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Warming of the Antarctic Peninsula in the latter half of the twentieth century was greater

than any other terrestrial environment in the Southern Hemisphere, and clear cryospheric

and biological consequences have been observed. Under a global 1.5◦C scenario,

warming in the Antarctic Peninsula is likely to increase the number of days above 0◦C,

with up to 130 of such days each year in the northern Peninsula. Ocean turbulence

will increase, making the circumpolar deep water (CDW) both warmer and shallower,

delivering heat to the sea surface and to coastal margins. Thinning and recession of

marine margins of glaciers and ice caps is expected to accelerate to terrestrial limits,

increasing iceberg production, after which glacier retreat may slow on land. Ice shelves

will experience continued increase in meltwater production and consequent structural

change, but not imminent regional collapses. Marine biota can respond in multiple ways

to climatic changes, with effects complicated by past resource extraction activities.

Southward distribution shifts have been observed in multiple taxa during the last century

and these are likely to continue. Exposed (ice free) terrestrial areas will expand, providing

new habitats for native and non-native organisms, but with a potential loss of genetic

diversity. While native terrestrial biota are likely to benefit from modest warming, the

greatest threat to native biodiversity is from non-native terrestrial species.
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BACKGROUND TO 1.5◦C

Since the industrial revolution average global temperatures have risen ∼1◦C. The goal of the UN
Paris Agreement is to hold global warming to well below 2◦C and endeavor to limit it to 1.5◦C,
relative to preindustrial levels1. Thus, a 1.5◦C scenario relates to additional global warming of
0.5◦C. Here, we look at the potential impacts of a 1.5◦C scenario on the Antarctic Peninsula. Studies
show that such an outcome is possible but requires ambitious societal transformation pathways
between now and the middle of this century (IPCC, 2018). There is more than one way to achieve a
1.5◦C outcome, which is why it is referred to correctly as “a” scenario as opposed to “the” scenario.

1https://unfccc.int/sites/default/files/english_paris_agreement.pdf
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INTRODUCTION TO THE ANTARCTIC
PENINSULA

We interpret the Antarctic Peninsula liberally as including the
Peninsula itself and its off-lying islands (e.g., South Shetland
Islands), as well as the surrounding continental shelf and nearby
oceans. We do not include more northerly islands (e.g., the
maritime Antarctic South Orkney and South Sandwich Islands
and sub-Antarctic South Georgia). In the south, the Antarctic
Peninsula extends to the southern end of George VI Sound and
the northern edge of the Ronne Ice Shelf. Thus defined, the
Antarctic Peninsula is divided down its lengthy mountainous
spine by strong West to East gradients in atmospheric and
ocean circulation, which makes for distinct characteristics in
oceanography, glaciology and biology either side of its spine. The
Peninsula is also affected by North-South changes from the fringe
of the sub-Antarctic to the deep polar region. As a consequence of
direct and remote scientific measurements over the last 100 years,
we have more knowledge about natural processes and change in
the Antarctic Peninsula than any other part of the continent.

HOW WILL THE ANTARCTIC PENINSULA
RESPOND TO A 1.5◦C SCENARIO?

Atmosphere
Climate model projections suggest that Antarctic Peninsula
temperatures will increase by more than the global average
in a world 1.5◦C warmer than pre-industrial levels (Hoegh-
Guldberg et al., 2018). Indeed, we note that warming since
1850 in the northernmost region of the Peninsula has already
exceeded 1.5◦C (Turner et al., 2005), despite a pause in rising
temperatures during the first two decades of the twenty-first
century (Turner et al., 2016). Nevertheless, projections show
that regional temperatures could increase further beyond current
levels in a 1.5◦C scenario, by another 1–2◦C in winter and 0.5–
1.0◦C in summer (Li et al., 2018), reducing the magnitude of
the annual temperature cycle. Moreover, temperatures of the
coldest nights will rise significantly more than those of the hottest
days (Li et al., 2018). Of importance for terrestrial ecosystems,
a 1◦C mean annual warming will likely result in a 50–150%
increase in days per year above 0◦C, from 25–80 each year in
the northern Antarctic Peninsula to 35–130. This introduces
greater opportunity for rain, rather than snowfall, especially at
low elevations.

Climate model projections also indicate a likely increase of
10–20% in precipitation (relative to the pre-industrial period)
with an intensification of extreme precipitation events (Hoegh-
Guldberg et al., 2018). Again, in the southern Peninsula, observed
rates of precipitation change to date have been much higher
(Thomas et al., 2008). There is unlikely to be much further
increase beyond current levels (Li et al., 2018). The principal
projected change in circulation affecting the Peninsula is a
weakening of the circumpolar westerlies around Antarctica
during summer, in response to ozone recovery.

We note that these projections are derived from climate
models with known difficulties in reproducing Antarctic

Peninsula climate. Models have also had limited success in
reproducing the observed warming in the twentieth century.
Discrepancies occur in replicating both large-scale atmospheric
circulation variability (Hosking et al., 2013) and important
regional processes (Marshall and Bracegirdle, 2015), such as the
Föhn winds that develop on the eastern Antarctic Peninsula and
cause extremely rapid local warming (Turton et al., 2018).

Southern Ocean
The Antarctic Circumpolar Current (ACC) buffers the Antarctic
continent from the global ocean and it extends the Antarctic
environment to its northern boundary, the Polar Front. South of
the Polar Front, the ocean circulates clockwise around Antarctica
with two large clockwise gyres in the Weddell and Ross Seas.
A few hundred meters beneath the surface is a large volume of
relatively warm water called Circumpolar Deep Water (CDW).
Because of the ocean circulation, on the west of the Peninsula
CDW arrives from the west. In contrast on the east of the
Peninsula the circulation around the Weddell Sea and sea ice
formation cools the CDW so that waters are much colder
(Meredith and Brandon, 2017).We know that much of the Earth’s
anthropogenic warming has been absorbed in the Southern
Ocean (Llovel and Terray, 2016), but we have no clear evidence
that it is moving the Polar Front as a result (Gille, 2014). However,
the CDW is both increasing in temperature and becoming more
shallow (Schmidtko et al., 2014), and the amount of turbulence
in the Southern Ocean is increasing (Hogg et al., 2015). We can
expect these trends to continue.

Sea Ice
Satellites can measure the area of frozen ocean—the sea ice
extent—and the record extends back to October 1978. From July
1987 there are daily measurements. While thickness has not been
routinely measured from satellites the way the ice extent has, sea
ice thickness is typically in the range 2–4m but it can, in places,
pile up to form “ridges” more than 10m thick (Williams et al.,
2014). However, because satellites cannot currently measure sea
ice thickness routinely, our knowledge of the “normal” state, and
rates of change, are relatively poor.

The two sides of the Antarctic Peninsula have very different
conditions. For any given month the ice edge is at higher latitude
on the Peninsula’s west compared with the east. In summer,
virtually the whole Bellingshausen Sea is ice free, but on the
east in the Weddell Sea the sea ice typically extends to the
northern end of the Antarctic Peninsula, and is much thicker
so even the highest classification ice-breaking ships have great
navigational difficulty.

In total, since satellite records began around 30 years ago,
there has been a modest increase in the total sea ice extent of
∼70,000 km−2 yr−1. In 2016/7 the summer sea ice extent for
the Antarctic as a whole reached historic lows (Schlosser et al.,
2018), but observed trends are comparable with reconstructed
records of but past 200 years (Jones et al., 2016). Despite the
overall positive trends in sea ice extent, inter-annual variability
has increased (Turner and Comiso, 2017) and there have been
large regional and seasonal changes. For example, to the Antarctic
Peninsula’s west, sea ice extent has decreased∼6–10% per decade
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with the greatest changes in autumn and summer (Turner et al.,
2015). The length of the sea ice season on the west of the
Peninsula has reduced by ∼4 days (Massom et al., 2018). To the
east, summer sea ice coverage has increased, while decreasing in
winter.Whilst current models of Antarctic sea ice extent simulate
a wide range of historical sea ice conditions, their overall ability to
reproduce current trends is poor (Zunz et al., 2013). Nevertheless,
we expect increased variability on the west of the Peninsula,
compared with the east as the climate warms.

Land Ice
The glaciers of the Antarctic Peninsula are generally steep and
fast flowing, and respond rapidly to climatic changes. Hundreds
of glaciers mapped north of 70◦S terminate in the sea while
remaining grounded, scores have floating termini and only a
handful are land-terminating (Cook et al., 2014). Most of the
glacierised area comprises large outlet glaciers flowing from the
spine of the Antarctic Peninsula to the ocean. North of Alexander
Island, one third of the total volume of grounded ice rests on rock
below sea level, meaning that it is vulnerable to ice-shelf break-
up and changes to ocean circulation and temperature (Huss and
Farinotti, 2014).

Thinning and recession of glaciers and ice caps in the
Peninsula, observed in recent decades (Wouters et al., 2015;
Shepherd et al., 2018; Rignot et al., 2019), is expected to
accelerate, driven by increased upwelling of CDW and increased
sea surface temperatures around the western Antarctic Peninsula.
However, it is worth noting that the loss of marine-terminating
glaciers will probably be greater than for land-terminating
glaciers, because they receive warmth from the ocean as well as
direct atmospheric heating in the Peninsula (Cook et al., 2016).
Hence, it is possible that glaciers will retreat to their land margins
and then experience less thinning subsequently.

In the southern Peninsula, there is a small potential for
more rapid glacier retreat under a marine ice sheet instability
mechanism as glaciers here are grounded deeply below sea level
(Turton et al., 2018). If the number of positive degree days
increases substantially (Barrand et al., 2013), and if surface
temperatures are influenced by occasional Föhn wind heat
(Luckman et al., 2014; Turton et al., 2018), glaciers on land will
experience more rainfall and direct surface melting than they
do at present. The consequent ice loss may be at least partially
balanced by increased snowfall, however.

Ice Shelves
Ice shelves are continuous layers of floating ice formed by land-
based glaciers feeding into enclosed shoreline embayments. Ice
shelves are prominent along the Antarctic Peninsula, where
they cover an area of ∼120,000 km2 with the largest being
Larsen C (∼50,000 km2; Cook and Vaughan, 2010). Importantly,
ice shelves buttress the flow of upstream glaciers, modulating
sea-level rise. Although ice shelves naturally lose mass by
iceberg calving, and through surface and basal melting, they
are susceptible to irrecoverable collapse if their extent and/or
thickness reduce below a threshold of physical support.

In recent decades, seven out of twelve ice shelves around
the Antarctic Peninsula have either receded significantly (e.g.,

Wilkins in 2008) or collapsed almost completely (e.g., Larsen
B in 2002). The −9◦C mean annual isotherm marks the
transition between stable and potentially unstable ice shelves
on the Antarctic Peninsula (Morris and Vaughan, 1994), and is
migrating southwards. Under a 1.5◦C scenario, it is likely that
Antarctic Peninsula ice shelves will continue to thin, mainly
due to increased surface melting (Trusel et al., 2015) driven by
widespread increases in air temperature and locally-enhanced
Föhn winds, also increasing the exposure of low-albedo blue
ice (Lenaerts et al., 2016). This surface melting will likely lead
to increased surface ponding, which may cause ice-shelf flexure
and fracture, particularly when lakes drain; a process implicated
in the collapse of Larsen B (Banwell et al., 2013). In contrast,
surface rivers flowing over impermeable refrozen ice (Hubbard
et al., 2016) may mitigate against future ponding and ice-shelf
instability (Bell et al., 2017). Ice shelves will also thin in response
to sub-shelf melting due to the ingress of buoyant, warm ocean
water (Bentley et al., 2005). While ice-shelf thinning increases the
likelihood of iceberg calving, the largest of Antarctic Peninsula ice
shelves (e.g., Larsen C and George VI) still have sufficient surface
area to probably avoid catastrophic failure.

Thus, under a 1.5◦C scenario, Antarctic Peninsula ice shelves
will experience more surface melting and consequent structural
change, but not imminent regional collapse. However, in the
absence of a temperature reversal, longer-term feedback cycles
such as that between surface melt and albedo, or incursions of
warm ocean water, increase the likelihood of eventual wholescale
ice shelf disintegration, especially for those known to have
disappeared previously under slightly warmer conditions, such
as George VI (Bentley et al., 2005).

Marine Ecosystems
The past and future response of marine biota to ongoing
climate change is complicated by the effects of marine resource
extraction. Sequential over-exploitation of seals, whales and some
species of fish over the last two centuries has severely perturbed
the food web, making it hard to unravel its effect from that of
climate (Trivelpiece et al., 2011).

A warming Antarctic Peninsula has multiple effects including
increasing water temperatures, seabed scour from icebergs, ocean
acidification, meltwater, sediment inflow and ice free habitat,
plus decreases in sea-ice habitat. Responses of the biota are also
diverse, including changes in behavior, physiology, geographic-
or depth- distribution plus evolutionary adaptation. Stresses can
act either directly—for example rain reducing Adélie penguin
breeding success—or they can act through the food web by
changing the availability of their prey (Trivelpiece et al., 2011).

A pragmatic approach to estimate the future is to examine
how the biota have already responded to rapid warming of the
last century (Henley et al., 2019) and use that as a yardstick,
although the potential existence of tipping points should not be
discounted. The spatio-temporal distribution is the net response
to multiple stressors, and a common pattern across multiple
taxa is a southwards range shift (Constable et al., 2014). Despite
variation and strong non-linearities in this response (Atkinson
et al., 2019) we can project that these shifts will continue with
warming, since the Antarctic Peninsula offers a long, north-south
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continuum of broadly similar habitat across an environmental
gradient. The strong juxtaposition of multiple stressors along the
western Antarctic Peninsula last century may de-intensify under
a 1.5◦C scenario due to the reduced amplitude of projected sea ice
and temperature changes in this particular area (Gutt et al., 2014).
Nevertheless, benthic community structure is under threat from
increased ice scour, ocean acidification and changes in seabed
temperature (Turner et al., 2014).

Terrestrial Ecosystems
Terrestrial biology is limited to ice-free areas, currently about
3% of the Antarctic Peninsula, of which only a fraction is
currently visibly colonized. The seasonally-exposed terrestrial
area of the Peninsula is expected to expand by 2100 (Lee et al.,
2017). This retreat of permanent ice cover will provide new
habitats for colonization by both native and likely, non-native
organisms. It will also lead to the coalescing of some areas that
are currently isolated and, thus, to a loss of genetic diversity
through genetic homogenization. Native terrestrial biota are well-
adapted to the variable conditions of the Antarctic Peninsula
(Peck et al., 2006; Pertierra et al., 2017) and, in the absence
of other influences, are likely to benefit from modest levels of
warming (Convey, 2011).

Warming to date has been associated with rapid expansion of
native higher plant and moss populations (Cannone et al., 2016,
2017), and local-scale colonization of newly exposed ground.
However, movement of the “southern limit” of these plants has
yet to be observed. This “greening” is expected to continue
through the twenty-first century. While natural colonization of
the region is expected to occur, rates of anthropogenic (human-
assisted) introduction far outweigh natural colonization. It is
already known that a wide range of non-native species could
survive in parts of the Antarctic Peninsula region if given the
opportunity to arrive. Thus, the threat of non-native species to
native biodiversity likely far outweighs the impacts of climate
change under a 1.5◦C scenario.

IMPLICATIONS FOR OPERATIONS

Antarctic Peninsula infrastructure is likely to be affected by
a 1.5◦C scenario. Increased levels of surface water run-off
(from rain and snow/glacial melt) and/or melting of any
thin layers of sediment, may alter the geotechnical properties
of ice-free land considerably, albeit for limited periods of
the year. Such change may impact research station buildings
and, potentially, air strips. Increased iceberg production, and
inter-annual variability in sea ice conditions, will also need
to be accounted for by shipping. The increased viability of
alien species, coupled with expanded ice-free regions, means

environmental protection of the Antarctic Peninsula must
remain resolute.

CONCLUSION

The Polar Regions have warmed twice as much as the global
average since 1850. This has led to glacier retreat, ice shelf decay
and the expansion of exposed land on which some plants have
been able to grow. By restricting global temperature increase to
1.5◦C above 1850 values, we can limit the damage to the Antarctic
Peninsula’s ecosystems. However, we cannot avoid further loss
of ice, expansion of vegetation and invertebrate communities
on land (potentially with alien species), and alteration to
marine ecosystems that are still recovering from marine resource
extraction decades ago. If we fail to restrict average global
warming to 1.5◦C, the Antarctic Peninsula will likely experience
irreversible and dramatic change to glacial, terrestrial, ocean, and
biological systems.
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APPENDIX

FIGURE A1 | Infographic.
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