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Data science is the science of extracting meaning from potentially complex data. This

is a fast moving field, drawing principles and techniques from a number of different

disciplinary areas including computer science, statistics and complexity science. Data

science is having a profound impact on a number of areas including commerce, health,

and smart cities. This paper argues that data science can have an equal if not greater

impact in the area of earth and environmental sciences, offering a rich tapestry of new

techniques to support both a deeper understanding of the natural environment in all

its complexities, as well as the development of well-founded mitigation and adaptation

strategies in the face of climate change. The paper argues that data science for the

natural environment brings about new challenges for data science, particularly around

complexity, spatial and temporal reasoning, and managing uncertainty. The paper also

describes a case study in environmental data science which offers up insights into the

promise of the area. The paper concludes with a research roadmap highlighting 10 top

challenges of environmental data science and also an invitation to become part of an

international community working collaboratively on these problems.

Keywords: data science, earth and environmental sciences, complex systems, uncertainty, spatial and temporal

reasoning

INTRODUCTION

Data science is emerging as a major new area of study, having significant impacts on areas as diverse
as eCommerce and marketing, smart cities, logistics and transport, and health and well-being
(Dhar, 2013; Provost and Fawcett, 2013). To date, there has been little work on data science
applied to the understanding and management of the natural environment. This is surprising for
two reasons. Firstly, studies of the natural environment are increasingly data rich with a pressing
need for new techniques to make sense of the accelerating amount of data being captured about
environmental facets and processes. Secondly, climate change is such a major challenge and one
would anticipate that data science researchers would be drawn toward this area and the many rich
data challenges. However, this is not yet happening.

This paper examines the potential of data science for the natural environment. More specifically,
the paper has the following main objectives:

1. To define and map out the emerging field of environmental data science;
2. To systematically discuss the major data challenges in environmental science;
3. To draw up a research roadmap, highlighting the most significant areas requiring further

research and collaboration.
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As an additional objective, the paper aims to draw others to
this field to create a worldwide, cross-disciplinary community to
progress the field of environmental data science.

The paper draws on experience from a strategic partnership
between the Data Science Institute (DSI) at Lancaster University
and the Centre of Ecology and Hydrology (CEH) to create
a world-leading Centre of Excellence in Environmental Data
Science (CEEDS). This partnership builds on excellence in (cross-
disciplinary) environmental science in both CEH and Lancaster,
the national capability offered by CEH in terms of data sets and
modeling capabilities, and the wide range of cross-disciplinary
methodological and computational skills that are present in the
Data Science Institute.

Note that our scope is deliberately broad in considering
all areas of environmental science, including but not limited
the geosphere, hydrosphere, biosphere, and atmosphere; our
experiences indicate that there are many more commonalities
than differences when considering the data science challenges in
the various aspects of the natural environment.

The paper is structured as follows. Section Data Science of
the Natural Environment looks more closely at the motivation
for a data science of the natural environment. Section Challenges
then examines the core challenges associated with environmental
science arguing that the challenges are both unique and
significant. Following this, section Data Science of the Natural
Environment: Revisited provides a more refined statement of
the nature and scope of environmental data science. Section
Case Study: Modeling Extreme Melt Events on the Greenland
Ice Sheet presents a case study of environmental data science in
practice, highlighting the potential in this area. The paper then
concludes with a series of overall observations culminating in a
research roadmap—highlighting the top 10 research challenges
of environmental data science.

DATA SCIENCE OF THE
NATURAL ENVIRONMENT

What Is Data Science?
Data science is the science of extracting meaning from complex
data, hence supporting decision-making in an increasingly
complex world (Baesens, 2014). Many commentators use the
term “big data” (Mayer-Schonberger and Cukier, 2013; Jagadish
et al., 2014; Reed and Dongarra, 2015) as a synonym for data
science. We avoid this term as it emphasizes the “big” whereas
the real challenges lie in the complexity and heterogeneity of the
underlying data sources—discussed further below.

Researchers agree that data science is an interdisciplinary
challenge and a series of data science research institutes have
been created, drawing on statistics, computer science, artificial
intelligence (AI), social sciences, psychology, economics, health,
and so on. These include the Alan Turing Institute in London
and Data Science Institutes in Berkeley and Columbia. For some,
the emphasis is on algorithmics and computation. We argue
that data science research should be problem-driven to ensure
that algorithmic and computational breakthroughs are targeted
toward real-world problems; and that the most significant and

transformational breakthroughs will emerge from research where
the disciplinary boundaries become permeable and a range of
researchers work together on problems situated in the real
world. Furthermore, researchers working on the problem domain
should not just be end users but should be first class citizens in the
resultant collaborations. This situated philosophy is at the heart
of data science research at Lancaster.

We argue that the potential for environmental data science is
enormous and indeed understanding, and managing the impact
of, environmental change is a grand challenge for the emerging
subject of data science. Before developing this argument further,
we look more closely at the nature of the environmental sciences.

A Focus on the Natural Environment
Understanding of the natural environment is increasingly
important as society struggles to respond to the implications
of a changing climate and anthropogenic pressures on finite
natural resources, and their impacts on water, energy and food
security, infrastructure, human health, natural hazards, and
biodiversity. This is also a major cross-disciplinary challenge
involving, for example, ecologists, hydrologists, soil scientists,
biologists, chemists, physicists, and statisticians. With the need
to influence policy and derive well-founded adaptation and
mitigation strategies, there is also an increasing emphasis on
social science and communication of science.

More generally, it is possible to observe a significant shift
in this area toward a “big” science, which is a science that is
more integrative and collaborative. This represents a cultural
shift away from individual scientists working within their own
(siloed) discipline, with the emphasis now on understanding the
full complexities of the natural environment in all its facets.
The prime example of this is the move toward natural capital
and ecosystem services (Helm, 2015; Potschin et al., 2016).
Natural capital is concerned with the world’s stocks of natural
assets, including its soil, water, air, energy sources, and all
living entities on the planet. The study of ecosystem services
then investigates the sustainable and integrated management of
complex ecosystems in the support of the services we need to
live, hence reifying the complexity of this management in all
its facets including environmental, social, health, and economic
considerations (Muller et al., 2010). Future Earth is a further
example of a major initiative seeking cross-disciplinary insights
(in their case around global sustainability)1.

The environmental and earth sciences, as with other areas
of science, are also increasingly data-driven (Hey et al., 2009).
In parallel, there is a move toward more open data, leading
to an open science, and a science that is more transparent and
potentially repeatable and/or reproducible2.

A Data Science of the Natural
Environment?
It is clear that, given the challenges outlined above, earth and
environmental sciences should be fully embracing data science

1www.futureearth.org
2http://royalsociety.org/uploadedFiles/Royal_Society_Content/policy/projects/

sape/2012-06-20-SAOE.pdf
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and should be at the forefront of this initiative. There are
pockets of excellent data science work being carried out in the
environmental community, and we reference several examples
in throughout the paper, but it will become clear that this
work needs to be significantly extended. Similarly, data scientists
should be reaching out to this community to offer support.
In reality, again, this is not happening to the extent it should.
Other areas of science are much further on in embracing data
science, most notably physics (Philip Chen and Zhang, 2014)
and life sciences (Marx, 2013) (including a wealth of work in
bioinformatics; Greene et al., 2014; Wang et al., 2015). This
leaves a significant semantic gap in: (i) the integration of highly
complex data sets, (ii) transforming this underlying data into
new knowledge, for example around ecosystem services, and (iii)
informing policy around, for example, appropriate mitigation
and adaptation strategies in the face of climate change.

In summary, there should be a strong symbiotic relationship
between data science and the earth and environmental
sciences. Earth and environmental sciences need data science,
and data science should be responding to the intellectual
challenges associated with complex and heterogeneous data.
More profoundly, data science should be woven into the very
fabric of earth and environmental sciences as we seek a new
kind of science and subsequently intellectual breakthroughs that
can transform society. Finally, we note that while data science
can have a significant impact on the earth and environmental
sciences, we qualify this by stating that it is clearly not a
“silver bullet” in terms of understanding and responding to
environmental change; it must sit alongside other initiatives in
the spheres of politics, economics, and so on.

CHALLENGES

The Data Challenge
Data is central to earth and environmental sciences with
significant investments in techniques for managing a wide range
of environmental data. The data challenge is quite distinct from
many fields of science with the most striking factor being the
heterogeneity of the underlying data sources and types of data,
hence the inappropriateness of the term “big data” in this field
(as discussed in section What Is Data Science? above). More
specifically, data science is often annotated using the four “V”s of
data: volume, velocity, variety, and veracity (Jagadish et al., 2014).
While in many areas of data science, consideration of volume
and velocity dominate, in the environment variety and veracity
(accuracy/precision) are the most important characteristics. This
is not to diminish the first two properties as there are areas where
there are very large data sets and where the processing of such
data sets can be challenging, e.g., in climate science (Schnase,
2017), but this only helps to exacerbate the issue of variety when
considered alongside other data sources. We look at the issues of
variety and veracity in more detail below.

Environmental data comes from a wide variety of sources and
this is increasingly rapidly with new innovations in data capture:

1. Large volumes of data are collected via remote sensing where
environmental phenomena are observed without contact with

the phenomena, typically from satellite sensing or aircraft-
borne sensing devices, including an increasing use of drones.
This includes passive sensing, such as photography or infra-
red imagery, and active sensing, e.g., RADAR/LIDAR. The
increasing availability of open satellite data, in particular, is a
major trend in earth and environmental sciences. For example,
the EU Copernicus programme and the associated Sentinel
missions, or NASA’s LandSat archive are regularly mined for
data for a variety of applications (e.g., Langley et al., 2016).

2. Other data are collected via earth monitoring systems, which
consist of a range of sensor technologies more typically in
close proximity with the observed phenomena. Such sensors
will monitor a range of parameters around the atmosphere,
lithosphere, biosphere, hydrosphere, and cryosphere.
Examples include weather stations and monitoring systems
for water quality. Historically, such sensing technologies
would be placed in the field and visited to periodically
download data. It is more common now to have telemetered
data providing real-time access to such data streams.
Developments around the Internet of Things (IoT) also have
the potential to dramatically increase the level of monitoring
in the natural environment through real-time access to dense
deployments of a wide variety of sensors (Atzori et al., 2010;
Nundloll et al., 2019).

3. Significant quantities of data are collected through field
campaigns involving manual observation and measurement
of a range of environmental phenomena and these are
increasingly supplemented by citizen science data collected by
enthusiasts with strong exemplars in the areas of soils data
(e.g., through the use of a mobile application called MySoil;
Shelley et al., 2013) and biodiversity (e.g., RSPB’s Big Garden
Bird Watch; Godard et al., 2010).

4. There are large quantities of historical records that are crucial
to the field. Many of these are digitized but, equally, significant
quantities of potentially important information are not,
particularly at a local level. Important examples of historical
records in the UK context, for example, include: geological
survey data and samples, managed by the British Geological
Survey (BGS), and meteorological and ice observation records
going back to the 1800s as managed by the British Antarctic

Survey (BAS).
5. Model output is also a significant generator of environmental

data with results from previous model runs often stored
for subsequent analysis (see section The Spatial/Temporal
Challenge for a more in-depth consideration of modeling).

6. Significantly, there is growing interest (as in many fields) of
exploiting data mining, discovering data, and data patterns
from the web and social media platforms, such as seeking

images showing localized water levels during periods of flood

(Cervone et al., 2016) or seeking evidence of air quality
problems and impacts on human health (Mei et al., 2014). This
area is in its infancy but is likely to grow massively over the
next few years.

Together, this adds up to the potential for having environmental

data at an unprecedented scale, hence providing major

opportunities for science but also key challenges. In particular,
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it should now be very apparent that variety is a crucial and
central issue in environmental data. Data is captured from
a wide variety of sources about a wide variety of natural
phenomena. The underlying data are highly heterogeneous in
terms of how the data are stored and exchanged. Some of
the data will be structured, others unstructured (structured
data is highly organized with the structure captured by a data
model or scheme, whereas unstructured is not). The majority
of the data will be quantitative but important qualitative data
will also be present. Some of the data will be lodged in
an environmental data center and decorated with appropriate
meta-data to enhance discovery and interpretation. Other data
will be held on individual scientists’ PCs. Researchers at the
University of Chicago’s Computation Institute refer to this
latter phenomenon as the “long tail of science,” whereby vast
amounts of data are not available for sharing or community
analyses due to lack of resources and tools to make them
accessible3. The data will also cover different geographical
regions and be at different spatial scales, which can impact
on integration (and ditto with the temporal dimension)—see
also section The Uncertainty Challenge below. Some advances
have been made around managing variety, particularly around
interoperability standards for environmental data, e.g., the Inspire
Directive 2007/2/EC, which covers a wide range of sources of
spatial data, and also more domain specific proposals such as
Water ML from the OGC. In addition, many researchers see
linked data as a promising technology to capture the complex
interrelationships between different data sets in the natural
environment (Bizer et al., 2010; Hitzler and Janowicz, 2013).
Similarly, a number of initiatives are looking at the semantic web,
and the development of ontologies as a means of describing and
subsequently supporting the integration of disparate data sets
(Raskin and Pan, 2005; Compton et al., 2012). Linked data is
a “set of best practices for publishing, sharing, and interlinking
structured data on the Web [and] its main objective is to liberate
data from silos”4. Berners-Lee et al. (2001) define the semantic
web as “a web of data that can be processed directly and indirectly
by computers,” and ontologies then have the important role of
capturing the meaning of data, including complex relationships
across data.

Veracity is also increasingly important, particularly given new
developments alluded to above. For example, how reliable is data
emanating from citizen science collection methods? (The answer
will also vary significantly depending on the level of expertise of
the citizen.) Satellite observations may be of lower fidelity when
compared to in situ observations. Similarly, with the growth
of the Internet of Things it is likely that expensive and hence
almost certainly more accurate instruments may co-exist with
dense deployments of cheaper, less reliable, sensors and hence the
provenance of data sources must be both stored and factored into
data analyses.

Arguably the major trend is to creatively bring together
different data sources in terms of understanding relationships

3https://voices.uchicago.edu/compinst/blog/unwinding-long-tail-science/
4https://www.coar-repositories.org/community/events/archive/repository-

observatory-third-edition/coar-talks-ir-cris-interoperability/second-edition-

linked-open-data/7-things-you-should-know-about-open-data/

across phenomena and also to constrain uncertainty by linking
different observed data readings. To be effective though, the
data science issues around the four “V”s need to be addressed,
especially around variety, and veracity.

Summary of data challenges
Managing the variety and heterogeneity in underlying sources of data,

including achieving interoperability across data sets;

Reducing the long tail of science and making all data open and accessible

through environmental data centers;

Ensuring all data are enhanced with appropriate semantic meta-data

capturing rich semantic information about the data and inter-relationships;

Ensuring mechanisms are in place to both record and reason about the

veracity of data;

Finding appropriate mechanisms and techniques to support integration of

different data sets to enhance scientific discovery and constrain uncertainty.

The Modeling Challenge
Modeling is the principal tool for understanding the environment
and forecasting or projecting environmental change. Modeling
enables us to make sense of the data that emanates from
the various observation and monitoring techniques described
above and, from this, to make predictions about the future and
analyze “what-if ” scenarios. Models can usefully be classified as
either process models, which attempt to capture and/or abstract
over the underlying physical processes being considered, or
data-driven models, which are based on empirical statistical
fits to observations or data derived from more complex
models. Many environmental process models are often heavily
parameterized, where complex phenomena, or phenomena
acting at small scales, are captured by semi-empirical methods
and approaches.

Model simulations are often combined to form ensembles in
order to explore uncertainty and sensitivities. Ensembles may
consist of a number of single model runs or of a number
of different models. Single model ensembles may be used to
explore the sensitivity to initial starting conditions (e.g., Kay
et al., 2015) or to investigate the uncertainties associated with
the model structure (e.g., perturbed physics ensembles, where
parameters are varied within their uncertainty; e.g., Beven and
Binley, 1992; Carslaw et al., 2013). Multi-model ensembles often
include individual models run with the same input data in order
to compare predicted outcomes, such as the global climate model
intercomparisons conducted in support of the IPCC process
(CMIP5; Taylor et al., 2012). These are referred to as “ensembles
of opportunity” to emphasize that they are not full explorations
of uncertainty.

There is also significant interest in integrated modeling, where
multiple environmental and impact models may be combined
to address complex real-world problems, particularly problems
requiring higher-order systems thinking and holistic solutions
(Laniak et al., 2013). Global climate (or Earth system) models
can be viewed as integrated modeling systems, where different
aspects of the environment (atmosphere, land, ice, oceans etc.)
are simulated by individual model components or sub-models.
These models often have sophisticated software architectures to
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FIGURE 1 | The software architecture of the Community Earth System Model

(CESM), taken from Alexander and Easterbrook (2015) and reproduced with

the permission of the authors.

manage the associated couplings between the model components
(Alexander and Easterbrook, 2015), as illustrated, for example,
by the Community Earth System Model (CESM) developed at
NCAR, shown in Figure 1. As can be seen, CESM is made up
of different model components, namely CAM4, POP2, CLM4,
and CICE4 (representing the atmosphere, oceans, land, and sea
ice resp.), interconnected by a coupler, MCT. Each of these
model components is a complex model in its own right, perhaps
integrating several other smaller model components (e.g., clouds,
chemistry, and radiative transfer in the atmospheric model).

There is also interest in integrated modeling in other
areas of earth and environmental sciences ranging from
combining a small number of models to investigate inter-
relationships between phenomena (Thackeray, 2016), through
to complex integrated modeling for an understanding of
nature’s contribution to people (hence requiring models of
economic and social factors, for example; Alvarez et al.,
2015; Harrison et al., 2015). This is a very demanding
area featuring a number of data science challenges, such as
quantifying and propagating uncertainty, and dealing with
complex phenomena, interdependent variables, and feedback
loops. These integrated modeling systems will often include
complex process models coupled with data-driven models,
perhaps relying on archived output of process models rather than
coupling components online.

One key challenges for integrated environmental modeling
is variety, with models being developed by different groups
for a wide range of environmental phenomena, operating at
a wide range of scales and temporal/spatial resolutions, and
perhaps with different representations and data types for the
same phenomena. At the software level, models are often written
in different languages, with Fortran featuring heavily as a legacy
language in many process models, and specialized environments
such as R, Matlab, Python, or Julia being used for data-driven
models. There is some support for integrating models together,

including the Earth System Modeling Framework (ESMF) or the
OGC standard OpenMI (Open Modeling Interface). However,
major interoperability challenges remain, amplified by the level of
heterogeneity in the data being exchanged (as discussed in section
The Data Challenge above).

One method to promote model integration and shared access
is by taking advantage of the cloud and cloud standards, such as
Web Services. Such an approach would also enable modelers to
take advantage to the elastic storage and computational resources
available in the cloud, permitting management of large ensemble
simulations and their analysis with cloud machine learning tool
kits for instance. However, existing cloud services are not yet
suited to supporting the execution of environmental models
and ensemble or integrated model runs. For example, popular
Platform as a Service (PaaS) offerings such as MapReduce
and Apache Spark (Dean and Ghemawat, 2004; Zaharia et al.,
2016) have a simple computational model whereby the same
computation is carried out on different partitions of large data
sets. This is quite different from the requirements of complex
models, where different parts of the data might be tightly coupled
(e.g., atmospheric and ocean circulation in climate models).

There are also significant issues around the veracity of models
and, given unknowns in the accuracy and precision of different
models, understanding the impacts when they are combined (e.g.,
Wilby and Dessai, 2010). Models are mostly trained, calibrated,
or evaluated against historical data, while recognizing that the
past is not necessarily a good indicator of the future, especially
given that climate change may take the environment to states
outside observations. There has been a long-standing interest
in combining models with observations to partially address
this problem, a field known as data assimilation (e.g., Lahoz
et al., 2010). Historically, most work in this area has been
carried out in the context of numerical weather prediction,
but data assimilation has also been applied to ecology (Niu
et al., 2014), the carbon cycle (Williams et al., 2005), and flood
forecasting (Yucel et al., 2015; see also Park and Xu, 2017).
More generally, there is huge potential in combining process
models with data-drivenmodels to achieve deeper understanding
on environmental change and the uncertainties associated with
such change.

Summary of modeling challenges
Moving models to the cloud to support open and shared access to a range

of environmental models;

Providing interoperability between the full range models, including process

and data-driven models;

Supporting the construction of a range of possible ensemble models;

Supporting integrated modeling including potentially highly complex and

multi-faceted models for natural capital assessment;

Reasoning about and managing uncertainty in model runs, including in

ensembles and across integrated modeling frameworks.

The Complexity Challenge
The earth is a complex system, evenmore so when considerations
of the earth are folded together with economic and social
concerns. Dealing with this inherent complexity is a major
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challenge for data science. Complexity is itself a major
area of study, reflected in the emergence of complexity
science as a subject in its own right. Kastens et al. (2009)
usefully define a complex system as one that “exhibits the
following characteristics:

- feedback loops where change in a variable results in either
an amplification (positive feedback) or a dampening (negative
feedback) of that change;

- many strongly interconnected variables, with multiple inputs
contributing to observed outputs;

- chaotic behavior, i.e., extreme sensitivity to initial conditions,
fractal geometry, and self-organized criticality;

- multiple (meta)stable states, where a small change in
conditions may precipitate a major change in the system;

- a non-Gaussian distribution of outputs, often where outcomes
that are far away from the average are more likely than you
might think.”

Of the many definitions of complex systems, this really resonates
with studies of the earth and the environment. For example,
an analysis of feedback loops has been shown to be core
to understanding rebound effects in climate change where
technological innovations have failed to slow the rate of emission
of greenhouse gasses (Greening et al., 2000; Jarvis et al., 2012).
Similarly, it is well-understood that in the natural environment
everything is interconnected and hence the second bullet strongly
aligns with research in this area. As a final example, extreme
value theory has emerged to explain phenomena that are far
removed from the average and associated with rare events that
may otherwise be regarded as outliers. Unsurprisingly, extreme
value theory has been applied successfully to environmental
science, including in flood prediction (Tawn, 1988).

Dealing with this complexity represents a major challenge
for earth and environmental sciences and folding in new
methods to deal more explicitly with feedback loops and
interconnected variables across spatial scales, would represent a
significant breakthrough inmany areas of environmental science.
Complexity also represents a major challenge for data science
with data science also offering interesting perspectives on how
to handle complexity, for example the role of machine learning
in dealing with and responding to emergent phenomena and in
dealing with surprises in complex systems.

Summary of complexity challenges
Managing the complexity of the underlying phenomena, particularly in terms

of understanding feedback loops and inter-dependent behaviors, chaotic

behaviors, and also extremes;

Developing new data science techniques to deal with and respond to

emergent behavior and other complex phenomena.

The Spatial/Temporal Challenge
Studies of the environment are often related to reasoning
about natural phenomena across space and time. Estimating
spatial or temporal patterns in data and deciphering the effects
of covariates across the domain of interest is key to this.

Many environmental processes exhibit spatial and/or temporal
structure and describing and quantifying such structure is
important for enabling robust inference, in terms of patterns and
covariate effects, to be drawn. Evaluating such structure within a
modeling framework means having to account for second order
properties, that is to say the dependence between observations,
rather than simple mean effects, which poses many practical
modeling challenges. Inmany instances the dependence structure
is captured through a covariance matrix, but in other cases
alternative measures may be more appropriate, see for instance
Coles et al. (1999) and Davison et al. (2012) for an introduction
to tail dependence measures used in extreme value analysis.
Inclusion of such second order properties involves additional
stochastic processes within the model and standard likelihood
based approaches are unsuitable. There has been a large body
of work over many years in both time series analyses and
spatial statistics where the goal has been to estimate inherent
spatial/temporal structure within the observed data and to
exploit this for predictive purposes. Traditional examples include
ARIMA models, Kriging, Gaussian processes, and spatial point
processes. Such approaches have been continuously developed,
modified, and improved over many years to overcome limiting
assumptions or allow for greater flexibility. Excellent summaries
of these approaches are provided in Brockwell et al. (2002) for
time series methods and Cressie (1993) and Gelfand et al. (2010)
for spatial methods.

Technical developments in several fields have created the
opportunity to observe, simulate, and forecast our environment
at unprecedented scales of space, time, and complexity. This
has led to deluge of spatially and temporally referenced data.
Traditional methodological approaches are, however, not well-
suited for the era of big data and most scale poorly to
handling large spatio-temporal data sets. The computational
demands become limiting as the need to handle increasingly large
covariance matrices becomes infeasible. There is therefore an
increasing challenge to develop approaches that can handle large
spatio-temporal data sets and to estimate the fine scale structure
within. Heaton et al. (2018) provide a nice summary of the state
of the art and comparison of approaches to handle large spatial
data, but admit that further research is required for the spatio-
temporal setting and for optimizing computational run times.
There is therefore a real opportunity here for data science to
significantly enhance the state-of-the-art and provide intellectual
breakthroughs in capabilities for spatial/temporal reason across
large-scale environmental data sets.

A further key challenge is to increase the spatial and temporal
resolution of predictions. For example, global climate models
typically operate at a resolution of 2 degree grids (equivalent to
200 km at the equator) and there is a desire in the community
to significantly increase the resolution, for example to 5 km grids
or even 1 km grids in the longer term. Similarly, researchers wish
to develop air quality predictions at the level of street “canyons”
(Reis et al., 2015) offering more localized warnings of health
risk and richer mitigation and/or adaptation strategies. Such
analyses typically exploit the availability of multiple data sources
via statistical downscaling or data fusion approach. However,
challenges remain since there are often mismatches in terms
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of either, or both of, spatial or temporal scale, and spatial and
temporal overlap or representativeness. It is also sometimes
the case that different data sources do not measure the same
processes. For all of these reasons, it can be very hard to achieve
integration across different data sets and models. These are
largely unresolved issues in earth and environmental sciences and
a key challenge for environmental data science.

Finally, we see that there is great potential in incorporating
spatial dependence structures within analytical frameworks
that are traditionally focused at single sites and hence
evaluating marginal effects. Examples here include extreme
value analysis where return levels are typically estimated
for each site independently and changepoint analyses where
changes are identified on a site-by-site basis. Incorporation
of spatial structure into models of this type not only results
in more physically realistic models, but also enables a better
understanding of the underlying processes and allows sharing of
information between sites; the latter is particularly helpful for
sites for which there may be little, or no, data. This is a highly
active area for research and an area where novel data science
insights can provide a significant step forward. Such insights
might contribute both to the development of completely novel
modeling approaches or, as in the case of extreme value analysis,
to the development of a more accessible implementations of
existing multivariate and/or spatial methodology.

Summary of spatial/temporal challenges

Providing a range of data science techniques to support sophisticated

reasoning across space and time, including areas such as clustering,

propagation, and extrapolation, particularly for big data;

Develop data science techniques to achieve the required level of spatial and

temporal resolution in scientific studies;

Support the integration of data and models that operate at different spatial

and temporal scales;

Support the extension of typically marginal analyses to incorporate spatial

and/or temporal structure.

The Uncertainty Challenge
This challenge is arguably the defining one for environmental
data science. Uncertainty can emanate from a wide variety of
sources, including:

- Uncertainty (or veracity) of the underlying data
sources/observations, with this becoming even more
significant given the newer sources of data discussed in section
The Data Challenge;

- Uncertainty related to the choice of model(s) used
in experiments;

- Uncertainty related to model structure, including
consideration of inter-dependent variables, parameterizations
of unresolved processes (e.g., clouds in global climate models),
and altogether missing processes and feedback loops;

- Uncertainty related to the initial conditions and assumptions
for model runs and the potential sensitivities to small changes
in these parameters;

- Uncertainty in the scenarios used for projection (e.g., we do
not know what will the greenhouse gas emissions will be in
25 years);

- Uncertainties related to the accuracy of the data used to
calibrate or train the models.

Crucially, these all need to be made explicit and folded into a
reasoning framework to assess uncertainty. This is an area that
is not well-developed in the earth and environmental sciences.
Notable counter-examples include the work on UncertWeb
(Bastin et al., 2013), which offers a set of mechanisms and
tools to represent and support reasoning about uncertainty in
modeling scenarios (including the use of UncertML to capture
meta-data related to uncertainty), EQUIP5 and QUMP6. In
hydrology, GLUE (generalized likelihood uncertainty estimation)
has been developed to reason about uncertainties in hydrological
modeling (Beven and Binley, 2014). Other approaches to
managing uncertainty include Differential Adaptive DREAM
(Vrugt et al., 2009) and Bayesian Total Error Analysis (Kavetski
et al., 2005). Beven and Lamb (2014) also discuss the important
aspect of reasoning about cascading uncertainties in integrated
modeling. These are examples of good environmental data
science being carried out, but not necessarily rolled out across
the sub-disciplines of environmental science (another example
being data assimilation in numerical weather prediction as
mentioned above).

Uncertainty can also usefully be divided into aleatory and
epistemic sources of uncertainty (Beven and Young, 2013). The
word aleatory is derived from the Latin word for die or a game
of dice and hence represents random variability that derives
from “irreducible natural variability” (Beven, 2015). In contrast,
epistemic uncertainty arises from lack of knowledge and hence
the uncertainties can be reduced by the availability of new
knowledge. In other words, aleatory uncertainty can be captured
stochastically through “odds” whereas for epistemic uncertainty
additional information is always required to assess the level of
uncertainty. If this information becomes available, then epistemic
uncertainties can become aleatory in nature but the danger is
that such uncertainties may be irreducible. Such uncertainties
are very hard to deal with through stochastic means. They may
then appear “rather arbitrary in their occurrence” and equate to
“surprises,” which must then be dealt with in associated model
structures (Beven, 2015).

To deal with such uncertainties, Beven (2007) has long argued
for new approaches to modeling. His hypothesis is that such
epistemic uncertainties will never be accurately captured by
probabilistic models and he proposes an approach to models
which they deem models of everywhere. In this approach, models
operate at very fine spatial resolution, associated with particular
places, and many such models co-exist. With this approach, it
is then possible to collect local data including data from local
historic records and derived from local knowledge (for example
from farmers), and this knowledge can help resolve both styles of
uncertainty and, in particular, deal with surprises. While derived

5www.equip.leeds.ac.uk
6https://www.metoffice.gov.uk/research/applied/international/precis/qump
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for hydrology, such an approach has promise for other fields
of environmental modeling in managing different sources and
styles of uncertainty. Other approaches may also be applicable in
this context. For example, machine learning may have a role in
dealing with emergent properties and surprises emanating from
models and their interactions.

Another interesting possibility is to consider adaptive
strategies in response to estimates of uncertainty and indeed
in response to more general contextual information around
model execution and environmental observation. There is a
strong literature in Computer Science around adaptive/self-
adaptive/autonomic computing (Kephart and Chess, 2003;
McKinley et al., 2004; Cheng et al., 2009) and there is potential to
apply this work in the area of environmental understanding. One
example would be to link environmental models and Internet of
Things technology whereby the uncertainty in models is used
to drive the volume and velocity of the sampled data from the
Internet of Things infrastructure. There has been some work
in adaptive environmental modeling, for example the use of
adaptive mesh refinement to adapt the resolution of model
execution in response to the sensitivity or turbulence of the area
beingmodeled (Cornford et al., 2013). There is the potential to go
much further though in terms of self-organizing environmental
modeling frameworks that adjust their modeling strategies and
approaches to reduce uncertainty and more generally achieve the
overall goals of the modeling experiment. Once again, there is
strong potential to employ machine learning and other related
data science methods in this context.

Summary of uncertainty challenges

Reifying uncertainty as a first class entity in all aspects of environmental

science related to data and models;

Providing a framework to support reasoning about uncertainty;

Developing data science techniques to deal with epistemic uncertainties

including emergent events and surprises emanating from the underlying

complexity of the systems being observed or modeled;

Based on uncertainty and other contextual information, seek adaptive

strategies for sampling and model execution.

The Cross-Disciplinary Challenge
The cross-disciplinary space associated with environmental data
science is shown pictorially in Figure 2 below.

This is not just a matter of bringing researchers together from
different disciplines. We argue that this requires new means of
organization, new methods and indeed a fundamentally new
culture of working; and that this is at the heart of the promise
of data science as an emerging area of study. This contrasts
significantly with current modes of organization and working in
universities, research labs and funding councils where research is
often categorized and, by implication, siloed.

It is also important, as discussed above, that data science is
situated in the problem domain and that we have a data science
of the natural environment and not data science for the natural
environment. This also poses significant challenges for the modes
or organization discussed above.

FIGURE 2 | The cross-disciplinary nature of environmental data science.

Summary of cross-disciplinary challenges

Bringing together of a wide variety of disciplines in new data science initiatives

targeting the natural environment;

The identification and discovery of new means of organization and

fundamentally new modes of working to expedite and maximize innovation

at the interface between the many disciplines involved;

To ensure the resultant data science is embedded in the problem domain.

DATA SCIENCE OF THE NATURAL
ENVIRONMENT: REVISITED

Building on the discussion above, environmental data science is
concerned with the development of data science principles and
techniques for sense making and decision support related to the
natural environment. From the discussion in section Challenges,
it is apparent that environmental data science is distinctive with
a set of challenges that are unique to this area (particularly when
considered collectively). For example, very few other application
domains have the same rich legacy of process models, which
then must be combined with a data models to develop a more
complete understanding; the spatial and temporal dimensions
are highly distinctive; the level of heterogeneity across data and
process is high; when coupled with issue around uncertainty and
complexity, this is a uniquely challenging but exciting field.

One of the over-arching themes that comes across from
considering the challenges is that of integration: of a rich variety
of data sources, of models, of data with models, and most
profoundly of disciplines to work together in interpreting the
associated data and models to achieve new scientific insights
through a new integrative science. Some of the building blocks
of this are more obvious and straightforward such as the role
of cloud computing in providing a common platform for the
technological aspects of integration, complemented by emerging
standards to ensure interoperability. Such platforms also enable
a more open and collaborative approach to science, providing a
catalyst and common focus for the necessary cross-disciplinary
collaboration. Other aspects are more challenging, particularly
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FIGURE 3 | Key data science themes.

the challenges of meaningful cross-disciplinary collaboration,
and this requires profound shifts in culture, method, and
organization to be effective.

The second key over-arching theme is that of maintaining
broad vision and not getting too narrow in the definition of
data science. This means embracing a rich set of potential
data sources, new methods of modeling and data interpretation
and of course the breadth and richness that comes from
multiple disciplinary perspectives on key scientific problems.
Environmental data science is not about better process modeling
for earth and environmental science. Nor is it about deep
learning on unstructured environmental data. It is about the
possibilities of transformation and intellectual breakthrough
when we embrace the full breadth and diversity that should
be apparent from the discussions above and seek innovations
at the interfaces between disciplinary perspectives as well as
learning from best practices in other areas, for example the
deep understanding of integrated modeling in the climate
science community or the insights into data assimilation in
weather prediction.

Data science is a new and emerging area of study and
environmental data science is in its infancy. The topic can
usefully be broken down into a series of over-lapping and
mutually supporting themes as shown in Figure 3.

The first area is data acquisition, embracing the breadth
of existing and emerging techniques to provide a significant
step change in the observation and monitoring of the natural
environment (see section The Data Challenge).

Building on this, there is a need to provide appropriate
data science infrastructure supporting data storage, discovery,
and processing capabilities. This builds on innovation in the
area of cloud computing, but many research challenges remain
before this infrastructure is fit for purpose for the challenges of
environmental data science (Elkhatib et al., 2013).

Continuing upwards in this diagram, there is a need to
provide appropriate data science methods to help make sense

of the plethora of environmental data. This is arguably the
biggest area of potential innovation. The core of environmental
data science is providing novel methods and combinations of
methods to solve particular scientific challenges and problems.
This includes combinations of process models and data-driven
models, with the latter drawing on areas such as spatial and
temporal statistics, machine learning, deep learning, extreme
value theory, changepoint analysis, and optimization, offering
a rich “playground” for innovation and offering new tools to
scientists in responding to the challenges alluded to above (An
example of such a combination is provided in section Case
Study: Modeling Extreme Melt Events on the Greenland Ice
Sheet below).

The final area is that of supporting decision making in
an uncertain and complex world, and this involves the
development of new methods of decision support aligned
with ways of communication of data-driven scientific output
and its translation into new understanding and policy
development. This can also draw on new developments in
visualization to aid the interpretation and understanding of
the underlying complex and inevitably messy data. This is
arguably the most important area but also the most complex and
under-developed.

CASE STUDY: MODELING EXTREME MELT
EVENTS ON THE GREENLAND ICE SHEET

Purpose of the Study
Modeling Extreme Melt Events on the Greenland ice sheet
(MEMOG) was originally a feasibility study supported through
the EPSRC funded SECURE network. The aim of the project
was to assess the potential for integrating process and
stochastic models to improve forecasts of future Greenland
ice sheet melting, working at the boundary between data
science and environmental science. We found that process-
based models that are currently used to simulate future
Greenland ice sheet melting (Regional Climate Models—
RCMs), and the associated contribution to global sea level
rise, underestimate present-day melting because they do not
capture extremely high temperatures (Figure 4). Preliminary
investigations (unpublished) also suggested that statistical
models associated with Extreme Value Analysis can potentially
be used to downscale RCM predictions of temperature to
give better agreement with observed behavior. This has led to
two main research priorities: (1) improving the representation
of processes in RCMs such that they simulate extreme
temperatures with greater fidelity and (2) developing data-
driven models of extreme melting on Greenland to support
work conducted with the process-based RCM. The latter
is a key focus of current research in the EPSRC funded
Data Science for the Natural Environment (DSNE) project
in which we aim to use such models to (a) quantify the
spatial/temporal structure of extreme melt events (b) make
predictions on the risk of future extremes and (c) downscale
RCM predictions to improve their fidelity with respect to
observed behavior.
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FIGURE 4 | Median frequency, duration, and magnitude of extreme temperature events simulated by four model variants at 13 locations. Frequency is denoted by the

height of each box, duration is indicated by the width of each box, and observed values are given by the dashed black boxes. Box colors indicate the departure of the

modeled magnitude from the observed value, blue colors indicate an underestimate, and red colors indicate an over estimate (Leeson et al., 2017).

Data Science Perspective
Extreme value analysis (EVA) provides a tool-kit of
asymptotically motivated statistical methods that can be
used to statistically model the extreme values of a data set and
predict the size and frequency of unusually large (or small)
events in the future. In an environmental context this could
include modeling extreme wind speeds, temperatures, droughts,
precipitation, wave heights etc. It has previously been used with
great success in many environmental applications, e.g., flood
forecasting, however it has never been considered in estimates
of cryospheric change. Historically, EVA models made the
assumption of independent extreme events and had limited
capacity to account for temporal and spatial trends. For many
climate-driven processes, such limitations are a major weakness
as they limit the ability to account for climate change, which
has a strong signal in Greenland (Hanna et al., 2012). In recent
and ongoing research, several methods have been developed to
deal with these issues by the use of covariates, random effects
(also known as latent processes) or multivariate methods (Eastoe
and Tawn, 2009, 2012). Using a subset of these state-of-the-art
techniques, in the MEMOG project we modeled the frequency,
distribution and magnitude of statistically extreme temperature
events in in-situ observations and contemporaneous RCM
predictions at 13 sites. We then used these data to (1) develop a
climatology of extreme temperature events in the observational
record, (2) analyse the performance of the RCM in terms
of reproducing these extremes, and (3) make preliminary

(unpublished) investigations into developing a method by which
EVA can be used to downscale RCM output to reproduces
extreme events with greater fidelity.

Analysis
This work is proving to be an excellent platform to explore
the potential for an integrated modeling approach to ice melt
prediction. We have achieved success with our marginal (site-
wise) approach and the next step is to incorporate spatial
elements. In order to do this however, there are a number of
issues that our current efforts aim to overcome. These include:

1. Sparsity of in-situ observations. In order to independently
model extreme events, i.e., without using the spurious RCM
output, one would ideally want direct observations. The
Greenland ice sheet is 1.71 million km2 and yet there are only
∼20 weather stations on its surface from which it is possible
to acquire temperature and melting data. As such, it is not
yet possible to model the spatial dependence of extreme melt
events using these data.

2. Data heterogeneity. While gridded satellite-derived
observations of temperature and melting covering the
entire ice sheet do exist, these data are a derived product that
suffer from heterogeneity. For example, neighboring pixels
in the dataset may have been acquired at different times of
day and thus are not directly comparable. In addition, there
are no observations during periods of cloud cover, and since
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these periods tend to be associated with higher temperatures
than usual it is not possible to assume these data are “missing
at random” for statistical modeling purposes.

3. High volumes of data. While observational data are sparse,
RCM output is abundant (order of Tb) and continuous in
both time and space. This provides an opportunity in that
it enables us to explore the spatio-temporal dependence of
extreme events (albeit in the model space only) however
it also presents additional challenges in terms of both
necessary computational power, and devising meaningful
data-reduction techniques (e.g., clustering) in order to enable
useful inference from the data.

Lessons Learned for Environmental
Science
While this work is focused on Greenland ice sheet melting,
lessons learned during this process are eminently transferable to
other areas of Environmental Science.

1. It is insufficient to test process model fidelity against
aggregated data such as annual, or even seasonal, means;
“outliers” are important when it comes to overall model
performance. Here, we were able to perform a more robust
assessment using EVA to compare modeled vs. observed
extreme events and found that the RCM misses 16–41%
of melt energy at selected locations, largely due to poor
representation of temperature extremes.

2. The heterogeneity inherent in environmental data requires a
high degree of innovation in applying data science methods.
For example, in this study we found that the strength
of extremal dependence between observations and climate
model output varied between sites. This necessitated the use of
a sufficiently flexible bivariate EVA model that could then be
applied across a number of heterogeneous locations regardless
of the type of extremal dependence. Studying the spatial
dependencies in extremal behavior revealed by this study is
now a key part of ongoing work.

3. Understanding the physical drivers of why RCMs may not
represent extreme events is difficult as they are extremely
large and complex models comprising many interconnected
processes. However, by using EVA we may be able to correct
for this at least. This is important because assessments of the
ice sheet contribution to sea level rise (i.e., total melting) are
used for policy and decision-making.

4. Integration of process and statistical models presents in itself a
novel research challenge and further effort is needed in order
to determine principled ways of using the EVA model to drive
the RCM output into states that do not naturally arise from
integrations of model physics.

This case study, on combining process and stochastic models,
demonstrates how models of different kinds can usefully be
combined to better represent the reality, in this case, of extreme
events. We see many other innovative combinations of process
models and data-driven or stochastic models, for example the use
of changepoint analysis or machine learning alongside process
models (a couple of studies have also recently used machine

learning in this way to attempt to derive patterns that are
indicative of El Niño occurrences, a complex phenomenon
that has so far eluded traditional process-based analyses; Lima
et al., 2015; Chalupka et al., 2016). We also see data science
methods being usefully combined in different ways to create
hybrid approaches, for example the use of changepoint analysis
with machine learning to discover patterns of higher-level events
resulting from fundamental change in the environment. This is
core to our vision of a future environmental data science—that is,
by enabling innovation at the interfaces between disciplines and
approaches, through bringing the different groups of researchers
together in multi-disciplinary teams.

A RESEARCH ROADMAP

Building on our analyses and experiences documented above,
we present a research roadmap for data science for the natural
environment in terms of a top 10 set of research challenges7. This
is not necessarily intended to be complete but rather to highlight
from our perspective some of the key challenges that must be
addressed to achieve a form of maturity in this area.
Challenge 1: To encourage and enable a cultural shift toward
open science, that is toward a science that is more collaborative
and integrative through open approaches to data, models and
knowledge formation, and also toward a science that is more
transparent, repeatable and reproducible.
Challenge 2: To build on the benefits of cloud computing,
but offer levels of abstraction (and associated services) that are
much better suited to the domain of science, including high-level
support for running complex, integrated modeling in the cloud.
Challenge 3: To address complexity more fundamentally
and explicitly, in particular, seeking data science techniques
that recognize and resolve key issues around feedback loops,
inter-dependent variables, extremes and reasoning about
emergent behavior.
Challenge 4: To provide techniques and frameworks to both
reify uncertainty in scientific studies and also reason about
the cascading uncertainties across complex experiments, e.g., in
integrated modeling frameworks.
Challenge 5: To seek adaptive techniques driven by
considerations of uncertainty and also the goals of a scientific
study, including adaptive approaches to sampling or gathering of
data and adaptive modeling.
Challenge 6: To seek approaches that deal with epistemic
uncertainty in environmental modeling, noting the important
links with dealing with emergent behavior in complex and
irreducible phenomena.
Challenge 7: To seek novel data science techniques and, in
particular, innovative combinations of data science techniques that
can make sense of the increasing complexity, variety and veracity
of underlying environmental data, exploiting also multiple data
sets including real-time streaming data.

7It is important to stress that there is excellent work in many of these areas in the

environmental sciences but this work is rather fragmented and it is clear that a

more integrated approach is required.
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Challenge 8: To seek innovations in modeling by combining
process models with data-driven or stochastic modeling techniques
and also seeking ways of assimilating a range of data sourcesmore
generally into steering model executions.
Challenge 9: To incorporate sophisticated spatial and temporal
reasoning, including reasoning across scales, as an integral aspect
of environmental data science and not something that is just
provided through separate tools such as GIS tools.
Challenge 10: To discover new modes of working, methods
and means of organization that enable the required level of
cross-disciplinary collaboration as required to address the grand
challenges of earth and environmental sciences and, more
specifically, environmental data science in its contribution to
these grand challenges.

These research challenges cross-cut the themes of data
acquisition, infrastructure, methods and policy making as
illustrated in Figure 3. The overarching challenge is then to
overcome the 10 challenges above in an end-to-end environmental
data science (from acquisition right through to policy and
strategy) and to apply such techniques in responding to the many
problems around the management of the natural environment.

CONCLUDING REMARKS

This paper has discussed the emergent area of environmental
data science arguing that there is an important symbiotic
relationship between the fields of data science and
earth/environmental sciences: data science has a lot to offer
in terms of a deeper understanding the natural environment and
in informing mitigation and adaptation strategies in the face of
climate change; this domain of application has much to offer in
terms of data science with its unique combination of challenges,
challenges that require significant breakthrough and innovation
in data science methods.

The contributions of the paper are: (i) a definition of the
field of environmental data science; (ii) a systematic analysis of
the range of challenges in environmental data science; (iii) a
research roadmap in the form of 10 key research challenges that,
if addressed, would lead to significant progress in environmental
data science.

The paper sets out with the additional objective of reaching
out to researchers working in this space to create an international
community to address the very significant challenges in this area.
In retrospect, the creation of such an international community
would dwarf the other contributions in terms of long-term
significance. We invite you to this international effort.
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