolation is an example; Brandsma and Buishand (1997) have
used cubic splines for specifying precipitation as a function of
temperature. Osborn’s example (Figure 2) belongs also to this
class of interpolations. Geostatistical interpolation, often simply
called kriging, is a widely used in mathematical geosciences (e.g.,
Harff and Davis, 1990), which has also be used for downscaling
(e.g., Biau et al., 1999). Fashionable approaches such as neural
networks (e.g., Chadwick et al., 2011) and fuzzy logic (e.g.,
Faucher et al., 1999; Bardossy et al., 2005) are also in use.

The analog, or nearest neighbor, (Zorita et al., 1995; Brandsma
and Buishand, 1998; Zorita and von Storch, 1999) represents
the surface as piecewise constant plateaus around the data.
In geostatistical cricles the method is also known as Voronoi
nets (cf. Stoyan et al., 1997).

For illustration, we discuss here three different approaches—
bivariate regression, ordinary kriging, and analog—using an
example of generalized coordinates in a phase space. We have
chosen this example to illustrate that rather abstract problems
may be considered.

When preparing a spatial interpolation, some assumptions
about the data G at locations x need to be made. The major
assumption is that G is representative for a neighborhood
of x, or that I has the same statistical properties in that
neighborhood. A correlation length scale may be representative
for this neighborhood; this is explicitly so in case of kriging.
In that concept, also some spatial discontinuities are permitted
(“Nugget effect”; Wackernagel, 1995).

The example employs the displaying the mean summer
seasonal cyclonic eddy diameters in the South China Sea
(Zhang and von Storch, 2018) as a function of the coefficients
of indices of the regional barotropic stream function (the
stream function of the vertically averaged flow). Both,
the eddy properties as well as the stream function have
been constructed using a dynamical ocean model, which
was forced with variable atmospheric conditions for the
61 summer seasons 1960–2010 (Zhang and von Storch,
2018). Obviously, the case presented here has no specific
significance for the presentation here; it is a mere example,
which demonstrates how different interpolating surfaces
may be constructed.

The dynamical concept is that some statistics of migrating
ocean eddies, in this case the mean seasonal size, may be related
to variations in the current patterns. Of course, not all variations
in eddy size can be traced back to current anomalies but it is
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FIGURE 5 | Interpolation of the data points shown in Figure 4 by means of bivariate regression, by an analog approach, and by ordinary kriging. The coordinates are

the principal components of the first two EOFs of the barotropic stream function, shown in Figure 3.

reasonable to suggest that eddy size may be seens as a random
variable conditioned upon the prevailing currents.

As predictors we use the barotropic stream function In the
South China Sea, which is given at 57,750 locations; such large
dimension cannot be handled, and therefore the dimension of
the problem is reduced in this discussion—to 2. The needed two
indices are chosen to be coefficients of the leading Empirical
Orthogonal Functions (EOFs; for a detailed introduction, refer
to Preisendorfer, 1988; von Storch and Zwiers, 1999) or principal
components of the barotropic stream function field. EOFs are
a system of orthogonal vectors which are adapted to be most
powerful in representing variance of the considered variable,
which is here the barotropic streamfunction of the entire South
China Sea.

The two indices represent 31.5 and 10.5% of the
dominant interannual variations of the barotropic stream
function (Figure 3).

The seasonal mean diameters of cyclonic eddies in the South
China Sea are displayed in Figure 4 as a function of these first
two EOF coefficients; for each summer season (June-August) one
dot is plotted, with the vertical coordinate indicting the diameter

in km. Obviously the eddy diameters do not constitute a smooth
surface; this is meaningful when we consider formation and the
intensification of eddies all as a conditional random variable, and
each observed mean eddy diameter is considered one realization
of a conditional random variable.

We have applied three different interpolation techniques to
the anomalies (i.e., deviations from the long term mean) derived
from the data displayed in Figure 4; the results are shown as
“isolines” in Figure 5 The three techniques are bilinear regression
(top left) and nearest neighbors (analog; top right), and ordinary
kriging (bottom).

Kriging is a methodology which was developed in geology
for mapping structures. At this time, details do not matter so
that it may suffice to mention that “ordinary kriging” was used,
employing a linear Matheron function and allowing for a nugget
effect (cf., Wackernagel, 1995; Maciag, pers. comm.)

The numbers describe the deviation from the overall mean.
The two methods of the bivariate regression and of the nearest
neighbor are at the opposite ends of complexity. The bilinear
regression is smooth, with less variability. The analog, on the
other hand, is very noisy, with rather large abrupt changes,
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but with a variability which reproduces the variability of the
original data, say in terms of variability and skewness, while
the krigged surface contains elements of the two other maps,
but has a richer structure than the bivariate surface, and
is less noisy than the analog-based map. As expected, the
krigged map is between the other two, in terms of smoothness
and noise.

Seemingly there is no way of deciding which of three maps is
“better”; they share a certain basic structure, with high values near
the upper left corner, and lower values in the lower right corner.
Which map will eventually be chosen depends on how the map
will be used. If a general overview is needed, the bivariate may
be best; if it is used for weather generators, the analog may be
the choice. If details matter, the richer but smooth structure of
kriging may be more favorable.

In terms of the link to the barotropic stream function
(Figure 3), we find the size of cyclonic eddies larger, when both
(EOF) patterns prevail in a season, i.e., when there resides an
anomalous large and stationary anticyclone in almost the entire
northern part of the South China Sea (combination of patterns 1
and 2), and an anomalous outward flow through the Luzon strait.
In the same way, smaller eddies are generated on average, when
an anomalous counterclockwise flow streams through the South
China Sea. Pattern 1 alone goes also with these characteristics,
but is associated with a weaker signal, when EOF2, the second
pattern, does not contribute. The same holds for pattern 2 in the
absence of pattern 1, but with an even weaker signal.

DISCUSSION: APPLICATION OF A MAP IN
DOWNSCALING

As mentioned before, the thinking about downscaling is rooted
in two different concepts, one in meteorology named “synoptic
climatology,” the other in “interpolation of data clouds,” which
was inspired by spatial interpolation.

The basic idea, as introduced the first time likely by Kim et al.
(1984), and later by von Storch and Zorita (1990), recognized
the limitation of climate modeling, in particular construction of
climate change scenarios, in representing small scale phenomena,
and many aspects of impacts of climate variability and change.

The aspect of synoptic climatology was employed in the
“statistical dynamical method,” and was based on building causal
(process-based) links between a conditioning large-scale state
and a resulting small-scale response; later this method became
less and less popular when dynamical downscaling matured
and—given the advances of computational power—allowed the
simulation of continuous sequences of large-scale forcing.

The other aspect, however, the “interpolation of data clouds,”
is still in use—it makes use of co-variations, which are not
necessarily based on direct causal links. Instead the links may be
indirect, such as the emergence of extreme values in a season and
themean state during that season—obviously themean state does
not “make” extremes, but the mean state may favor the formation
of synoptic situations which lead to extremes (cf., Branstator,
1995). The example presented in this paper, on the formation
of large vortices in the South China Sea, conditioned by mean
currents, falls into this category.

Such efforts result in tables, or in maps, which suggest a
state of a small-scale or an impact variable, conditional upon
some adopted large-scale indicators.When two such variables are
used, then the result takes the form of a table, and the method
curtails an interpolation, a map-generating effort. The purpose
of interpolation is “to guide people in unknown terrain” (Von
Storch, 1999), i.e., to guess the state of the system at “locations”
not visited no far. Such guesses can be of very different format,
depending on the user’s needs.

In general, at each point, the method would return a
probability interval IE(x) ± 1, with IE(x) representing the
conditional expectation and 1 a level of uncertainty (say,
two standard deviations). In many cases, however, only the
conditional expectation will be provided (in the bilinear
regression case), whereas sampling from the analog-map will
result in random samples including the variability. Thus,
the former will be favorable, when dealing with typical
conditions, whereas the second gives noisy numbers, but with
the right level of variability, as needed in weather generators
(cf. Zorita et al., 1995).
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