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Classical biomonitoring techniques have focused primarily on measures linked to

various biodiversity metrics and indicator species. Next-generation biomonitoring (NGB)

describes a suite of tools and approaches that allow the examination of a broader

spectrum of organizational levels—from genes to entire ecosystems. Here, we frame

10 key questions that we envisage will drive the field of NGB over the next decade. While
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not exhaustive, this list covers most of the key challenges facing NGB, and provides the

basis of the next steps for research and implementation in this field. These questions

have been grouped into current- and outlook-related categories, corresponding to the

organization of this paper.

Keywords: eDNA, metabarcoding, biodiversity assessment, artificial intelligence, ecological networks

INTRODUCTION

Classical biomonitoring techniques (Table 1) have focused
primarily onmeasures linked to various biodiversitymetrics (e.g.,
species richness, beta diversity; Li et al., 2010; Gutiérrez-Cánovas
et al., 2019) and indicator species (but see Vandewalle et al., 2010;
Culhane et al., 2014; Saito et al., 2015 for other approaches). Next-
generation biomonitoring (NGB) describes a suite of tools and
approaches that allow the examination of a broader spectrum of
organizational levels—from genes to entire ecosystems. A more
holistic vision of evaluating ecological structure and change has
long been a goal of ecology, but only recently have the tools
emerged to bring it toward fruition. In this issue of Frontiers
in Ecology & Evolution, which explores the research topic, “A
Next Generation of Biomonitoring to Detect Global Ecosystem
Change,” we explore this complementary suite of new tools that
could be forged into a global approach to biomonitoring. In
this overview paper, we attempt to synthesize opinion on the
key issues that are necessary to address en route to this next
generation of biomonitoring tools. We focus on a key subset
of these tools—those based on DNA metabarcoding as a new
standard methodology for multiple taxonomic identifications—
for which the number of papers published has increased
exponentially since 2010 (Figure 1).

DNA metabarcoding generates massive amounts of data on
taxonomic units (e.g., operational taxonomic units, OTUs, or
exact sequence variants, ESVs; Callahan et al., 2017) rapidly, and
these can be linked increasingly to functional attributes (Douglas
et al., 2018; Makiola et al., 2019). DNA metabarcoding is highly
complementary to whole metagenomic and metatranscriptomic
sequencing (Knight et al., 2018), existing sources of ecological
information (Cordier et al., 2018; Derocles et al., 2018) and
classical biomonitoring approaches (Deiner et al., 2017); in all
cases, adding genomic and/or ecological information to the rich
taxonomic lists afforded by DNA metabarcoding would allow
deeper exploration of ecological or biodiversity patterns. This
would move biomonitoring closer to being able to extract both
structural and functional attributes from the same multispecies
sample (Keck et al., 2017; Cordier et al., 2019). By merging
DNA metabarcoding with ecological information and machine
learning approaches, NGB extends modern analytical potential
beyond the classical morphological identification of bioindicator
species. For instance, taxonomic lists from DNA metabarcodes
can identify anthropogenic drivers behind community change
and infer networks of possible ecological interactions and
associated ecosystem properties (Bohan et al., 2017; Compson
et al., 2018). While challenges to constructing these networks
from NGB data remain (e.g., Barner et al., 2018; Freilich et al.,

2018; Deagle et al., 2019), this overview paper discusses some
promising ways of overcoming these limitations, including using
trait filters developed from published literature and methods of
inferring interactions (e.g., machine learning), and these ideas are
developed in more depth in the associated manuscripts of this
special issue. Indeed, the ultimate aim of NGB is to deliver this
more integrated view of natural ecosystems at a fraction of the
time and cost of classical approaches (Baird andHajibabaei, 2012;
Keck et al., 2017; Leese et al., 2018; Cordier et al., 2019). Building
this large-scale monitoring poses many challenging questions,
from the practical and logistical to the political and philosophical.

Here, we frame and describe the interplay of ten key questions
that we envisage will drive the field over the next decade
(Figure 2). Questions 1–7 address issues that are of current
importance, and pertain to the scope of NGB. Questions 8–10 are
questions of outlook and opportunity, exploring where the field
might be going. This list emerged as an overview of the current
Frontiers special issue on the research topic: “A Next Generation
of Biomonitoring to Detect Global Ecosystem Change.” While
not exhaustive it covers most of the key challenges facing
NGB, and provides the basis of the next steps for research and
implementation in this field.

Current Questions
How Can the Benefits of NGB Be Most Successfully

Communicated to Citizens, Scientists, and

Policymakers?
Managing issues of human health, food production and security,
and the intertwined environmental issues of biodiversity and
ecosystem services necessitates biomonitoring (Bush et al., 2019a;
Schmidt-Traub et al., 2019). Information about the status of
these issues, such as changes in the frequency of human (Jones
et al., 2008) and crop diseases (Savary et al., 2019), insect declines
(Hallmann et al., 2017), and losses of species of flowering plants
(Carvell et al., 2006) are expected to lead to profound changes in
human behavior and appreciation of the environment (Schröter
et al., 2017). However, the vision of a broader scale evaluation
of ecosystem change, and the benefits this will bring to citizens,
scientists, and policymakers, needs to be clearly communicated if
wide adoption of NGB approaches is to be realized.

There are three clear benefits of NGB. First, as is argued
across the papers of this Issue, NGB has the potential
to provide a more holistic method of assessment than
classical biomonitoring, affording improved decision-making
and management of issues that affect citizens’ quality of
life. Second, while NGB will provide methods for detailing
the complexity of ecosystems, it will also use methods,
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TABLE 1 | Glossary of terms as used in this paper.

Term Definition

Bioindicator An organism used as an indicator of the qualitative status of the environment or an ecosystem

Classical biomonitoring The methodologies of observing and assessing the state and ongoing changes in ecosystems, components of

biodiversity, and landscape, including the types of natural habitats, populations and species

Community science Public participation in scientific research (citizen science)

DNA barcoding A method of taxonomic identification using a section of DNA from a specific gene or genes (genetic marker)

DNA metabarcoding A method for taxonomic identification of multiple organisms out of a mixed DNA sample. Usually amplifies genetic

markers with universal primers and uses next generation sequencing technologies

Ecological network A representation of biotic interactions in an ecosystem, in which species (nodes) are connected by pairwise

interactions (links). Links can be used to represent any type of ecological interaction, including antagonistic

interactions, such as those of competition and predation (trophic), or mutualistic, such as pollination

Environmental DNA (eDNA) DNA that can be sampled from environments such as water, soil or feces, without the isolation of organisms

Explainable artificial intelligence The set of artificial intelligence methods and techniques producing solutions and results that can be understood

by humans

Hierarchical modeling A statistical model where quantities (observations) are sorted in a hierarchy. The key idea is that inferences made

about one observation affects inferences about the others in the hierarchy. This contrasts with linear-based

methods, where observations are independent

Heuristic food web Synthetic ecological network constructed from species lists where interactions are inferred from traits (e.g.,

published consumer–resource linkages), mathematical rules of interaction, or a combination of both

Machine-learning The study and use of algorithms and statistical models that perform specific tasks without explicit instructions,

using instead inference of data patterns

Metacommunity A set of otherwise distinct communities that interact or are linked by the dispersal of species

Metagenomic sequencing A comprehensive sequencing approach where all genes from all organisms present in a sample or community are

processed

Meta-interpretive learning An inductive logic program that infers (learns) logic programs (rules) from a combination of background knowledge

and examples (observations)

Metatranscriptomic sequencing The sequencing of the total genes expressed (transcribed) from a community of organisms

Network construction One of any number of approaches for inferring taxonomic linkages in a community in order to generate a visual

representation of co-occurrence patterns

Network inference The process of hypothesizing and predicting network structure and topology.

Next-generation biomonitoring The suite of emerging tools and approaches that allow the observation and assessment of the state and ongoing

change in ecological systems across a broader spectrum of organizational levels—from genes to entire

ecosystems

Occupancy modeling A type of hierarchical modeling used to infer probabilities of species presence or absence in sample data where

there is imperfect detection of organisms

Essential Biodiversity Variable (EBV) Basic ecological quantities used to assess local to global change in biodiversity as part of monitoring progress

toward policy goals and the effects of management

Operational Taxonomic Unit (OTU) A pragmatic, operational classification of taxa with closely related DNA sequences into groups

Exact Sequence Variant (ESV) Taxonomic classification where the exact DNA sequence is used for identification as opposed to clustering related

sequences into taxonomic units (i.e., as for OTUs)

Functional traits Key characteristics of individual organisms, whether morphological, structural, biochemical, physiological,

phenological or behavioral, which influence performance and fitness

such as ecological networks, which render this complexity
comprehensible, communicating to citizens the richness of
their local ecosystem and responses to change (Pocock et al.,
2016). Third, NGB can foster citizen participation and buy-
in to biomonitoring if it underpins evidence-based decision-
making (Hodgetts et al., 2018), and projects with high public
participation or strong community science components can
produce tangible change in management (Schröter et al.,
2017). Portable DNA sequencing instruments allow individuals
with relatively little training to generate data; for example,
Quick et al. (2016) used this approach to develop a tool to
monitor the 2015 Ebola outbreak in Central Africa with a
24 h response time. Similar kits are being developed for use

by members of the public to monitor local plant and human
disease prevalence and the status of pests in agricultural fields
and waterways.

For policy, NGB will not only achieve what classical
biomonitoring currently does, such as by reporting on agreed
classic indicator species or assemblages, but will also allow the
inference and prediction of higher level ecosystem properties
(Evans et al., 2016; Compson et al., 2019). In principle,
NGB could facilitate remedial decision-making, allowing
its accompanying management to be trialed before it is
implemented. NGB has the potential to enable monitoring
of changes in ecosystem structure and function in something
close to real time, because large elements of biomonitoring
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FIGURE 1 | Exponential rise in the number of published, peer-reviewed

articles (A) and the number of citations of these articles (B) about

next-generation biomonitoring. Figures depict data obtained through a

systematic query of the Web of Science database using the Boolean search:

“*monitoring” AND “*DNA” AND “metabarcoding”.

can be automated, reducing the latencies and biases in human-
dependent biomonitoring (Quick et al., 2016; Bohan et al., 2017),
bringing science one step closer to the vision of biomonitoring
any ecosystem in any biome of the globe. Large coverage
would also help to avoid some of the “shocks” associated with
the loss or the sharp decline of keystone species and major
ecosystem processes long after a tipping point has occurred
(Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services, IPBES1). Finally, the generality of
NGB enables fusing of multiple areas of biomonitoring that
are currently distinct and managed separately. Monitoring
of disease, invasions, climate, and land-use change could be
undertaken simultaneously, greatly reducing the cost of NGB
by pooling resources and sharing expenses. This would, in turn,
increase the amount of biomonitoring that might be done,
increasing its efficiency.

Despite these potential benefits, which have become apparent,
adoption of the latest methodologies into management and

1www.ipbes.net/assessment-reports (accessed May 30, 2019).

decision-making processes has been slow, often hindered
by miscommunication between research/scientists and
management/policy partners (Darling and Mahon, 2011).
Nevertheless, the number of initiatives for a global-scale
biomonitoring of biodiversity that maximize cooperation
and communication between scientists, policymakers and
citizens is increasing. These include the development of new
indicators, such as Essential Biodiversity Variables (EBVs,
Kissling et al., 2018), ontologies for global biomonitoring
(Global Infrastructures for Supporting Biodiversity, GLOBIS-B),
storage and linking of data-sets (Global Biodiversity Information
Facility, GBIF2), and routes into global scale policy (Group on
Earth Observations Biodiversity Observation Network, GEO
BON3; Global Earth Observation System of Services, GEOSS4).
Scientists working on NGB should participate actively in these
efforts. For example, the EU Co-Operation in Science and
Technology (COST) action DNAqua-Net5 gathers scientists in
order to improve biomonitoring of aquatic ecosystems (Leese
et al., 2018; Pawlowski et al., 2018), and has a working group
dedicated to the discussion of regulatory and policy frameworks
where scientists and stakeholders work collaboratively (Hering
et al., 2018). The Interreg European Regional Development
Fund project Synergie transfrontalière pour la bio-surveillance
et la préservation des écosystèmes Aquatiques (SYNAQUA6)
shares a similar aim to gather panels of stakeholders to design
scenarios for future NGB implementation for freshwater
ecosystem biomonitoring in France and Switzerland (Lefrançois
et al., 2018). The benefits of NGB should, in turn, leverage
new policy, providing a better fit into the current regulatory
and policy frameworks for the more “complex” metrics and
indicators of ecosystem structure, function, and services. The
role of science and scientists should be to critically appraise the
development of the NGB approach and, in so doing, advocate
for the benefits of NGB and establish a dialogue between
relevant biomonitoring scientists, citizens, industry end-users,
and policymakers.

What Is the Appropriate Spatio-Temporal Scale for

NGB?
A recurrent message of the papers in this issue is that the
scales of biomonitoring, both in terms of spatial extent and
temporal frequency of sampling, need to be greatly enlarged
if we are to appropriately monitor and assess the risks to
ecosystems (see Ovaskainen et al., 2019), identify and evaluate
the core drivers of ecosystem dynamics and stability, and make
decisions for their management. This will require solutions to
some of the practical framework problems that limit the scales of
the current generation of biomonitoring approaches, including
socio-economic, political, and local management issues.

2www.gbif.org (accessed May 30, 2019).
3www.geobon.org (accessed May 30, 2019).
4http://www.earthobservations.org/ (accessed May 30, 2019).
5www.dnaqua.net (accessed May 30, 2019)
6www.interreg-francesuisse.eu/beneficiaire/synaqua-synergie-transfrontaliere-
pour-la-bio-surveillance-et-la-preservation-des-ecosystemes-aquatiques
(accessed May 30, 2019)
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FIGURE 2 | Diagrammatic representation of the interplay between the Key questions for next-generation biomonitoring presented in this paper. Next-generation

biomonitoring (NGB) is based on a holistic view of ecosystems through integrating new technologies and exploring synergies with existing data sources. For its

realization, it will be necessary to both automate many bioassessment processes and separate the steps of biodiversity detection and explanation of

ecosystem change.

Current biomonitoring is heavily skewed toward terrestrial
Europe, North America, Australia, and New Zealand (Cavallo
et al., 2019; McGee et al., 2019). This is due, in part, to a lack of
expertise in biomonitoring and interpretation in many countries,
a global shortage of finance, as well as a limited acceptance of

conventional methods. One avenue that might contribute to a
solution, besides better communication of NGB (see Question
1), is to simplify the biomonitoring process into component
steps. NGB would consist of two essential steps: (1) sample
collection and the detection of ecosystem change; and then, only
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where change is detected, (2) explanation and prediction. Such
separation would greatly reduce the need for expertise in all
parts of the globe. Automated and high-throughput sampling
and detection of change would take place at large temporal and
spatial scales, including parts of the globe with poor coverage at
present (using field technicians, citizen scientists, or drones), with
the expertise to explain any detected change being outsourced
to regional centers of excellence, much as already exists for the
World Health Organization Regional Offices and the networks of
experts they support (WHO7). The two-stage process would also
lower costs for a given scale of coverage, thus making better use
of the available finance. A challenging framework question will
be what the definition of “change” is, which may vary between
different countries and regions. Having the necessary, near-real-
time assessments of change is something that is currently only
achievable using the NGB approach.

While it is clear that scalability and reusability of global
biomonitoring data are necessary to answer large-scale ecological
management questions, this can only be achieved where the
steps of sampling and detection of change are automated and
standardized, making data machine-readable so that information
from different systems is comparable and shareable, and can
be integrated with other, existing sources of environmental and
ecological information (Poisot et al., 2016, 2019). Automating
the process of taxa identification, network construction and
inference, and comparison to reference states will require
considerable technological development (Bohan et al., 2017;
Lausch et al., 2018).

Environmental DNA (eDNA) describes genomic materials
shed from organisms into their environment that represent
the “template” for NGB analysis. eDNA data quality can be
influenced by almost every step in the taxa identification
workflow (Zinger et al., 2019), from sample collection (Dickie
et al., 2018), DNA extraction (Lear et al., 2018), choice of gene
or target region, selection of Taq polymerase, polymerase chain
reaction (PCR) cycling protocol, primer, choice of sequencing
platform, bioinformatic pipelines (Deiner et al., 2017; Makiola
et al., 2018; Bush et al., 2019a; Pauvert et al., 2019), and taxonomic
reference databases utilized (Porter and Hajibabaei, 2018). These
potential challenges compound with the myriad context-specific
influences on the ecology of eDNA, such as abiotic and biotic
influences on eDNA production, degradation, and transport in
the environment (Barnes and Turner, 2016). Standardization
or calibration of sampling protocols and other methods in the
workflow can improve reproducibility by allowing compilation
and comparison of data from across studies (Dickie et al.,
2018). Such standardization can be attractive for the majority of
users, being both cheap and efficient, even where their research
needs differ, as has been successfully demonstrated in The Earth
Microbiome Project8 (Thompson et al., 2017) and the Global
ARMS (Autonomous Reef Monitoring Structures) Program9

(Ransome et al., 2017).

7www.who.int/ (accessed May 30, 2019).
8www.earthmicrobiome.org (accessed May 30, 2019)
9www.oceanarms.org (accessed May 30, 2019)

To tap the full potential of biomonitoring data, it will be
necessary to improve curation and access to the rich reference
datasets that have already been generated. Due in part to specific
institutional regulations, there is a lot of genetic reference
material that is only available to researchers within certain
institutions. Since molecular-based identifications are heavily
dependent on the quality and completeness of the reference
databases, this research field will collectively benefit from
incentives to curate and upload reference sequences to publicly
available databases. Ensuring that these datasets are available
in a usable format to interested researchers across the globe
represents a major challenge to the field, but one which must be
met in order to address global changes in biodiversity and species
distribution (Poisot et al., 2016, 2019; Desjardins-Proulx et al.,
2019). The definition of the ontologies that will allow NGB data
to be machine-read and automated, assuring quality control and
the integration of metadata from biomonitoring and associated
disciplines, has begun but requires large-scale adoption across
fields to be useful.

Knowledge from existing sources (e.g., remote sensing,
chemical screening, trait databases) could be integrated into
NGB via machine-readable ontologies to generate data synergies
and explore novel ecological questions (Bohan et al., 2017;
Lausch et al., 2018). For example, this approach could be
used to supplement DNA taxa lists with functional trait
information for the development of more advanced, predictive
heuristic network models (sensu, Compson et al., 2018), while
simultaneously creating new—and supplementing existing—
databases of taxonomic traits, such as organismal body size or
trophic linkages (Kissling et al., 2018). Since the integration
of multiple traits and bioindicators holds one of the biggest
potential synergies, a possible answer to this question could
be working with other initiatives, such as GLOBIS-B, GEO
BON, GBIF (Canhos et al., 2015), and the Aquatic eDNA
Atlas Project10, as noted in Question 1, toward a common,
decentralized, global biodiversity data platform.

What Is the Most Productive Balance Between

Case-Specific and Generic NGB Methodologies?
One promise of NGB is to provide general biomonitoring
methodologies and comparisons across potentially any
ecosystem, including those currently poorly studied or unknown.
The search for rationalized, common approaches has begun in
certain disciplines, including in aquatic environments (Goldberg
et al., 2016), but as the field matures more general guides or
approaches may be achievable. Ecosystems are ecologically
distinct, but each has unique scales of operation that should
be reflected in the spatial scales, frequencies, and replication
of sampling. The scales of application of biomonitoring are
currently constrained by the methodology used, with most
survey methods designed to assess local taxonomic groups
of interest. This leads to methodological heterogeneity across
regions (Borja et al., 2009; Birk et al., 2012), encumbering efforts
to scale up to regional or national levels (Voulvoulis et al., 2017).

10www.fs.fed.us/rm/boise/AWAE/projects/the-aquatic-eDNAtlas-project.html
(accessed May 30, 2019).
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Two approaches might be adopted to standardize NGB
methodologies. The first would be to sample at the finest spatial
resolution possible—at high frequency, in any or all ecosystems
across the globe—to store copious amounts of data and to invest
in the computational hardware and bioinformatics to detect,
forecast, and monitor change. This approach would produce
datasets that are both close to complete and an invaluable
monitoring and ecological resource, with as yet unforeseen
benefits, but the data would come at the cost of collection
and curation that may not warrant the increase in efficacy,
especially where the detection of system change or changing
processes does not require such high-resolution data. However,
with plummeting costs this approach will likely be increasingly
feasible in the future.

The alternative approach would build upon generic
expectations of the rate and temporal dynamics of change
in order to identify the required frequency of sampling. The
spatial scales of sample independence and representation might
then be identified across examples of the ecosystem, indicating
appropriate levels of replication to assure detection, with an
appropriate power, of given levels of acceptable change. Ma
et al. (2018a) described generic, multiscale approaches adopted
from the theory of networks to examine temporal and spatial
variation. These approaches treat network structure as essentially
being independent of the taxa involved in the networks, and
use network profiling, null models, and multilayer networks
to make statements about the expected level of change that is
and is not acceptable in pure network structural terms. This
information can then be fed into ecological modeling and robust
forecasting studies.

A standardized but general methodology for sampling would
maximize scalability, interpretability, and impact of NGB. It
is unlikely, however, that the specification of sampling would
conveniently lead to a common set of results for all ecosystems to
be examined. Rather, any generality that might exist would likely
be limited to some combination of the biome being sampled
(i.e., air, soil, water), and the organizational (i.e., regional and
local networks, communities, species, populations, individuals,
or genes) and taxonomic levels. Generality may only be delivered
by an ecological understanding of ecosystem structure, probably
facilitated by network approaches.

What Are the Appropriate Indicators of Change?
To move biomonitoring forward, science and policy need to
explore how: (1) NGB information could lead to new indicators
for metacommunities; (2) novel indicators build upon and
contribute to existing indicators and frameworks (e.g., Tapolczai
et al., 2019); and (3) spatio-temporal metacommunity scales
influence the interpretation of these novel indicators. The
indicator concept proposes that the ecological state of an
ecosystem can be evaluated by observing a particular taxon
or taxonomic group or function (De Cáceres and Legendre,
2009). Taxon-free indicator metrics, such as Indices of Biotic
Integrity (IBI), are appealing to environmental practitioners
and policymakers because they distill a lot of information
down to a simple metric that, in principle, can be compared
across systems. However, their simplicity is likely the reason

why such metrics may be misused in practice (Seegert, 2000).
Further, while indicator species or IBIs might be useful at local
spatial scales, they are not applicable across the many habitats,
ecosystems, or biomes (Angermeier et al., 2000) that can be
monitored using next-generation methods. Pairing molecular-
based approaches with machine learning for NGB can potentially
recover orders of magnitude more information in biomonitoring
data, thus eliminating many of the constraints that hindered
the development of biomonitoring indicators we use today.
For example, building ecological networks from this recovered
data might be used to analyze whole-network properties with
ecosystem functions and services (Evans et al., 2016), providing
a mechanistic link between network structural change and
ecological functions. There certainly is a lot of work to be done
to explore and develop these higher-level, network indicators,
as well as to determine which network properties will be useful
for predicting ecosystem consequences to environmental change.
Once developed, however, these tools should provide immediate
added-value to the taxonomic lists generated by NGB, as well as
to the classical, biomonitoring approaches, especially considering
the cost effectiveness of routine, open-source pipelines for the
rapid calculation of such (e.g., ecological network) indicators.

Scaling up from a local- to a large-scale approach should
furthermore incorporate recent advances in metacommunity
ecology into biomonitoring, in order to make sense of the
connections that exist among communities across landscapes.
Leibold and Chase (2017) expounded the compelling argument
that we should combine previously competing concepts of
community assembly, such as neutral theory, species sorting,
patch dynamics, and mass effects into a single, overarching
theory. Ecosystem biomonitoring is strongly rooted in local
observation and a normative interpretation, yet it often fails to
take into account spatio-temporal variability and connections
among sampled localities, arguably leading to over-interpretation
of local-scale deviations from a putative “normal state” (Baattrup-
Pedersen et al., 2017). We may also underestimate the influence
of metacommunity effects on the drivers of local dynamics and,
consequently, biomonitoring observations. The scale-limited
spatio-temporal scope of biomonitoring studies also carries a
serious risk of missing large-scale phenomena that could have
potentially devastating impacts, such as biological invasions
(Kamenova et al., 2017) or global declines in insects (Hallmann
et al., 2017) that went largely unnoticed in policy for nearly 30
years (IPBES1). DNA-based approaches offer a potential avenue
to address this challenge, and we should seize the opportunity
to both develop NGB methods by further refinement and
testing and promote these methods to policymakers, citing their
many benefits.

How Will NGB Benefit From Machine-Learning

Approaches?
Statistical methods for extracting information from data
represent some of the basic tools that ecologists wield. Standard
statistics are used to explore the covariation between dependent
and independent variables and to test hypotheses of interaction.
Machine-learning approaches work analogously, exploring the
probabilistic or logical correlations across matrices of species
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data. Machine learning of networks has been successfully
applied to classical, macro-ecological sample data (e.g., Bohan
et al., 2011) and to evaluate ecosystem responses to changed
management (Ma et al., 2018b). In contrast, the reconstruction of
microbial networks or the inference of networks and trophic links
from DNA data has proven to be more difficult (Barner et al.,
2018; Freilich et al., 2018; Deagle et al., 2019), with results that
appear to depend upon a combination of the machine learning
technique and the data used. No one algorithm will work best for
every problem, mirroring the “no free lunch” theorem ofWolpert
and Macready (1997). The rhetorical question, “How will NGB
benefit from machine-learning approaches?,” is one that we can
answer only by continual work to further develop and integrate
ever better learning approaches into ecology and biomonitoring.

Because NGB represents an emerging field, it is useful to
look at examples where machine learning and metabarcoding
have been successfully combined. Naïve Bayesian and random
forest classifiers have been used to make taxonomic assignments
from metabarcodes, produce statistical measures of confidence,
and reduce rates of false positive identifications (Wang
et al., 2007). Supervised machine learning has been used to
classify environmental samples in a meta-analysis of microbial
community samples collected by hundreds of researchers for the
Earth Microbiome Project (Thompson et al., 2017). Recently,
eDNA datasets have been analyzed using supervised machine
learning to predict the status of aquatic ecosystems (Cordier
et al., 2018). The combination of taxonomy-free molecular data
and machine-learning techniques outperformed biomonitoring
methods based on the screening of known indicator species by
classic metabarcoding (Cordier et al., 2018).

Moving toward the reconstruction of networks of explicit
interactions is a logical next step that would afford an
ecological explanation of change. Such ecological network
reconstruction would require the incorporation of background
knowledge or information, for example, about species traits or
existing interactions (Tamaddoni-Nezhad et al., 2013, 2015).
Taxon interaction knowledge can be text-mined from direct
observations recorded in the literature, or inferred from
published trait information, and, when used to reconstruct
interaction networks such as food webs, offer the potential
to generate new biomonitoring metrics derived from network
properties (Compson et al., 2018). Recent results suggest that,
in the absence of background information, model-free inference
of network structure is also feasible using information from
the overall network structure and those interactions that are
known (Stock et al., 2017). Hypotheses or explicit models for how
species interact can also be incorporated intomachine learning as
background knowledge (Tamaddoni-Nezhad et al., 2013, 2015).
As symbolic representations of interactions, these hypotheses
and models have the benefit of rendering the machine-learning
output human-comprehensible and explainable for decision-
making and prediction (Muggleton et al., 2018). The challenge for
this model-based approach is that we have relatively few symbolic
descriptions of species interactions for organisms, especially
in understudied biomes. While there are rules for trophic
interactions between macro-organisms, for example, based upon
body- or gape-size (Jonsson et al., 2018), there are few such rules

for microorganisms. The generation of hypotheses for potentially
new mechanisms of interaction in understudied systems could
also be supported by artificial intelligence: first, using text mining
to recover information about taxa and functions that is not
readily accessible from reference databases like Global Biotic
Interactions (GloBI) or the United States Geological Survey
(USGS) traits database; and then by employingmachine learning,
such as Meta-Interpretive Learning (Tamaddoni-Nezhad et al.,
2015), to hypothesize interaction rules that explain the text-
mined information and metabarcoding data.

Considerable amounts of this kind of information exist in
literature databases such as Google Scholar, Academic Search
Premier, and Web of Science. Unfortunately, the publishing
rights to these data are often difficult for scientists to disentangle,
and the various text-mining exercises that have been conducted
have been treated as hacking attacks, which are resisted. Until
these publishing rights are relaxed, such as is proposed in Europe
(Enserink, 2018), populating many ecosystems with biological
and functional information will remain a limitation.

What Are the Key Technical Challenges to the

Advancement of NGB?
NGB aims to detect and explain changes in the total biodiversity
of ecosystems to understand and predict the ecological structure
of ecosystems. This requires that NGB methods generate
accurate data for the presence, absence, and abundance of taxa.
Uncertainty in the detection of a taxon, as false negatives or
positives, can lead to erroneous conclusions with consequences
that could impair biomonitoring and decision making. As noted
in Question 3, detection uncertainty can arise from multiple
sources, such as sampling, laboratory, and bioinformatics, and
these have been extensively reviewed elsewhere (e.g., Deiner
et al., 2017; Knight et al., 2018; Larsson et al., 2018; Lear
et al., 2018; Porter and Hajibabaei, 2018; Zinger et al., 2019).
Work to reduce rates of false negatives and positives in DNA
metabarcoding data is an active field of research, and progress
has been made through using occupancy modeling (Ficetola
et al., 2015, 2016) and probability distribution modeling for tag
jumping and contamination issues (Larsson et al., 2018).

The next logical step is to ask whether DNA concentrations
in the environment relate to organismal abundance or biomass.
The question is intuitive, in the sense that a greater abundance
or biomass of organisms should, in principle, produce a higher
concentration of DNA, but as with detection uncertainty DNA
concentration is determined by many other factors. Studies
have demonstrated that the relative abundance of an organism
between samples can relate to eDNA concentrations (Takahara
et al., 2012; Thomas et al., 2016; Piñol et al., 2019). However,
the leap from relative abundance to absolute abundance (or
anything close) has been confounded by multiple effects,
including an inability to distinguish between live and dead
biomass, the observation that different age classes of the same
organism release DNA at different rates into the environment
(Maruyama et al., 2014), and an increased awareness of
the complex environmental interactions of eDNA, relating to
its origin, state, transport, and fate (Cristescu and Hebert,
2018). How to treat read count data is critical now that
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microbiome datasets are understood to be compositional in
nature and sensitive to library size and several other biases
(Gloor et al., 2017). For NGB it is clear that we need to
establish how DNA technologies relate to absolute organismal
abundance and how we can minimize methodological biases
through best practices (e.g., Knight et al., 2018). However, the
debate about the confidence to be invested in metabarcoding
data will likely continue until we attain technical advances,
such as PCR-free sequencing systems, curated and complete
reference databases, and modeling that can explain and correct
for errors.

How Can NGB Be Applied to Risk Management?
With further development of NGB, multiple lines of evidence and
data will need to be combined in real time to provide managers
with cost-effective tools needed to make robust decisions and
mitigate impacts on the natural environment. To incorporate
these multiple sources of information and move beyond purely
descriptive models of ecosystem structure and change, such
as eDNA-derived lists of taxa and co-occurrence networks, it
will be necessary both to develop explanatory and predictive
models of ecosystem function and services, and to test, explore,
and understand these models, possibly using developments in
text-mining (Compson et al., 2018) and Explainable Artificial
Intelligence (Miller, 2019; Rudin, 2019).

As the “universe of observation” (Bush et al., 2019b) expands
toward a more integrative ecosystem approach, driven by the
growing capacity of molecular and analytical methods, it remains
unclear what amount of information will be needed tomake good
management decisions. For example, how much do we benefit
if we incorporate all possible data, or do we just add noise?
The application of DNA-isolation from bulk environmental
samples or mixed communities coupled with high throughput
sequencing and automated taxonomic assignment removesmany
of the taxonomic constraints currently hindering biomonitoring,
particularly for multiple trophic groups and otherwise cryptic
groups of organisms (Hug et al., 2016). Increasing taxonomic
resolution and greater sampling intensity expands the number
of observed biological units. This greater volume of information
will also require a parallel expansion of our abilities to interpret
biodiversity changes.

Artificial intelligence, in the form of machine learning
algorithms such as Meta-interpretive Learning, can help process
these large amounts of information and aid in hypothesizing
explanatory models of interaction that humans can comprehend
and machines can read symbolically (Tamaddoni-Nezhad et al.,
2015). The explanations used in biomonitoring will evolve from
existing concepts of ecosystem indicators and indices that do
not attempt to explain the reason for changes in ecosystems
(Derocles et al., 2018) toward models that provide a holistic view
of ecological change, such as EBVs (Jetz et al., 2019); models that
provide an understanding of the underlying mechanisms behind
ecosystem functions; and models that recognize the complex and
dynamic nature of ecosystems, including all trophic levels and
their interactions. This evolution of biomonitoring, moving from
a descriptive toward a predictive risk management tool, based
on new hypotheses and models, will have the greatest impact

on decision and policy making, which will in turn feed-back
to biomonitoring.

Outlook Questions
To this point, the questions posed have focused on contemporary
issues about the framework of NGB, as well as technical and
conceptual challenges to implementing NGB (Figure 2). We also
foresee rapid advancement in this field beyond what is needed
to establish NGB as a biomonitoring approach, facilitating
exploration of new frontiers of science and providing solutions
to some of the problems we have outlined in this article.
These are related, in large part, to rapid developments in
computing and genomics. Specifically, we believe that three
areas of advancement in biodiversity assessment and analytical
capacity will drastically improve NGB: (1) advances in genomics
tools that will lead to greater sequencing capacity, providing
unprecedented recovery of information from DNA (Question
8); (2) advances in computing, bioinformatics, and open-source
pipelines (Question 9); and, (3) improved models that will allow
for more targeted use by practitioners interested in adopting
NGB approaches (Question 10).

What Are the Most Promising Future Advancements

in Genomics Tools?
Many widely used, next-generation sequencing technologies have
attained greater sequencing depth (i.e., the product of the number
of reads and the read length standardized to the genome length)
despite using shorter read lengths by exponentially increasing
the amount of sequences generated (Sims et al., 2014). We
anticipate a next-next-generation revolution that will achieve
whole genome sequencing for entire communities, with enough
sequencing depth to provide information about individual
sequence variation necessary to begin exploration of evolutionary
and functional questions in conjunction with NGB. Already,
technologies are emerging that provide orders of magnitude
more sequencing depth than current platforms. For example,
a single flow cell of Illumina’s Novaseq platform can generate
∼700 times greater sequencing depth than is typically available,
allowing for the detection of dramatically more diversity, even at
coarse taxonomic levels; standardizing sequencing depth using
patterned flow cells further improves sequencing performance
by preventing the merging of neighboring sequences (Singer
et al., 2019). Eventually, as such platforms advance, shotgun
sequencing will become the norm, and the need for PCR
will be circumvented, eliminating many of the issues currently
associated with sequencing and subsequent data processing.
Such advances in sequencing capacity and error reduction
will translate to higher detection probabilities, greater coverage
of species, and better assessments of abundance and rare or
endangered species in all systems, including those that are remote
and difficult to access or under-studied. Additionally, we foresee
three new frontiers of science that the added information from
new sequencing technologies will enable us to explore.

First, greater sequencing depth across a larger complement
of the community will make it possible to construct robust
phylogenetic trees for entire communities, which will help
advance NGB method development by providing better
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phylogenetic information for improving ecological information
and prediction. The practice of metaphylogenetics is currently
limited by short sequence read lengths (i.e., normally ∼150–300
base pairs). Furthermore, PCR and primer choice can greatly
influence the resultant community (Hajibabaei et al., 2019),
leading to coarse and unresolved phylogenetic trees. With
greater sequencing depth, these limitations will become a thing
of the past, allowing for more robust phylogenetic analysis.
Community assembly can only be understood in the context
of species’ evolutionary histories, and such an advance in
phylogenetic community ecology will not only be crucial for
advancement of ecological theory, but also improve the current
standards of biodiversity assessment, allowing for a more holistic
exploration of rare or unknown taxa in hyperdiverse, poorly
studied ecosystems (Papadopoulou et al., 2015).

Second, future platforms will improve sequencing depth
per individual such that it will soon be possible to assess
intraspecific genetic variation in an assemblage. To date, studies
of population genetics have been limited by primer development
for target organisms, focusing on no more than a few taxa
at a time in order to answer very specific questions. For
example, mitochondrial metagenomics approaches that combine
shotgun sequencing and DNA metabarcoding allow for read
mapping that may provide the quantitative information on
intraspecific genetic variation needed to assess population
genetic structure (reviewed in Crampton-Platt et al., 2016). In
combination with DNA metabarcoding (sensu, Elbrecht et al.,
2018), these approaches would then make it possible to assess
the genetic structure of any taxa of interest in the community,
and enable practitioners to ask questions about the entire
metacommunity and test macroecological theory (e.g., species-
genetic diversity correlations).

Third, enhanced sequencing depth will allow for a wider
exploration of functional genes in environmental samples. This
would make it possible to map functional genes to taxa for
entire communities of organisms, linking communities and
networks with broad-scale ecosystem assessment of function.
Recent efforts have attempted to utilize machine learning to link
genus-level predictions of function inmicrobial communities, for
example by using Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt), for inferential
assessments of function and hypothesis generation (Douglas
et al., 2018). With more sequence data and better inferential
methodologies, machine learning in biomonitoring will progress.
Concurrent efforts to expand and annotate functional gene
databases (e.g., Kyoto Encyclopedia of Genes and Genomes,
KEGG11) are facilitating the mapping of genes to function
across a wide range of biodiversity, bringing incredible
added value to projects using the greater sequencing depth
afforded by newer sequencing platforms. As these efforts
advance, not only will metacommunity and ecosystem theory
be advanced by linking structure to function at multiple
scales of observation, but potentially transformative changes
in biomonitoring and biodiversity assessment will occur, as
functional profiles could have greater discriminatory power for

11www.genome.jp/kegg (accessed May 30, 2019).

detecting change compared to taxonomic profiles, especially in
cases where taxonomic profiles are highly variable.

What Are the Most Promising Future Advancements

in Computing and Bioinformatics?
With unprecedented data generation, NGB practitioners will
be confronted with the enormous task of dealing with an
overwhelming amount of information (Keck et al., 2017).
Advances in computing and bioinformatics are required to
maximize the use of this biodiversity information. Much work
still needs to be done to test for and correct errors that inherently
emerge from bioinformatics approaches (reviewed in Olson et al.,
2017). One solution is to quantitatively assess genome assembly
by incorporating evolutionary expectations of gene content,
using single copy orthologs (Seppey et al., 2019). These problems
of genome assembly and amplification bias will eventually
be eliminated as whole-genome sequencing approaches are
adopted, but this will, in turn, require even more sophisticated
bioinformatics tools (e.g., NanoPack, De Coster et al., 2018).

Another area that will benefit greatly from advances
in computing and bioinformatics is database generation,
maintenance, and expansion. Existing taxonomic, trait, and
functional gene databases (e.g., GenBank, GloBI, KEGG) are
incomplete, and the task of updating and expanding these
databases is daunting. Artificial intelligence could also be used to
advance data discovery (Gonzalez et al., 2016; Compson et al.,
2018). Text-mining pipelines, for example, currently make use
of open-source, artificial intelligence tools (e.g., OrganismTagger:
Naderi et al., 2011). The consequent improvements that these
tools will make to taxonomic and functional databases will lead
to further advancements of biomonitoring tools, such as cloud-
based, rapid ecological network and food web construction,
driving a virtuous cycle where more robust datasets lead to
improved models.

The promise of these advancements will only be met, however,
via improvements in data accessibility, data discoverability, and
development of data standards. These will likely emerge from
consortiums developing ontologies for genomics and other data
(reviewed by Levy and Myers, 2016), as noted in Questions 1
and 3. More work needs to be done, in particular, to develop,
peer-review, and publish open-source tools for bioinformatics
pipelines (Mangul et al., 2019). Without parallel improvements
in tool archival and version control, the improvements that
should follow will be inconsistent, reducing their utility and
widespread adoption. This work would likely be facilitated by
open-source archival services (e.g., GitHub or SourceForge) or
package managers (e.g., Bioconda, Grüning et al., 2018).

What Are the Most Promising Future Advancements

in Modeling for Addressing Targeted Questions?
While genomic and technological advancements will affect
the field of biodiversity assessment, advances in modeling
will specifically help end-users, including regulators and
resource managers, using NGB approaches. For example, as
the costs of sample and bioinformatic processing reduce,
more sophisticated hierarchical occupancy models could be
applied to repeated sampling data to quantify detection
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probabilities and inform practitioners about the sampling effort
required to answer system-specific questions. These models,
which can account for multiple categorical factors influencing
a response variable, can accommodate samples of repeated
presence-absence data to provide estimates of occurrence and
detection probabilities of species and communities, enabling
to account for false negatives due to imperfect detection
(Campos-Cerqueira and Aide, 2016; Steenweg et al., 2016),
a limitation that is seldom considered in bioassessment
studies (McClenaghan et al., 2019). Occupancy modeling could
also provide a way past the critical limitation of current
DNA metabarcoding—that of obtaining absolute abundance
information. Applied hierarchical occupancy modeling has
been used to address questions related to the detection and
abundance of species (Kery and Andrew Royle, 2015), and
future genomic and technical advancements will broaden the
application of these models via the generation of larger
datasets covering wider ranges and along more gradients of
environmental change. Hierarchical occupancy models will
enable further leveraging of these more robust datasets by
incorporating variation in the pathway from sample collection
to sequencing and bioinformatics. Detection probabilities, for
example, can be built into Bayesian hierarchical models to
detect probabilities associated with different primers, sequencing
approaches, and other steps along the sampling-to-sequencing
pathway (Doi et al., 2019), providing NGB practitioners with
better experiments that make more efficient use of resources
(Lugg et al., 2018).

As the field of NGB evolves, we foresee synergistic
advancements frommerging occupancy-modeling and machine-
learning approaches with additional layers of information coded
in DNA, recovered by improved sequencing technologies and
greater sequencing depth. Incorporating relative read abundance
information into occupancy models could be used to assess the
abundance of functional gene classes in environmental samples.
Shotgun sequencing will also remove the constraints and biases
of PCR amplification of DNA, leading to better estimates of
sample abundance and biomass (Bista et al., 2018). Much of

this information could be incorporated into ecological networks
and heuristic food webs to estimate interaction strengths and
calculate probabilities of interaction (Morales-Castilla et al.,
2015). Finally, with increases in occupancy and food web model
sophistication, and as more data are generated that capitalize
on these approaches, there will be increasing volumes of high-
quality information to feed into machine learning algorithms,
leading to more predictive modeling of diverse ecosystems
and an unprecedented opportunity for NGB practitioners
to anticipate change and prevent ecosystem impairment in
real time.
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