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We present a generalized hybrid Monte Carlo (gHMC) method for fast, statistically

optimal reconstruction of release histories of reactive contaminants. The approach is

applicable to large-scale, strongly nonlinear systems with parametric uncertainties and

data corrupted by measurement errors. The use of discrete adjoint equations facilitates

numerical implementation of gHMC without putting any restrictions on the degree

of nonlinearity of advection-dispersion-reaction equations that are used to describe

contaminant transport in the subsurface. To demonstrate the salient features of the

proposed algorithm, we identify the spatial extent of a distributed source of contamination

from concentration measurements of a reactive solute.

Keywords: source identification, contaminant transport, Markov Chain Monte Carlo, hybrid Monte Carlo, inverse

problems, uncertainty quantification

1. INTRODUCTION

An accurate reconstruction of the release history of contaminants in geophysical systems is essential
to regulatory and remedial efforts. These efforts rely on measurements of pollutant concentration
to identify the sources and/or release history of a pollutant. Unfortunately, available concentration
data are typically sparse in both space and time and are corrupted by measurement errors.
Source identification and reconstruction of release history are further complicated by both spatial
heterogeneity of model parameters and their insufficient characterization, although we do not
consider these effects in the present work.

Detailed reviews of the historic developments and state-of-the-art in the field of inverse
modeling as related to contaminant source identification are presented in Atmadja and Bagtzoglou
(2001b) and Hutchinson et al. (2017). The existing approaches can be subdivided into two broad
classes: deterministic and probabilistic. Deterministic approaches include, but are not limited to,
Tikhonov regularization of convolution integrals (Liu and Ball, 1999; Ito and Jin, 2015), least-square
estimation from analytical approximations (Butcher and Gauthier, 1994), least-square solution
of an optimal control problem (Gugat, 2012), the method of quasi-reversibility (Skaggs and
Kabala, 1995; Bagtzoglou and Atmadja, 2003), and the backward beam equation method (Atmadja
and Bagtzoglou, 2001a; Bagtzoglou and Atmadja, 2003). These approaches provide estimates of
the release history from a source of known locations and are not designed for quantifying the
uncertainty associated with these estimates. The robustness of these methods is highly sensitive
to measurement errors, and their mathematical formulations are often fundamentally ill-posed.

While existing probabilistic approaches, such as randomwalk particle tracking for the backward
transport equation (Bagtzoglou et al., 1992), minimum relative entropy (Woodbury and Ulrych,
1996), and adjoint methods (e.g., Neupauer and Wilson, 1999), alleviate some of these problems,
others remain. For example, these and similar methods do not take advantage of the regularizing
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nature of the measurement noise and, hence, are often
ill-posed. Thus, the minimum relative entropy method
treats concentration measurements as ensemble averages.
Additionally, there are some outstanding issues with quantifying
uncertainty (Neupauer et al., 2000) and the inability of many
existing approaches to handle more than one observation
point (Neupauer and Wilson, 2005).

Finally, most existing approaches to the reconstruction of
release history are restricted to linear transport phenomena, that
is, transport phenomena for which the transport equation is
linear in the concentration, and thus are limited to migration
of contaminants that are either conservative (all the references
above) or exhibit first-order (linear) reaction rates (Neupauer
and Wilson, 2003, 2004). This is because such approaches are
based on either Green’s functions (Skaggs and Kabala, 1994;
Woodbury and Ulrych, 1996; Stanev et al., 2018) or analytically
derived adjoint equations (Neupauer and Wilson, 1999, 2005).
The use of Kalman filters for source identification (Herrera and
Pinder, 2005) is formally limited to linear transport phenomena
and Gaussian errors. While both limitations can be relaxed by
employing various generalizations of the Kalman filter such as
the extended and ensemble Kalman filter (e.g., Xu and Gömez-
Hernández, 2016, 2018), these generalizations are known to fail if
the nonlinearity is too strong. Bayesian optimization approaches
(Pirot et al., 2019), accelerated by the use of Gaussian process
models as surrogates, provide a promising alternative to the
Kalman filter since they impose no linearity requirements.

Purely statistical approaches to history reconstruction, such
as the geostatistical inversion with Bayesian updating (Snodgrass
and Kitanidis, 1997) and various machine learning techniques
(Vesselinov et al., 2018, 2019), are applicable to nonlinear
transport. Since this is achieved by ignoring governing
equations, the reconstructed release histories could have non-
physical characteristics, including negative concentrations. These
problems have been alleviated by introducing additional
constraints into an optimization functional and requiring the
reconstructed field to be Gaussian (Michalak and Kitanidis,
2003, 2004a). Combining these geostatistical approaches with
analytically derived adjoint equations (Michalak and Kitanidis,
2004b; Shlomi and Michalak, 2007) however brings back the
linearity requirement.

We present an optimal reconstruction of contaminant
release history that fully utilizes all available information
and requires neither the linearity of governing transport
equations nor the Gaussianity of the underlying fields.
In section 2 we formulate the problem of reconstructing
the contaminant release history from noisy observations.
Section 3 introduces our general computational
framework, which is further implemented in section 4 for
various examples.

2. PROBLEM FORMULATION

2.1. Reconstruction of Contaminant
Release History
We consider migration of a single chemically active contaminant
in a porous medium � ⊂ R

d, d ∈ [1, 3]. We assume that reactive

transport is adequately described by the advection-dispersion-
reaction equation with reaction term R(c):

∂c

∂t
= ∇ · (D∇c)−∇ · (uc)− R(c)+ r(x, t), x ∈ �, t > 0, (1)

together with corresponding boundary conditions. Here c =
c(x, t) is the solute concentration at point x and time t, u is the
average macroscopic pore velocity,D is the dispersion coefficient
tensor, and r(x, t) is the source function. Both the location and
duration of the contaminant release, i.e., the source function
r(x, t), can be unknown, but only the former source of uncertainty
is treated in the computational examples of section 4, that is, we
assume that r(x, t) = r(x)δ(0).

Introducing the dimensionless quantities

c′ = c

c0
, x′i =

xi

x0
, i ∈ [1, d], t′ = t

t0
, D′ = D

t0

x20
,

u′ = u
t0

x0
, r′ = r

t0

c0
,

and the normalized reaction term R′ = Rt0/c0, we rewrite (1) in
terms of dimensionless quantities,

∂c′

∂t′
= ∇ ′ · (D′∇ ′c′)−∇ ′ · (u′c′)−R′ + r′ x′ ∈ �′, t′ > 0.

(2)
The non-dimensionalization of the reaction term is specific to
its functional form. The non-dimensionalization of a particular
case employed in this manuscript is discussed in section 4. For
all the following discussions we will consider the dimensionless
Equation (2) and we will drop the prime notation for denoting
dimensionless quantities.

For the remainder of this work we assume that u, D, and
the boundary conditions are known, while the source function
r(x, t) is unknown. Our goal is to reconstruct the release history
r(x, t) from concentration data c̄mi = c̄(xm, ti) collected at
points {xm}Mm=1 at times {ti}Ii=1, and for known u, D, and
boundary conditions.

Concentration measurements are corrupted by measurement
errors. We assume that the measured concentrations c̄mi differ
from the true concentration by an additive measurement noise,
so that

c̄mi = c(xm, ti)+ ǫmi, (3)

where the errors ǫmi are zero-mean Gaussian random variables
with covarianceE[ǫmiǫnj] = δijRmn, whereE[·] is the expectation
operator, δij denotes the Kroneker delta function, and the Rmn,
m, n ∈ [1,M], are components of the spatial covariance
matrix R ∈ R

M×M of measurement errors. This treatment
of measurement noise assumes that the measurements are
well separated in time to neglect any temporal correlations,
but the model can be easily extended to include temporal
correlations. We use the additive error model (3) of Woodbury
and Ulrych (1996) rather than the multiplicative error model of
Skaggs and Kabala (1994) for the purpose of illustration only.
Both models have similar effects on the accuracy of history
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reconstruction (Neupauer et al., 2000) and can be handled by
our approach.

In a typical situation, one has prior information (or a belief)
about potential sources of contamination (a region �c within
the flow domain �) and a time period [Tl,Tu] during which the
release has occurred. Examples of�c include spatially distributed
zones of contamination (e.g., landfills) and a collection of
point sources (e.g., localized/small industrial sites or storage
facilities), some of which have contributed to contamination.
The lower (Tl) and upper (Tu) bounds of the release interval
might represent the time when a landfill became operational
and the time when contamination has first been detected,
respectively. In the absence of prior information about the release
occurrence, one can assume a uniform random distribution of
the release in [Tl,Tu] × �. We allow for an arbitrary number
of measurement points and for either discrete or continuous-in-
time measurements.

2.2. Likelihood Function
To simplify the exposition, we assume a spatially distributed
chemical release at time t = 0 only, i.e., r(x, t) = c(x, 0)δ(t).
Given the measurements c(xm, ti) and the noise model (3), our
goal is to determine the likelihood of a given release configuration
c(x, 0). Unfortunately, the measurements, generally taken at
later times, do not estimate directly the likelihood of a release
configuration. Nevertheless, because the transport Equation (2)
is deterministic, we can implicitly assess the likelihood of
a given release configuration, P[c(x, 0)], from the probability
(likelihood) of a given (computed) concentration history c(x, t).
This likelihood can be expressed as (Alexander et al., 2005)

P[c(x, 0)] ∼ exp{−H̃obs[c(x, t)]}, (4)

where H̃obs[c(x, t)] is the so-called “Hamiltonian” or log-
likelihood function,

H̃obs[c(x, t)] =
1

2

M,I
∑

m,n=1,i=1

1mi(R
−1)mn1ni, (5)

where 1mi ≡ c(xm, ti) − c̄(xm, ti), and R is the covariance
matrix of measurement errors, as defined in section 2.1. Since (2)
uniquely determines the evolution of the solute concentration
from its initial state c(x, 0), the Hamiltonian (5) is a nonlinear
functional of the initial conditions c(x, 0), i.e., H̃obs[c(x, t)] =
Hobs[c(x, 0)].

This formulation assumes that themeasurement errors ǫmi are
Gaussian and uncorrelated with the state of the system. Other
distributions of the measurement noise and the stochasticity
of governing equations can be handled as well (Alexander
et al., 2005). The Hamiltonian for stochastic systems, which
can represent, e.g., uncertain hydraulic conductivity and flow
velocity that are treated as random fields, can be reformulated to
explicitly include the transport equation (Alexander et al., 2005;
Archambeau et al., 2007).

The contribution of highly fluctuating or unphysical
initial conditions is reduced by adding a regularization term

Hreg[c(x, 0)] to the observation Hamiltonian (5) and replacing
the likelihood function (4) with

P[c(x, 0)] ∼ exp{−H[c(x, 0)]}, (6a)

where

H[c(x, 0)] = Hobs[c(x, 0)]+ γHreg[c(x, 0)], (6b)

and the weight γ > 0 is a tuning hyperparameter. The
regularization term Hreg is equivalent to a Bayesian log-prior
distribution on the initial condition. The selection of an
appropriate regularization Hamiltonian is particularly important
for problems in which the observation Hamiltonian does not
specify a proper probability distribution for c(x, 0) due to a lack of
measurements. For a one-dimensional source profile, the squared
gradient of the initial spatial profile can play the role of the
regularization Hamiltonian. In higher dimensions, one can use
a thin-plate penalty functional (Wahba, 1990).

A conceptual difference between our approach and maximum
likelihood methods is worth emphasizing. Rather than sampling
the Gibbs distribution exp{−H[c(x, 0)]}, as we do here,
maximum likelihood methods minimize the Hamiltonian (6b)
over c(x, 0). While standard maximum likelihood methods
determine the mode and variance of the posterior distribution
under a Gaussian approximation, the approach described
below can be used to determine the mean and higher-order
statistics, and it is valid even when the posterior distribution
is multi-modal.

3. MONTE CARLO SAMPLING

In principle, one can sample the Gibbs distribution by using
Markov-chain Monte Carlo (MCMC) (e.g., Michalak and
Kitanidis, 2003). However, quite often, the disadvantage of
local MCMC-based methods is their slow convergence. To
improve convergence, we apply a Generalized Hybrid Monte
Carlo (gHMC), which enables one to efficiently sample release
configurations c(x, 0) with probability given by (6a).

3.1. Hybrid Monte Carlo (HMC)
Hybrid Monte Carlo (HMC) refers to a class of methods that
combine Hamiltonian molecular dynamics with Metropolis-
Hastings Monte Carlo simulations (see Neal, 1993 for an
introductory survey). Specifically, a time-discretized integration
of the molecular dynamics equations is used to propose a new
configuration, which is then accepted or rejected by the standard
Metropolis-Hastings Monte Carlo criteria. The change in total
energy serves as the acceptance/rejection criteria.

In HMC one treats the log-likelihood functionH in (6b) as the
configurational Hamiltonian for a system ofN “particles,” each of
which has unit mass and generalized coordinates q1, q2, . . . , qN .
Each of these generalized positions corresponds to the solute
concentration c(x, t) at a space-time point (x, t). In the following,
the particle positions correspond to the initial concentration at
time t = 0, e.g., qi = c(xi, 0), xi = iL/(N−1), i = 0, . . . ,N−1 for
a contaminant release over the one-dimensional domain [0, L].
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At any given time, the state of the system is completely
described by (q, p), where q = {qi}Ni=1 and p = {pi}Ni=1. Here,
the momentum of the ith particle, pi, is dqi/dτ = pi, where τ is
the fictitious time of the molecular dynamics. The kinetic energy
of the system of N particles is given by

HK(p) =
1

2

N
∑

i=1

p2i , (7)

and the total Hamiltonian of the system is

Ĥ(q, p) = H(q)+HK(p). (8)

It follows that the Hamiltonian dynamics are given by

dqi

dτ
= pi,

dpi

dτ
= Fi, Fi = −∂H

∂qi
, (9)

where Fi is the force acting on the ith particle, that is to be
computed from the governing transport equation. During the
time interval 1τ , the system evolves from its current state (q, p)
to a new state (q̃, p̃), which can be computed by discretizing the
Hamiltonian dynamics (9). An example of such a discretization
is the standard leapfrog method, which is written as

q̃i =qi + 1τ pi +
1τ 2

2
F(q) (10a)

p̃i =pi +
1τ

2
{F(q)+ F(q̃)}, (10b)

for i = 1, . . . ,N. Multiple leapfrog steps, i.e., multiple
applications of Equation (10), can be performed. For the hybrid
Monte Carlo method, the number of leapfrog steps S is larger
than one. For S = 1 we obtain the LangevinMonte Carlo method
(Neal, 1993). This completes the “proposal part” of HMC.

The remaining part of HMC consists of deciding whether
to accept or reject the new state (q̃, p̃). This is done by the
Metropolis-Hastings sampling strategy, according to which the
new state (q̃, p̃) is accepted with probability

Q = min
{

1, exp{Ĥ(q, p)− Ĥ(q̃, p̃)}
}

. (11)

The momenta variables p̃ are resampled after each
acceptance/rejection of the position variables according to
a Gaussian distribution of independent variables ∼ exp(−HK).
The time-marching and acceptance/rejection process represents
one step in the Markov chain, and therefore one Monte Carlo
sample. It is important to note that the update from (q, p)
to (q̃, p̃) does not conserve energy as a result of the time
discretization. The extent to which energy is not conserved is
controlled by the time step 1τ . Detailed balance is achieved if
the configuration obtained after evolving several steps is accepted
with probability Q in (11). Thus, the Metropolis step corrects for
time discretization errors.

As we have noted before, the method samples from the
multivariate target distribution, ∼ exp(−Ĥ), by computing a
Markov chain. Sampling from this density allows us to estimate

the mean state (reconstructed initial configuration) and its
variance. Markov chain sampling from the posterior distribution
involves a transient phase, in which we start from some initial
state and simulate the Markov chain for a period long enough
to reach its stationary density, followed by a sampling phase, in
which we assume that the Markov chain visits states from this
stationary density. If the chain has converged and the sampling
phase is long enough to cover the entire posterior distribution,
accurate inferences about any quantity of interest are made
by computing the sample mean, variance, and other desired
statistics (Landau and Binder, 2009).

3.2. Generalized Hybrid Monte Carlo
(gHMC)
In many cases, the generalized hybrid Monte Carlo (gHMC) of
Toral and Ferreira (1994) can improve the efficiency of standard
HMC by means of the nonlocal sampling strategy described
in some detail below. For q, p ∈ R

N , gHMC replaces the
Hamiltonian dynamics in (9) with a more general formulation,

dq

dτ
= Ap,

dp

dτ
= A⊤F, (12)

where A is a linear operator represented by a R
N×N matrix. The

corresponding leapfrog discretization is then given by

q(δτ ) = q+ δτAp+ δτ 2

2
AA⊤F[q], (13a)

p(δτ ) = p+ A⊤ δτ

2
{F[q]+ F[q(δτ )]}. (13b)

The two formulations, (9) and (12), are identical if A is the
identity matrix. The goal is to find a matrix A that leads to a
significant reduction of the temporal correlations of the Markov
chain without appreciably increasing the cost of the update due
to matrix-vector multiplications.

In order to illustrate how the introduction of the matrixA can
help to reduce the correlations of the Markov chain, consider the
problem with q ∈ R

N and Hamiltonian

H(q) = 1

2
(q− µ)⊤6−1(q− µ),

so that the forcing is given by −6−1(q− µ). For the case A = I,
it can be seen from (13) that the different components qi are
updated at different rates, given by the covariance matrix 6. For
a given δτ , some components would be updated with long steps,
while others would be updated with shorter steps.

The disadvantage of such a configuration is that too long
of a step for a certain component might increase the total
Hamiltonian enough to produce a rejection according to (11).
If the rejection rate of the chain is too large, one would have
to reduce δτ , which affects all components. The issue of the
rejection rate would be addressed, but then some components
would be updated with very short steps, increasing their
correlation. To solve this issue, one can remove the appearance
of 6 altogether by choosing A such that AA⊤6 = I. If 6 is a
valid covariancematrix, this is trivially accomplished by choosing
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A as the Cholesky factor of 6. We therefore refer to A as the
“acceleration” matrix.

Unfortunately, in general, the Hamiltonian (6b) for our
problem does not have a simple bilinear form for which an
appropriate selection of acceleration matrix A can be derived.
Nevertheless, it stands to reason that one can build acceleration
matrices for more complex systems to partially reduce the
correlation of the Markov chain.

4. NUMERICAL EXPERIMENTS

In this section we illustrate how the framework outlined above
can be applied to source identification problems. In the first
case we study the implementation of HMC to contaminant
transport problems with a nonlinear reaction term for different
configurations of observations. In the second case we study
a linear advection-dispersion problem and explore possible
selections of the gHMC acceleration matrix.

4.1. Discrete in Space, Continuous in Time
Measurements
We consider a one-dimensional transport with uniform velocity
u and dispersion coefficient D. We employ as the regularization
operator the ℓ2-norm of the gradient of the initial spatial
distribution. Furthermore, we assume that the time of the
contaminant release is precisely known and we impose no
constraints on the total mass of the released contaminant. The
measurements are taken continuously over the time interval
(0,T) at a subset J of discrete locations in the spatial domain. We
assume that the measurement errors are uncorrelated in space
and time and have the same variance σ 2

ǫ at every point. This setup
represents observations of contaminant breakthrough curves at a
number of sampling locations.

The Hamiltonian corresponding to this setup is

H = 1

2σ 2
ǫ

∫ T

0

∑

j∈J

[

c(xj, t)− c̄(xj, t)
]2

dt+ γ

∫

�

|∇c(x, 0)|2 dx.

(14)
It is evaluated, together with its sensitivity with respect to the
initial condition, by using a method-of-lines discretization of
the concentration field c(x, t). Once the governing equation has
been discretized into a system of ordinary differential equations
(ODEs), one can compute the sensitivity ∇qH via the adjoint
sensitivity method (Cao et al., 2003; Li and Petzold, 2004). The
disadvantage of this approach is that it incurs two levels of
numerical error: the integration error of the forward problem,
which affects the initial condition of the adjoint problem, and
the integration error of the backward problem. If these errors are
significant, both the quality of the estimator and the rejection rate
of the Markov chain can be compromised. Reducing the error
requires one to decrease the time step used for integration in
both directions, which would increase the computational cost per
leapfrog step.

To partially alleviate this problem, we use a single-step ODE
integration scheme for the forward problem and compute the
sensitivity of H with respect to the initial condition via multiple

applications of the chain rule (Daescu et al., 2000). Let ci (i =
0, . . . , I) be a vector of discretized states evaluated at time t =
iT/I and c̃i be a vector of the measurements at time ti in the
elements corresponding to the J measurements’ locations and
zeros in the other elements. Let C be a diagonal matrix with
ones on the diagonal elements corresponding to the J subset of
measurement locations and zeros in all other locations. We use
this notation to rewrite the observation Hamiltonian and the
sensitivity as

Hobs(c, q) =
1

2σ 2
ǫ

1t

I
∑

i=1

(ci − c̃i)⊤C(ci − c̃i),

and

∇qHobs =
1

σ 2
ǫ

1t

I
∑

i=1

(

dci

d
q

)⊤
C(ci − c̃i),

respectively, where dci/dq denotes the Jacobian of ci with
respect to q. Using the chain rule, the sensitivity ∇qHobs can be
rewritten as

∇qHobs =
1

σ 2
ǫ

1t

(

dc1

dq

)⊤ 

C(c1 − c̃1)+
(

dc2

dc1

)⊤
[

C(c2 − c̃2)+ · · ·
]



 .

This implies that the sensitivities can be evaluated by repeatedly
computing products of the form (dci+1/dci)⊤u. If these products
can be computed exactly, then this approach provides the exact
sensitivity of the (space-time discretized) system, which is useful
for problems with costly forward and backward solutions. The
disadvantage of this approach is that it is highly application-
specific and restricts the selection of ODE solvers to a specific
family. Details of the implementation of this discrete sensitivity
analysis approach are presented in Appendix.

We test this formulation on a one-dimensional transport
problem defined in the domain [0, L], L = 1 with
constant velocity u, dispersion coefficient D, and the reaction
model (Lichtner and Tartakovsky, 2003)

R(c) = 2k(c2 − c2eq), (15)

corresponding to a nonlinear heterogeneous (precipitation/
dissolution) reaction with equilibrium concentration ceq. Here
k denotes the dimensionless kinetic rate constant normalized
by porosity, given by k = k̂ t0 c0, where k̂ is the kinetic rate
constant normalized by porosity, with dimensions of inverse
concentration times inverse time, and t0 and c0 are the time and
concentration scales defined in section 2.1. The parameter values
are set to D = 1.0, u = 50.0, ceq = 0.4, and k = 1.0. Boundary
conditions are dc/dx = 0 at x = 0, L. The transport equation
is discretized employing a finite-volumes scheme consisting of
N = 128 cells of uniform size 1x. Concentration measurements
are taken at the M = 3 spatial locations x = L/2, x = 3L/4,
and x = L over the time period (0, 2.5× 10−2) (Figure 1). The
standard deviation of these measurements is set to σǫ = 0.02.
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The release configuration is inferred using the HMC scheme,
carried out with hybrid timestep 1τ = 0.17, number of leapfrog
steps S = 5, and regularizing parameter γ = 0.05. A total
of 1× 105 samples of the release profile were retained after
the burn-in period, which are employed to compute the Monte
Carlo estimates c̄0 and σ̂c0 of the posterior mean and standard
deviation, respectively. These estimates are shown in Figure 2.
In particular, Figure 2A shows the posterior mean estimate c̄0
compared to the true release profile, c0. We also show the 95%
confidence interval of the posterior mean estimate. It can be seen
that the HMC scheme is able to infer the main features of the
initial condition, namely the location of the release and the total
mass of contaminant released. For comparison, we also compute
the Bayesian maximum a posteriori (MAP) point estimate cMAP

of the release profile, also presented in Figure 2A. The MAP is
given by

cMAP = argmin
c

H[c],

FIGURE 1 | Breakthrough curves of contaminant at observation locations

along the transport domain. Noisy measurements used for inference are

shown in dashed.

where H[·] is the Hamiltonian given in (6b). MAP estimation
is similar to the method of Bayesian global optimization
(BGO) (Pirot et al., 2019) in that both aim to minimize the
data misfit. BGO yields an estimate guaranteed to be the global
minima over the search space, while MAP may converge toward
local minima of the data misfit function. It can be seen that
the MAP estimate and the posterior mean estimate are similar,
although in general they need not coincide, as they correspond
to different statistics. We note that, unlike MAP estimation and
Bayesian global optimization, the HMC method is not limited
to point estimates and can be used to quantify the uncertainty
in the reconstruction. Nevertheless, MAP and Bayesian global
optimization estimates are useful when quantifying uncertainty
is not critical as their computational cost is smaller than
that of HMC.

Figure 2B shows the posterior standard deviation. It can be
seen that the posterior standard deviation is large, which is due to
the dearth of data available and the ill-posedness of the inversion
problem.We also note that the posterior standard deviation is the
largest for x = L. Due to the strong advective velocity together
with the outflow boundary condition, c0(L) is only informed by
the observations at x = L at early times.

4.2. Application of gHMC to Linear
Transport
In order to study the construction of an acceleration matrix
A appropriate for contaminant transport, we consider a 1-D
advection-dispersion (no reaction) problem

∂c

∂t
+ u

∂c

∂x
= D

∂2c

∂x2
, x ∈ [0, 2π], t = (0,T], (16)

with uniform coefficients u and D. This equation is subject to the
periodic boundary condition

c(0, t) = c(2π , t), (17)

and (unknown) initial condition

c(x, 0) = c0(x). (18)

FIGURE 2 | Reconstruction of release profile via HMC. (A) Posterior mean c̄0 compared against MAP estimate cMAP and the actual release profile c0. (B) Posterior

standard deviation.
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Similar to the case studied in section 4.1, available concentration
data consist of a set of measurements continuous in time on the
interval (0,T) collected at a subset J of the discrete locations xj,
cobs,j = cobs(xj, t). The measurements are subject to space-time

uncorrelated additive errors of equal variance σ 2
ǫ .

4.2.1. Observation Hamiltonian
The state variable c(x, t) is discretized into N functions cj(t) =
c(xj, t), where xj = 2π j/N, j = 0, . . . ,N − 1 are N equidistant
nodes along the domain [0, 2π). We define the measurement
Hamiltonian as

Hobs =
1

2σ 2
ǫ

∑

j∈J

∫ T

0
[cj(t)− cobs,j(t)]

2 dt, (19)

which defines the likelihood of the measurements given an initial
release vector q with components qj = c0,j. The solution to
(16)–(18) can be represented in terms of its discrete Fourier
transform (DFT)

ĉk =
1

N

N−1
∑

j=0

cje
−ikxj , k = −N/2, . . .N/2− 1, (20)

which defines the N Fourier modes ĉk. The backward or inverse
transform is given by

cj =
N/2−1
∑

k=−N/2

ĉke
ikxj , j = 0, . . . ,N − 1. (21)

Let c denote a vector of discrete values cj and ĉ denote its DFT.
Then, (20) and (21) can be rewritten as

ĉ = 1

N
Fc, c = F

∗ĉ, (22)

where F is the DFT matrix whose elements are

Fpq = ω(p−N/2)q, ω = e−2π i/N (23)

and (·)∗ denotes the Hermitian adjoint. By projection, (16) is
discretized into the set of uncoupled ODEs for the Fourier modes

∂ ĉk(t)

∂t
= −(Dk2 + iku)ĉk, k = −N/2, . . .N/2− 1,

with initial conditions ĉk(0) = q̂k, where the q̂k, k =
−N/2, . . .N/2−1 are the components of q̂, the DFT of q ≡ c(0).
The solution to the ODEs is then given by

ĉk = q̂k exp {−(Dk2 + iku)t}. (24)

Substituting (22) and (24) into (19) yields the following
expression for the measurement Hamiltonian:

Hobs =
1

2σ 2
ǫ

(q̂− q̂obs)
∗
(

∫ T

0
B∗

FJF
∗
J B dt

)

(q̂− q̂obs),

= 1

2σ 2
ǫ

(q̂− q̂obs)
∗Ĝobs(q̂− q̂obs),

(25)

where q̂obs is the DFT of cobs(0),FJ corresponds to the J columns
ofF, B(t) is a diagonal matrix with elements Bkk = exp[−(Dk2+
iku)t], and Ĝobs is a Hermitian (semi)positive definite matrix.
The measurement Hamiltonian specifies a multivariate normal
distribution for q̂, and given that q and q̂ are related via a linear
transformation, it follows that the measurement Hamiltonian
specifies a multivariate normal distribution for q.

If the measurements are available at every node of the
computational domain, i.e., if FJ = F, then FF

∗ = NI and (25)
simplifies to

Hobs =
N

2σ 2
ǫ

(q̂− q̂obs)
∗
(

∫ T

0
B∗B dt

)

(q̂− q̂obs),

which is equivalent to

Hobs =
N

2σ 2
ǫ

N/2−1
∑

k=−N/2

|q̂k − q̂obs,k|2ĝk (26)

where the coefficients ĝk are given by

ĝk =
∫ T

0
| exp {−(Dk2 + iku)t}|2 dt

=
∫ T

0
e−2Dk2t dt = 1− exp(−2Dk2T)

2Dk2
.

Note that all coefficients ĝk are real, symmetric (ĝk = ĝ−k), and
depend only on the dispersion coefficient D.

It follows from (25) that

∇qHobs = 1

σ 2
ǫ

F
∗Ĝobs(q̂− q̂obs) = F

∗ĜobsF(q− qobs)

= Gobs(q− qobs)

where Gobs = F
∗ĜobsF. That brings the forcing into the

form F[q] = −6−1(q − µ) required by our analysis in
section 3.2, which suggests a possibility of computing the
acceleration matrices as AA∗ = G−1

obs
. Unfortunately this is

not generally feasible, because the matrix Gobs is singular unless
the measurements are taken at every node of the domain. The
singularity of Gobs implies the singularity of the multivariate
normal distribution of q̂ given by Hobs, which means the
distribution is concentrated in a r-dimensional subspace of C

N ,
r < N. Since q results from a linear transformation of q̂, the
multivariate normal distribution of q is also degenerate. This
implies that there is a linear subspace of configurations q for
which Hobs does not assign a probability, and therefore cannot
be identified.

An empirical study of the SVD decomposition Ĝobs = USV∗

of the matrix Ĝobs computed for the example of section 4.2.5
provides some insight into features of the degenerate distribution
of q defined by the observations. Specifically, the vectors forming
a basis for ker Ĝobs have negligible terms associated with the
lower Fourier modes of q, i.e., |Vk,j| ≈ 0 for small |k| and
rank Ĝobs < j. This implies that the lower frequency components
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of q fall mostly on the subspace of identifiable configurations. In
general, |Vk,j| 6= 0 for high |k| and rank Ĝobs < j, which implies
that in general high frequency features cannot be identified.

4.2.2. Regularization Hamiltonian
The regularization Hamiltonian extends the distributions of
q and q̂ in order to make them well-defined. After a real-
space discretization, and accounting for the periodic boundary
conditions (17), the ℓ2-norm regularization Hamiltonian takes
the form

Hreg = γq⊤Gregq, (27)

where γ is a regularization hyperparameter and Greg is the
circulant matrix

Greg =
1

1x















2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2















,

or Greg = circ{r}⊤, where r = (2,−1, 0, . . . , 0,−1)⊤/1x
and 1x = 2π/N. The matrix Greg extends the probability
distribution by assigning a high energy (low probability)
to configurations with large high-frequency components. To
demonstrate this, we rewrite Greg as

Greg = circ{r}⊤ = F
∗ diag{r̂}F, r̂k =

1

π

[

1− cos

(

2πk

N

)]

,

where r̂ is the DFT of r. The components r̂k of vector r̂ increase
with frequency k, with the zeroth frequency giving rise to r̂0 = 0.
The latter is to be expected since the regularization operator
does not affect the observability of the zeroth frequency, which
corresponds to the average of the initial release.

Note that a Fourier-space discretization of the regularization
Hamiltonian leads to a similar bilinear form for Greg, with
r̂k = 2πk2/N2. Indeed, these r̂k have a similar asymptotic
behavior as k → 0.

4.2.3. Acceleration Matrix
For the full HamiltonianH = Hobs+Hreg, the forcing is given by

F[q] = −Ĝobs(q̂−q̂obs)−Ĝregq̂ = −Gobs(q−qobs)−Gregq (28)

where Gobs = F
∗ĜobsF and Greg = F

∗ĜregF. This suggests
that choosing the acceleration matrix A, such that AA∗(Gobs +
Greg) = I, would reduce the correlation of the Markov chain.
Since Gobs and Greg are Hermitian (semi)positive definite, their
sumG = Gobs+Greg is at least Hermitian (semi)positive definite.
In fact, G is a full rank matrix and thus can be factorized via
a Cholesky decomposition G = S⊤S. The matrix A, defined by
AA∗G = I, is then given by

A = A1 = S−1, S⊤S = G. (29)

The added cost of computing the acceleration matrix A is the
Cholesky factorization cost, and the leapfrog scheme for gHMC

incurs four matrix-vector products. For dense matrices, these
costs areO(N3) andO(N2), respectively.

An advantage of the Cholesky factorization is that the vector of
momenta p in (13) can be chosen as real andmultivariate normal,
with zero mean and identity covariance matrix. A drawback is its
relatively high cost per step in the Markov chain. Moreover, the
matrix G becomes more poorly conditioned as γ → 0, which
affects the stability of the Cholesky decomposition.

A less computationally costly alternative for the construction
of A is to employ the following heuristic: Instead of using the full
correlation matrices in Fourier space, Ĝobs and Ĝreg, to define G,
we approximate it asG ≈ F

∗ diag{ḡ}F, where ḡ is the vector with
components ḡi = {Ĝobs+ Ĝreg}ii. This approximation allows one
to factorize G as G ≈ Ḡ = F

∗DD∗
F, where D = diag{(ḡ)1/2}

with the square root understood as element-wise. This argument
suggests that the acceleration matrix A can be constructed as

A = A2 =
1

N
F

∗D−1, D = diag{(ḡ)1/2},

ḡ = diag{Ĝobs + Ĝreg}, (30)

which gives

Ap = 1

N
(F∗D−1p), A∗F = D−1

(

1

N
FF

)

.

Note that we have replaced the transpose of A with its Hermitian
transpose due to the complex nature of the DFT. This implies that
the transpose in (12) and (13) must be replaced with a Hermitian
transpose, and that in order to guarantee that q ∈ R

N we must
generalize the momenta such that p ∈ C

N . Once the acceleration
matrix A in (30) is constructed, products of the form Ap and
A∗F can be computed using DFTs. The computational cost per
leapfrog step is reduced from four matrix-vector products of
cost ∼ O(N2) to four of cost ∼ O(N logN), and no Cholesky
decomposition is necessary.

Since ḡ = ∂2H/∂q̂2, the approximation (30) can be thought
as building A from the diagonal of the Hessian of H with
respect to q̂ (a similar heuristic is employed in Neal, 1995 for
Bayesian learning). This observation begs the following question:
Why do we take ḡ = ∂2H/∂q̂2 instead of ḡ = ∂2H/∂q2,
which would produce a similar acceleration matrix A without
the Fourier transforms? The answer is that the matrix Ĝobs +
Ĝreg is more concentrated along its diagonal than G is. Hence,
more information about the observation operator is conserved
by taking the diagonal of Ĝobs + Ĝreg than the diagonal of G.

4.2.4. Sampling of Momentum Vector
In order to retain the validity of the leapfrog method with
generalized momenta, we require said momenta to be associated
with a kinetic energy following a bilinear form.We achieve this by
assuming that p ∈ C

N has a general complex normal distribution
CN(0,Ŵ,C) with unit covariance Ŵ and

C = A∗Ḡ(conjA) = 1

N
DFF

⊤D−1. (31)
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For Fpq given by (23),

1

N
(FF⊤)pq =

N−1
∑

r=0

ωr(p+q−N) = Ppq

=
{

1 if p+ q = kN, k = . . . ,−1, 0, 1, . . . ,

0 otherwise.

where Ppq are the components of the permutationmatrix P. Since
D is diagonal and P is a permutation matrix (23), yields C = P.

Let p = X + iY with X,Y ∈ R
N . The vector V⊤ = [X⊤ Y⊤]

is multivariate normal with zero mean. Given Ŵ and C, the
cross-covariance matrix of this vector is

E[XY⊤] = 1

2
Im{Ŵ+C} = 0, E[YX⊤] = 1

2
Im{−Ŵ+C} = 0,

since both Ŵ and C are real. In other words, the real and
imaginary parts of p are mutually uncorrelated. The covariance

FIGURE 3 | Breakthrough curves of contaminant at observation locations

along the transport domain. Noisy measurements used for inference are

shown in dashed lines.

matrix of this vector is

E[XiXj] =
1

2
Re{Ŵij + Cij} =











1 if i = j = 0, −N/2

1/2 if i = −j, i, j 6= 0

0 otherwise,

(32a)

E[YiYj] =
1

2
Re{Ŵij − Cij} =

{

1/2 if i = −j, i, j 6= 0

0 otherwise.
(32b)

It follows from (32) that only the components pk = Xk + iYk

with k = −k are correlated. Their covariances are E[XkX−k] =
0.5, E[YkY−k] = −0.5. Since p must be complex-symmetric to
guarantee that q remains real, we generate p as

X−N/2 ∼ N(0, 1),

X−N/2+1 ∼ N(0, 1/2), Y−N/2+1 ∼ N(0, 1/2)

...

X0 ∼ N(0, 1),

X1 = X−1, Y1 = −Y−1,

...

XN/2−1 = X−N/2+1, YN/2−1 = −Y−N/2+1.

Hence the vector p is generated with N independent identically
distributed normal random variables.

4.2.5. Computational Example
We apply the gHMC algorithm to the model problem (16) with
parameters D = 1.0, u = 10.0, N = 64, and σǫ = 0.02.
Measurements are taken at locations xj, j ∈ J = {47, 63} over
the time period (0, 6× 10−1). The measurements are shown in
Figure 3. To infer the release profile from the observations, we
employ A = A1, S = 5 leapfrog steps, regularization parameter
γ = 1× 10−2, and hybrid timestep tuned to achieve a rejection
rate of 30–35%. A total of 10 chains were generated, each with 2×
104 samples retained after burn-in. These samples are employed
to compute Monte Carlo estimates of the posterior mean and
standard deviation, shown in Figure 4.

FIGURE 4 | Reconstruction of release profile via gHMC and A = A1. (A) Posterior mean c̄0 compared against MAP estimate cMAP and the actual release profile c0.

(B) Posterior standard deviation.
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FIGURE 5 | Autocorrelation functions for qj , j = {0, . . . , 63} \ {47, 63}, and
A = A1 (top), A = A2 (middle), and A = I (bottom).

Figure 4A compares the posteriormean estimate of the release
profile, together with its 95% confidence interval, against the
MAP estimate and the true release profile. It can be seen that
the gHMC scheme is able to infer the main feature of the
release profile. The gHMC estimate also compares favorably
to the MAP estimate. Figure 4B shows the posterior standard
deviation, which, as in section 4.1, is largely due to the relatively
small number of observation locations, the relatively high
measurement error, and the ill-posedness of the inverse problem.

Next, we study the effect of the choice of acceleration matrix
A on the Markov chains produced by the gHMC algorithm and
the Monte Carlo standard error of the posterior mean estimate.
Three alternatives for A are considered: A = A1 in (29), A = A2

in (30), and A = I (no acceleration). The Monte Carlo standard
error is given by σ̂ /

√
neff, where σ̂ is the posterior standard

TABLE 1 | Effective sample size reduction ratio η for various choices of

regularization parameter γ and acceleration matrix A.

γ A = A1 A = A2 A = I

1 × 10−2 3.4 20.7 22.3

1 × 10−3 4.1 102.8 161.2

deviation of the inferred parameter, and neff denotes the MCMC
effective sample size, given by neff ≡ n/η (Kass et al., 1998),
where n is the number of MCMC samples, and η > 1 is a
reduction factor due to the correlation between MCMC samples.
This reduction factor is given by

η = 1+ 2

∞
∑

s=1

ρ(s),

where ρ(s) is the autocorrelation of the MCMC chain at lag
s. We note that, after convergence, gHMC chains for different
choices of A converge to the same posterior mean and standard
deviation. The difference of performance between choices of A
is in terms of the reduction factor η: Better-performing choices
of acceleration matrix result in smaller values of η, so that fewer
samples are necessary to achieve a certain target error in the
estimation of the posterior mean.

We compute 10 gHMC chains for each choice ofA and for two
choices of regularization parameter γ , 1× 10−2 and 1× 10−3,
and employ the samples to compute the autocorrelations ρ(s)
and the effective sample size reduction ratios for each qj, j =
0, . . . ,N − 1, except for j = 47, 63, which are included in the
observations. Figure 5 presents the autocorrelations for γ =
1× 10−3 and each choice of A. It can be seen that A = A1

produces highly uncorrelated chains for each of the qj studied,
A = A2 produces more correlated chains, and A = I

produces the most correlated chains. As expected, A2 provides
a compromise between the low autocorrelation / high expense of
the full Cholesky decomposition and the high autocorrelation /
low cost of A = I.

The maximum effective sample size reduction ratio η for each
choice of A and γ is shown in Table 1. It can be seen that,
consistent with Figure 5, A = A1 produces highly uncorrelated
chains, which leads to low values of η, and therefore to smaller
standard errors. Similarly, A = I leads to the most correlated
chains, the highest values of η, and the highest standard errors,
while the choice A = A2 leads to values of η between those of
A = A1 and A = I. We also note that the values of η for A = A2

and A = I increase significantly by going from γ = 1× 10−2

to γ = 1× 10−3, which is to be expected as the latter is a more
challenging case due to weaker regularization. On the other hand,
the value of η for A = A1 does not increase as dramatically when
going from γ = 1× 10−2 to γ = 1× 10−3, which indicates
that A1 is the best choice of acceleration matrix despite its higher
computational cost per leapfrog step. We conclude that the
gHMC scheme leads to a significant reduction in the estimation
error over the use of HMC without an acceleration matrix.

For problems with reaction terms, the forcing F = −∇qH
is not a linear function of q as in (28). In such cases, the
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selection of the acceleration matrix A is not straightforward.
The challenge is to find an approximation to the forcing that
is linear in q, i.e., preserves the form (28) with Gobs and Greg

independent of q. This is required to guarantee the reversibility
of the Hamiltonian dynamics.

Such an approximation can be obtained by disregarding the
nonlinear reaction term and using Gobs in (25) and Greg in (27),
which are functions only of the temporal and spatial domain
properties and the hyperparameters σ 2

ǫ and γ . This selection
is equivalent to taking F ≈ −Glin(q − qobs), where Glin is
the Hessian of the advection-diffusion (linear) portion of the
Hamiltonian. It gives the acceleration matrix A1 of (29). This
choice is justified for non-periodic boundary conditions if the
contaminant plume does not reach the domain’s boundaries
during the simulation time. An alternative is to take only the
diagonal portion of the Hessian of an advection-diffusion portion
of the Hamiltonian. This would produce the acceleration matrix
A2 in (30).

5. CONCLUSIONS AND FURTHER WORK

We presented a computationally efficient and accurate
algorithm for identification of sources and release histories
of (geo)chemically active solutes. The algorithm is based on
a generalized hybrid Monte Carlo approach, in which MC
sampling is accelerated by the use of discrete adjoint equations.
Some of the salient features of our approach are: (1) its ability to
handle nonlinear systems, since it requires no linearizations, and
(2) its compatibility with various regularization strategies.

The introduction of an acceleration matrix to the gHMC
scheme was tested for an advection-dispersion problem. While
the example presented was limited to one-dimensional domains,
periodic boundary conditions, and homogeneous porous media,
our analysis demonstrated that the proposed acceleration
matrices improve upon basic HMC; therefore, we consider
the proposed acceleration strategy to be promising. The
generalization of these constructions to problems with nonlinear
reaction terms, two- and three-dimensional, heterogeneous
media, and non-periodic boundary conditions, will be the subject
of future work.

Finally, we note the importance of considering the
heterogeneity of flow and transport parameters, such as the

hydraulic conductivity and dispersion coefficient tensors,
for source identification tasks (Xu and Gömez-Hernández,
2018). Attempting to perform Bayesian inference when the
values of these coefficients are assumed to be known but their
values are erroneous may lead to model misspecification and
consequently to posterior densities with little predictive value.
Fortunately, the HMC and gHMC schemes presented in this
work can accommodate the simultaneous identification of
heterogeneous coefficients together with the release history
by extending the state vector q to include the discretized
heterogeneous coefficients. The calculation of the gradient of
the data misfit with respect to the extended state vector can be
accomplished via discrete adjoint sensitivity analysis (Zhang
et al., 2017) for complex dynamical systems. The extension of
the presented framework to the identification of heterogeneous
parameters of geophysical models will be considered in
future work.
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APPENDIX

Discrete Sensitivity Analysis
For the problem in section 4.1 we use the linearized Runge-Kutta
(Rosenbrock) method ROS2 of Verwer et al. (1999) for time
stepping of the forward ODE problem. The advantage of using
this method is that it allows for a linear implicit treatment of the
dispersion operator and a linearization of the reaction operator,
while the advection operator is treated explicitly.

We assume that the advection-dispersion-reaction equation
can be discretized into an autonomous system of ODEs

ct = f(c) = (AD + AA)c− R(c),

where c is the state vector, AD is the discretized linear dispersion
operator,AA is the discretized linear advection operator, andR(c)
is the reaction vector. Time stepping is performed via a scheme

cn+1 = cn + (2− b)1tk1 + b1tk2, (A1)

(I− θ1tJ)k1 = f(cn), (A2)

(I− θ1tJ)k2 = f

(

cn + 1

2b
1k1

)

− 1

b
k1, (A3)

where J = fc(c
n) is the Jacobian of f with respect to the state.

The coefficients θ and b are taken for this application as θ = 1−√
2/2 and b = 1/2, respectively. The left-hand side operators of

(A2, A3) are approximated via approximate matrix factorization
(AMF) to obtain the split form

(I− θ1tJ) ≈ (I− θ1tAD)(I+ θ1tRc(c
n)).

The discussion in section 4.1 led us to conclude that it is necessary
to compute products of the form (dci+1/dci)⊤u in order to apply

the discrete sensitivity technique of Daescu et al. (2000). The
formulae for the computation of these products are derived from
the time-stepping scheme (A1-A3). In particular, differentiating
(A1) with respect to the state and multiplying by a test vector u
gives the single-step sensitivity product as

(

dcn+1

dcn

)⊤
u = u+ 3

2
1t

(

dkn1
dcn

)⊤
u+ 1

2
1t

(

dkn2
dcn

)⊤
u.

The next task is to derive formulas for the Jacobians of the stage
derivatives k1 and k2. LetM be the AMF-ed left-hand-side matrix
of (A2, A3). Differentiating (A2, A3) with respect to the state and
multiplying by the test vector u gives the formulae

(

dkn1
dcn

)⊤
u =

[

J0 −
(

dM

dcn
kn1

)]

v, M⊤v = u

and

(

dkn2
dcn

)⊤
u = J⊤1 v+

(

dkn+1
1

dcn

)⊤

(1tJ1 − 2I) v−
(

dM

dcn
kn2

)⊤
v,

with J0 = fc(c
n), J1 = fc

(

cn + 1tkn1
)

.
The computation of the products (dM/dcn)kni , i = 1, 2

is highly problem-specific. It depends on the structure
of the second-order derivatives of the reaction vector
with respect to the state. For the reaction model (15)
and a method-of-lines discretization, the Jacobian Rc is
diagonal, and so the computation of these products is
straightforward. For different reaction models and more
sophisticated discretization schemes the computation might be
more involved.
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