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Microplastics (MP) are pervasive in the environment. There is ample evidence of negative
MP effects on biota in aquatic ecosystems, though little is known about MP effects in
terrestrial ecosystems. Given numerous entry routes of MP into soils, soil organisms are
likely to be exposed to MP. We compared potential toxicological effects of MP from (i)
low-density polyethylene (LDPE) (mean diameter ± standard deviation: 57 ± 40 µm)
and (ii) a blend of biodegradable polymers polylactide (PLA) and poly(butylene adipate-
co-terephthalate) (PBAT) (40 ± 31 µm) on the reproduction and body length of
the soil-dwelling bacterivorous nematode Caenorhabditis elegans. Feed suspensions
without (control) or with MP (treatments) at concentrations of 1, 10, and 100 mg MP
L−1 were prepared and nematodes were exposed to those suspensions on agar plates
until completion of their reproductive phase (∼6 days). Using Nile red-stained PLA/PBAT
MP particles and fluorescence microscopy, we demonstrated the ingestion of MP by
C. elegans into pharynges and intestines. Under MP exposure, nematodes had fewer
offspring (up to 22.9%) compared to nematodes in the control group. This decline was
independent on the plastic type. We detected a tendency toward greater decreases in
offspring at higher concentrations. Despite hints of negative effects on nematode body
length under MP exposure, we could not derive a consistent pattern. We conclude that
in MP-contaminated soils, the reproduction of nematodes, central actors in the soil food
web, can be affected, with potentially negative implications for key soil functions, e.g.,
the regulation of soil biogeochemical cycles.

Keywords: plastic residues, Nematoda, ingestion, low-density polyethylene, polylactide, poly(butylene adipate-
co-terephthalate)

INTRODUCTION

Microplastics (MP) have only recently been recognized as an environmental threat to terrestrial
ecosystems. MP are plastic particles smaller than 5 mm, and with different shapes such as spheres,
fibers, and fragments (de Souza Machado et al., 2018; Rillig et al., 2019). Although reliable data on
the prevalence of MP in soils is scarce (Watteau et al., 2018), soils are presumably large sinks for
MP and MP may harm soil organisms (Bläsing and Amelung, 2018; Hurley and Nizzetto, 2018).
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It has been shown for aquatic organisms such as mussels,
langoustines, copepods, short crabs, and lugworms that the
ingestion of MP can lead to negative effects on growth,
reproduction and survival (Galloway et al., 2017; Foley
et al., 2018; Franzellitti et al., 2019). These detrimental
effects can be nutritional, a result of lower food intake
resulting in energy deficiencies (Franzellitti et al., 2019),
but also physical, due to lacerations and inflammations
(Horton et al., 2017). In contrast, little is known about MP
effects on soil fauna (Chae and An, 2018). Early studies on
earthworms under MP exposure indicated that some biological
functions could be inhibited (Huerta Lwanga et al., 2016; Cao
et al., 2017). One study documented histopathological damage,
including congestion fibrosis and inflammatory infiltrates
in earthworms in response to MP exposure, although no
biological functions were affected (Rodriguez-Seijo et al., 2017).
Wang et al. (2019) found oxidative stress in earthworms in
response to artificially high MP exposure only. Translocation
of MP by earthworms (Huerta Lwanga et al., 2017a; Rillig
et al., 2017b) and collembola (Maaß et al., 2017) could
increase the exposure of other soil-dwelling species to MP. In
addition, evidence on the accumulation of MP from soil to
earthworms to chicken feces (Huerta Lwanga et al., 2017b)
indicates that MP may enter terrestrial food webs through
trophic transfers.

Nematodes (roundworms) live in any terrestrial habitat,
exhibit high diversity across soils (Yeates and Bongers, 1999),
and have a wide range of diets (Yeates et al., 1993; Orgiazzi
et al., 2016). By regulating biogeochemical cycles and ecosystem
processes, including mineralization and decomposition of
organic matter (Griffiths et al., 1998; Bardgett et al., 1999;
Ferris, 2010), they are key organisms in the soil food web. The
soil-dwelling bacterivorous nematode Caenorhabditis elegans,
distributed world-wide, is a well-established model organism
for ecotoxicological tests of different kinds of pollutants such
as mycotoxins, persistent organic pollutants and endocrine-
disrupting compounds (Leung et al., 2008; Keller et al., 2018;
Chen et al., 2019) and has been used for biosafety assessments of
nanoparticles (Wu et al., 2019). Fang-Yen et al. (2009) observed
that C. elegans can ingest polystyrene beads that can further
be transported into the intestine, a possible entry route of MP
into the soil food web (Rillig et al., 2017a). An early study on
exposure of C. elegans to MP reported that MP could lead to
inhibition of survival rates, body length, and reproduction, as
well as intestinal damage and oxidative stress. While MP effects
were independent on plastic type, MP effects were dependent
on particle size (Lei et al., 2018b): MP particles of one µm led
to the strongest effects when three different sizes (0.1, 1, and
5 µm) were compared.

Biodegradable plastics are considered an environmentally
friendly alternative to conventional plastics, as they theoretically
can be completely metabolized by microorganisms without
leaving plastic residues in the environment (Bandopadhyay
et al., 2018; Sander, 2019). For instance, polylactide
(PLA) and poly(butylene adipate-co-terephthalate) (PBAT)
are common components of biodegradable plastic films
which can be substituted for low-density polyethylene

(LDPE) films (Künkel et al., 2016). However, there is
some evidence that even nominally biodegradable plastics
tend to disintegrate instead of being mineralized (de
Souza Machado et al., 2018). A recent study demonstrated
that even after 3 years, large quantities of commercially
available, biodegradable plastic carrier bags were still
present in soils and other environmental compartments
(Napper and Thompson, 2019).

Our study aimed to compare possible effects of irregularly
shaped MP particles of the conventional plastic type LDPE and a
biodegradable blend of PLA/PBAT on nematodes. We evaluated
the biological endpoints of reproduction and body length in
the model organism C. elegans in response to MP exposure at
different concentrations. We hypothesized that (i) C. elegans can
ingest MP and (ii) MP adversely affect reproduction and body
length of C. elegans, with stronger negative impacts at higher MP
concentrations. Furthermore, we expected to observe comparable
effects of both conventional and biodegradable MP.

MATERIALS AND METHODS

Microplastic Preparation and
Characteristics
Two types of plastics were used in the experiment: (1) low-
density polyethylene (LDPE) in the form of granules (Lupolen
2420 H, LyondellBasell Industries N.V., Rotterdam, Netherlands)
and (2) a blend consisting of the polymers polylactide (PLA,
IngeoTM Biopolymer 7001D, NatureWorks LLC, Minnetonka,
MN, United States) and poly(butylene adipate-co-terephthalate)
(PBAT, Ecoflex F Blend C1200, BASF SE, Ludwigshafen,
Germany) with a mixing ratio of 80/20% w/w compounded
at the “Institut für Kunststofftechnik” (University of Stuttgart,
Stuttgart, Germany).

We used irregularly shaped MP particles because a non-
spherical shape can be expected due to input of fragmented
MP from mulch film and plastic bag residues in compost
into soils. The particle size ingestible by C. elegans is smaller
than 3 µm (Fang-Yen et al., 2009). However, it is very
challenging, to produce irregularly shaped MP particles with
defined size distribution <50 µm. For our experiments,
plastic granules were first ground to MP particles <5 mm
with a speed rotor mill (Pulverisette, Fritsch GmbH, Idar-
Oberstein, Germany) and later milled to smaller fragments
using a cryomill with liquid nitrogen (Cryomill, Retsch, Haan,
Germany) at the Fraunhofer Institute for Chemical Technology
(Pfinztal, Germany). This procedure yielded particle sizes of
57 ± 40 µm (LDPE) and 40 ± 31 µm (PLA/PBAT) (Figure 1).
Due to light microscopy detection limits at ≤3 µm (see
Supplementary Material 1), we could not differentiate particles
≤3 µm. The proportions of particles ≤3 µm (ingestible
for C. elegans) were 8.0% (LDPE) and 7.4% (PLA/PBAT).
Particles of both plastic types were similarly shaped, as
shown by their form factors (Supplementary Figure 1).
A detailed description of particle characteristics is given in
Supplementary Material 1.
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FIGURE 1 | The particle size distribution of (A) LDPE and (B) PLA/PBAT. The second ordinate shows the normalized frequency according to Filella (2015).
Micrograph of (C) LDPE and (D) PLA/PBAT.

Cultivation of C. elegans and Preparation
of MP Feed Suspensions
We used the C. elegans wild-type strain N2 in our assays,
which was obtained from the Caenorhabditis Genetics Center
(University of Minnesota). C. elegans was fed with Escherichia
coli OP50 and cultivated on Nematode Growth Medium agar
plates. For both assays, L1 nematodes were used. L1 refers
to nematodes from the first of four larval stages in the
life cycle of C. elegans before they become fertile adults
(Gonzalez-Moragas et al., 2015).

For the treatments, MP feed suspensions were prepared at
concentrations of 1, 10, and 100 mg MP L−1. The MP feed
suspensions consisted of M9 buffer, a common worm buffer
for handling C. elegans (He, 2011), freshly harvested E. coli
OP50 from overnight cultures and MP. For the control group,

feed suspensions of M9 buffer and freshly harvested E. coli
OP50 without MP were prepared. All feed suspensions (with
and without MP) were then shaken for 30 min and placed in
an ultrasonic bath for 15 min to prevent agglomeration of the
particles in the treatments. Before an aliquot of 100 µl of the feed
suspensions were added to the agar plates, the suspensions were
vortexed for 10 s. Following the addition of the feed suspensions
to the agar plates, they were dried under the laboratory hood and
incubated at 19.5◦C for 12 h. The entire procedure was performed
under sterile conditions.

Ingestion Assay
Nematodes were exposed to Nile red (NR) stained PLA/PBAT
particles at a concentration of 100 mg L−1. For this purpose,
PLA/PBAT particles were colored with the fluorescent dye NR
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(72485, Sigma-Aldrich, St. Louis, MO, United States) that was
recently used for the detection of MP in environmental samples
(e.g., Shim et al., 2016; Maes et al., 2017). For staining of the
MP particles, a NR stock solution of 1 mg L−1 methanol was
first prepared. MP particles were stained with a NR working
solution of 10 µg ml−1 by shaking the suspensions at 35 rpm
for 1 h on a laboratory shaker (Roto-Shake Genie, Scientific
Industries, Inc., New York, NY, United States). After incubation,
the suspensions were transferred to glass Petri dishes where the
solvents evaporated under the laboratory hood. The stained MP
particles were used for the preparation of MP feed suspensions.
Five nematodes were taken from a pre-culture and added to
Nematode Growth Medium agar plates prepared with MP feed
suspensions. The adult nematodes were transferred to new plates
after 3 and 6 days, respectively. After 9 days of incubation,
images were taken with a fluorescence microscope using an
excitation wavelength of 510–560 nm and emission wavelength
>590 nm (Axiophot with filter set 487914/analogous to current
filter set 14, Carl Zeiss Microscopy GmbH, Jena, Germany). The
Feret’s diameter of MP particles incorporated by C. elegans was
determined using Fiji 1.52p (Schindelin et al., 2012; Schneider
et al., 2012). For better visualization, the particles were pseudo-
colored on the images.

Reproduction and Body Length Assay
To exclude potential side effects of NR, here we only used
non-stained MP particles. The experimental design consisted
of two plastic types (LDPE or PLA/PBAT) at three different
concentrations (1, 10, and 100 mg L−1) and a control without
MP addition (each n = 8).

L1 nematodes were individually picked from a pre-culture
with a smoothed platinum picker and placed on the agar
plates (one nematode per plate) prepared with feed suspensions
with MP (treatments) or without (control). Subsequently, the
nematodes were exposed to these feed suspensions on the agar
plates at 19.5◦C until oviposition (∼3 days). At intervals of 24 h
the nematodes were transferred to new agar plates prepared
with the nutrient suspensions with MP (treatments) or without
(control) until the end of the reproduction phase (∼3 days).
In total, nematodes of the treatment groups were exposed
to MP for 6 days.

Nematode offspring per 24 h were counted optically with
a stereomicroscope (Nikon SMZ1000, Nikon, Tokyo, Japan).
The body length of the adult nematodes that survived the
reproduction phase was determined using a stereomicroscope
with camera (Zeiss Axio Scope.A1 & AxioCam ICc 5, Carl
Zeiss Microscopy GmbH, Jena, Germany) and Fiji 1.52p. Before
taking images, the nematodes were anesthetized with 20 mM
tetramisole hydrochloride (L9756, Sigma-Aldrich, St. Louis,
MO, United States).

Statistics
For data analysis, we used the statistical software R (R Core Team,
2018). To examine our hypotheses, we fitted a one-way analysis
of variance model to our data and specified linear contrasts
of interest as proposed by Mangiafico (2015) using the “glht”
command from the R package “multcomp” (Hothorn et al.,

2008). To test for an effect of MP on reproduction and body
length, we compared each treatment to the control group. To
clarify differences between the plastic types, we compared LDPE
and PLA/PBAT per concentration level. To test the assumption
that higher concentrations would lead to stronger effects, we
compared the higher to the lower concentrations for each plastic
type. We adjusted the p-values according to Benjamini and
Hochberg (1995), to correct for several comparisons. Following
the recommendation of Wasserstein et al. (2019), we did not
define a significance level and deliberately omitted the term
“statistically significant.” The results of the statistical tests are
given in Supplementary Table 2. We confirmed the model
assumptions of the ANOVA visually by residual diagnostics plots
(Kozak and Piepho, 2018).

We only considered nematodes that remained alive until the
completion of the reproductive phase. Underdeveloped worms
and worms that died before completing the reproductive phase
from unexplained causes of death (e.g., mechanical damage) were
excluded from the analysis. This resulted in an unbalanced design
with at least n = 5 (Supplementary Table 1).

RESULTS

Ingestion Assay
We confirmed the uptake of NR stained PLA/PBAT MP particles
in the pharynx and posterior intestinal lumen of C. elegans by
fluorescence microscopy (Figures 2A,B). The particles ingested
by C. elegans displayed in Figure 2, in the pharynx and
intestine had a Feret’s diameter of 2.3–5.1 µm and 1.3–
2.5 µm, respectively.

Surprisingly, internal hatching of larvae was observed in
a nematode with particles in the pharynx (Figure 2C). This
phenomenon could also be observed in four nematodes from the
reproduction assay exposed to 10 (n = 1) and 100 mg L−1 LDPE
(n = 2) and 100 mg L−1 PLA/PBAT (n = 1). These individuals
were not considered in the statistical analysis because they died
before the completion of the reproductive phase. In the control
group without MP, internal hatching did not occur.

Reproduction and Body Length Assay
Number of nematode offspring in the control group was 267 ± 6
(mean ± SE) (Figure 3A). Under MP exposure, nematodes
produced 4.6–22.9% fewer offspring than nematodes in the
control group. The strongest reduction in comparison to the
control group was found at 10 mg L−1 LDPE (p = 0.03). For
both plastic types, we observed a tendency toward stronger
declines at higher concentrations. Under exposure to 10 and
100 mg L−1 compared to 1 mg L−1 LDPE, offspring declined
by 18.4% (p = 0.08) and 9.9% (p = 0.37) stronger relative to the
control. Exposure to 10 and 100 mg L−1 compared to 1 mg L−1

PLA/PBAT, resulted in declines relative to the control which
were by 4.7% (p = 0.63) and 6.5% (p = 0.49) stronger. We
found only marginal differences in offspring between LDPE and
PLA/PBAT at all concentration levels (Supplementary Table 2).
The coefficient of variation (CV) of the treatment groups (9.2–
17.5%) was higher than the CV of the control group (5.5%).
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FIGURE 2 | Ingestion of NR-stained PLA/PBAT particles (red) in the (A) pharynx and (B) intestine lumen of C. elegans. (C) Nematode with NR-stained PLA/PBAT
particles in the pharynx and internal hatching.

FIGURE 3 | (A) Number of offspring and (B) body length of C. elegans as a function of concentration and plastic type compared to the control group. Data are
presented as means ± SE.
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In the control group, body length of the nematodes was
1,470 ± 24 µm (Figure 3B). We could not observe a clear pattern
for the body length of nematodes exposed to MP. Body length
decreased most strongly relative to the control at exposure level
of 1 mg L−1 PLA/PBAT (14.5%, p = 0.06) and at both 1 mg L−1

(7.8%, p = 0.25), and 10 mg L−1 (8.8%, p = 0.21) LDPE. Observed
body lengths in all other treatments were close to the body length
of the control group. Body length was not influenced by plastic
type. With a CV of 4.1%, the control group exhibited lesser
variance than the treatment groups, the CVs of which ranged
from 4.7 to 14.2%.

DISCUSSION

By demonstrating that C. elegans can and does ingest MP
particles, we established one prerequisite for the potential
development of toxic effects (Horton et al., 2017; Kim and An,
2019) in C. elegans. Particle ingestion is generally controlled by
a species-specific particle-to-mouth size ratio that defines the
size of the particles which are ingestible by a particular species
(Horton et al., 2017). Recently, Mueller et al. (2020) provided
evidence for earlier findings from Fang-Yen et al. (2009) that the
ingestible particle size of C. elegans is limited by the size of the
buccal cavity, which in their study developed to 4.4 ± 0.5 µm.
While polystyrene (PS) beads <3 µm entered the entire intestinal
system of C. elegans, particles >6 µm did not enter the body of
the nematodes at all (Mueller et al., 2020). In agreement with
these findings, we detected in our study MP particles with sizes
of 2.3–5.1 µm and 1.3–2.5 µm in the pharynges and intestines of
C. elegans, respectively.

We found that MP reduced offspring of C. elegans by 4.5–
22.9%, with a tendency toward greater declines in offspring
at higher MP concentrations. The strong decline in offspring
at 10 mg L−1 compared to the control might indicate the
existence of a critical effect concentration of MP. Contra-
intuitively, the decrease was more pronounced at 10 mg L−1

LDPE than at 100 mg L−1 LDPE which we attribute to
the statistical uncertainties of the comparison between these
treatments (p = 0.44, see Supplementary Table 2). The existence
of a critical effect concentration is supported by observations
in Lei et al. (2018a), who found clear lethal effects of PS beads
in C. elegans at concentrations higher than 5 mg L−1. Mueller
et al. (2020) established clear dose-response curves for the
reproduction of nematodes exposed to PS beads from 0.1 to
10 µm, with smaller particles exerting a stronger toxicity. Only
0.1 µm-sized particles caused effects on nematode reproduction
with an EC50 at 77 mg L−1 (all units converted) below
the highest concentration level of 100 mg L−1 used in our
study, while larger particles caused inhibitions in reproduction
at considerably higher concentrations (Mueller et al., 2020).
Lei et al. (2018b) compared the toxic effects of five different
MP types of irregular shape (mean diameter: ∼70 µm) on
body length, embryo number, brood size, calcium levels in
the intestine, and the expression of stress-indicating enzyme
activity of C. elegans. Additionally, they compared the ingestion
and toxic effects of PS beads of different sizes (0.1, 1, and

5 µm). Lei et al. (2018b) found offspring reductions of 2.4–
28.0%, which were similar to the offspring reductions observed
in our study. They found that body length was reduced
by 4.9–11.4% when nematodes were exposed to MP, while
we could not observe a clear MP effect pattern, as some
MP treatments showed reductions compared to the control,
while others did not.

Given the estimated fraction of MP particles <3 µm used
in our experiments of 8.0 (LDPE) and 7.4% (PLA/PBAT),
the concentration levels of 1, 10, and 100 mg L−1 in our
study translate into 0.08, 0.8, 8.0 mg L−1 and 0.074, 0.74,
to 7.4 mg L−1 in the ingestible range for C. elegans. Thus,
in Mueller et al. (2020) the likelihood of an ingestion of
MP by C. elegans was much higher than in our study, since
they used spherical particles in the size range of 0.1–3 µm
at concentrations of 40–12,500 mg L−1. The authors found
effects on reproduction at considerably higher concentrations
than >100 mg L−1 (exception: 0.1 µm –sized particles with
an EC50 of 77 mg L−1), which indicates that the observed
toxicity of MP in our study at much lower concentrations of
ingestible particles was not solely attributed to the ingestion
of particles. While direct toxicity of ingested MP particles was
shown for 1 µm particles that were preferably ingested and
accumulated in the intestines of C. elegans (Lei et al., 2018b),
there is some experimental evidence that negative effects on
reproduction of C. elegans are regulated by the ratio of the total
surface area of MP particles to the volume of the medium, where
the MP is contained (Mueller et al., 2020). Yet, the underlying
mechanism of such a surface-related toxicity still needs to be
clarified. Mueller et al. (2020) proposed as possible mechanisms
of the surface-related toxicity the binding of food bacteria to
MP and a dilution of food bacteria by MP, which could result
in a limitation of food availability for the nematodes. In our
study, surface-related toxicity could explain, why the MP particles
reduced offspring although most of the particles were not directly
ingestible by nematodes. Due to their higher specific surface
area, irregularly shaped particles (used in our study) presumably
lead to higher surface-related toxicity at lower concentrations
compared to spherical MP particles (used in Mueller et al.,
2020). Hence, toxic effects of MP are also likely to be controlled
by particle shape.

In line with Lei et al. (2018b), negative effects on the
reproduction of C. elegans under MP exposure occurred
irrespective of the plastic type. Since LDPE and PLA/PBAT
particles in our study had a similar shape and size, the
observed reductions in offspring were probably attributable
to physical effects, such as intestinal damage (Lei et al.,
2018b) or indirect nutritional effects due to interaction of
particles with the food bacteria (Mueller et al., 2020). Natural
particles such as mesoporous SiO2 particles, which can be
found in soils, can also be ingested by C. elegans (Acosta
et al., 2018). However, only exposure to nano-sized particles
led to reductions in lifespan, mobility, and reproduction, while
micro-sized particles showed no effect (Acosta et al., 2018).
Mueller et al. (2020) compared the effects of SiO2 particles
to PS beads of equal size and showed that SiO2 particles
exhibited a clearly lower toxicity, which was indicated by toxic
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effects at significantly higher particle to bacteria ratio. The
authors claimed that the specific density of a material played an
important role for the toxicity, because particles with specific
density in the range of the bacteria like plastics would be taken
up more readily.

We found a greater variance within our MP treatments than
in the control treatment for both offspring and body length.
One possible explanation is that not all nematodes exposed to
MP had ingested them, such that only worms that ingested MP
were affected. This was not possible to check, however, as we
used non-stained MP in the reproduction and body length assay,
and this was not detectable under the microscope inside the
nematode bodies. Furthermore, it is possible that the total surface
of the particles in the MP feed suspensions differed between the
replications within and among the groups due to discrepancies in
particle compositions present in the respective suspensions.

Studies of MP effects on other soil-dwelling animals have also
reported negative effects of MP on some biological functions,
with other functions unaffected. For instance, under high MP
exposure, mortality level of the earthworm Lumbricus terrestris
increased, growth inhibited, and biomass reduced, whereas
even at higher concentrations no effect on reproduction was
found (Huerta Lwanga et al., 2016). In comparison, Rodriguez-
Seijo et al. (2017) observed no adverse effects on survival,
reproduction, or body weight of the earthworm Eisenia andrei,
but did find gut damage and histological alterations including
congestion and fibrosis. Under MP exposure, the earthworm
Eisenia fetida showed only marginal effects, with the anti-oxidase
system negatively affected only at artificially high concentrations
(Wang et al., 2019), while the isopod Porcellio scaber was not
affected by MP at all (Jemec Kokalj et al., 2018). In view of
our results and those from these studies, it appears that not all
species or their biological endpoints are sensitive to MP, as our
findings indicate that body length is a non-sensitive metric for
MP toxicity in C. elegans. The fact that some biological endpoints
were affected by MP and others were not may be explained by
the disposable soma theory (Kirkwood, 1977). According to this
theory, an organism can try to compensate for stress, in our case
induced by MP. This stress and its compensation may lead to an
imbalance of biological functions, as one function decreases at the
expense of maintenance of another.

Remarkably, in the ingestion assay, we observed that several
nematodes that ingested MP (not quantified, however) exhibited
internal hatching (Figure 2C). In the reproduction assay, four
nematodes which had been exposed to MP and died during
the exposure also showed internal hatching. Generally, the
phenomenon of internal hatching, also referred to as matricide,
can occur under conditions of stress, e.g., starvation, exposure
to toxins, or presence of bacteria (Mosser et al., 2011; Pestov
et al., 2011). Nematodes, supposedly in response to stress, lay
their eggs internally to ensure survival of their offspring, as the
offspring receive sufficient nutrients in the body of the adult
nematode. However, in our study, it was not clear whether
internal hatching was induced directly by MP. Kiyama et al.
(2012) observed that in the presence of food, uptake of MP
was strongly reduced. Conversely, under the condition of food
deficiency, more particles were taken up. A possible scenario in

our study could have been that a combined effect of MP particle
consumption and starvation would have led to internal hatching.
The potential link of MP uptake and internal hatching should be
investigated quantitatively in future studies.

We are aware that in our approach exposure of C. elegans to
MP was rather artificial (MP feed suspensions on agar plates). We
chose this exposure, though, because we aimed at understanding
the general potential of MP to develop a toxicity in C. elegans. In
soils, it would not have been possible to achieve a general process
understanding. The design of more realistic experimental setups
with soils is challenging because currently there are only few data
on MP contamination in soils and it is not clear whether the MP
concentrations found to date in urban (0.3–67.5 g kg−1), riparian
(0–0.055 g kg−1), and agricultural soils (0–42,960 particles kg−1)
(Helmberger et al., 2019) lead to negative effects on soil biota. Due
to detection limits, even less data is available in environmental
samples for MP particles <10 µm (Haegerbaeumer et al., 2019)
and thus for the ingestible size range of C. elegans. Given
the aliquot of 100 µl that we gave to each nematode in our
experiments, one nematode was effectively exposed to 0.1, 1, and
10 µg of MP. Based on a global median abundance of 12,030
individuals per 1 kg dry soil (van den Hoogen et al., 2019) and the
mass-based MP concentrations reported in soil (see above), this
translates into an exposure to 0–4.6 µg per nematode for riparian
and 25–5,600 µg per nematode for soils in industrial areas. Thus,
the applied MP amounts in our study are in a range typically
found in natural soils.

CONCLUSION

We found that nematodes can ingest MP particles which
might negatively affect their reproduction. Toxic effects of MP
on nematode reproduction in soils cannot be ruled out. The
toxicity risk for conventional and biodegradable MP particles is
likely to be the same, as MP toxicity is rather attributable to
physical and indirect nutritional effects rather than to chemical
effects. Although we have hints of negative effects of MP on
the body length of nematodes, our results are not conclusive.
Since nematodes, as key members of the soil food web, may
be at risk under MP exposure, our results suggest potentially
negative implications for important soil functions, e.g., the
regulation of biogeochemical cycles. Further studies are needed
to estimate critical effect concentrations and to elucidate the
influence of particle shape for nematodes under realistic exposure
scenarios in soils.
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