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Soil is a heterogeneous mixture of various organic and inorganic parent materials. Major
soil functions are driven by their quality, quantity and spatial arrangement, resulting
in soil structure. Physical protection of organic matter (OM) in this soil structure is
considered as a vital mechanism for stabilizing organic carbon turnover, an important soil
function in times of climate change. Herein, we present a technique for the correlative
analysis of 2D imaging visible light near-infrared spectroscopy and 3D X-ray computed
microtomography (µCT) to investigate the interplay of biogeochemical properties and
soil structure in undisturbed soil samples. Samples from the same substrate but different
soil management and depth (no-tilled topsoil, tilled topsoil and subsoil) were compared
in order to evaluate this method in a diversely structured soil. Imaging spectroscopy is
generally used to qualitatively and quantitatively identify OM with high spatial resolution,
whereas 3D X-ray µCT provides high-resolution information on pore characteristics. The
unique combination of these techniques revealed that, in undisturbed samples, OM can
be found mainly at greater distances from macropores and close to biopores. However,
alterations were observed because of disturbances by tillage. The correlative application
of imaging infrared spectroscopic and X-ray µCT analysis provided new insights into the
biochemical processes affected by soil structural changes.

Keywords: correlative imaging, X-ray CT, imaging Vis-NIR, soil structure, OM

INTRODUCTION

Soils are heterogeneous and complex mixtures of organic matter (OM), mineral particles and pore
space. Their inherent functionality emerges from the spatial arrangement of these constituents on
various spatial scales (Ritz et al., 2004; Portell et al., 2018; Wanzek et al., 2018). Important soil
physical properties and processes such as conductivity, water retention, gas exchange and root
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penetration are defined by soil structure, i.e., the spatial
arrangement of solids and voids (Bronick and Lal, 2005; Rabot
et al., 2018). The interplay of soil chemical and biological
properties through physical protection has been considered a key
factor in stabilizing soil carbon (Dungait et al., 2012; Mueller
et al., 2012; Stockmann et al., 2013; Wiesmeier et al., 2019).
This, in turn, is influenced by soil structure, which defines the
microenvironmental conditions for microbial carbon turnover.
OM is not evenly distributed in soils. For instance, the walls
of biopores have been often reported as OM rich compared
with bulk soil (Banfield et al., 2017; Hoang et al., 2017; Hobley
et al., 2018). It is assumed that the heterogeneous location of
OM in soil may be a significant factor controlling the extent
of OM mineralization (Dungait et al., 2012; Steffens et al.,
2017). Therefore, to understand the relationship between soil
structure, carbon dynamics and biogeochemical processes, it is
crucial to characterize undisturbed soil samples. However, so far
this relationship is often investigated by techniques based on
soil disturbance, e.g., by extracting aggregate fractions (Young
et al., 2008) from the bulk soil, which indeed provides insights
into microscale processes, but the complete image of the soil
architecture is lost (Baveye et al., 2018).

Visible light near-infrared spectroscopy (Vis-NIR) is an
established method for the simultaneous analysis of various soil
properties (Stenberg et al., 2010; Soriano-Disla et al., 2014).
However, soil samples have to be ground and homogenized
for optimum performance. Imaging Vis-NIR (imVNIR) is an
emerging technique that allows the spatial analyses of intact
soil samples (Buddenbaum and Steffens, 2011; Steffens and
Buddenbaum, 2013). Steffens and Buddenbaum (2013), Steffens
et al. (2014) and Hobley et al. (2018) demonstrated the potential
of imVNIR by improving our understanding in soil classification,
chemical composition and carbon storage on the micrometer
scale for whole pedons.

The combinatory application of 2D and 3D imaging of
chemical composition and soil structure, respectively, may
provide new insights for the physical properties and the spatial
extent of soil structures along with their chemical information.
X-ray computed microtomography (X-ray µCT) is nowadays
considered as a commonly used technique for describing soil
structure with physical parameters such as pore size distribution
and connectivity (Rabot et al., 2018). As 2D imVNIR and
3D X-ray µCT give different but corroborating information
on the same material, the combination of the two techniques
can therefore be used to uncover and quantify biogeochemical
processes in intact soil samples. The combination of different
biogeochemical imaging methods, designated as correlative
microscopy or correlative imaging, is increasingly used in life
sciences (Caplan et al., 2011; Handschuh et al., 2013; Guyader
et al., 2018). A few recent applications have demonstrated that
there is a great potential for the application of correlative imaging
in soil sciences (Hapca et al., 2011; Juyal et al., 2019; Kravchenko
et al., 2019; Schlüter et al., 2019). Schlüter et al. (2019) highlighted
that a combination of different 2D techniques for chemical
and microbial imaging, such as scanning electron microscope-
energy dispersive using X-ray (SEM-EDX) analysis and nanoscale
secondary ion mass spectrometry (nanoSIMS) or fluorescence

microscopy and X-ray µCT, can be used to reveal specific
soil microenvironments and thus biogeochemical and physical
processes in structured soil. Compared with these 2D techniques,
the spatial resolution of Vis-NIR imaging spectroscopy is lower
(several µm instead of nm) but allows the investigation of larger
samples up to a complete pedon. Therefore, adding imVNIR
to the toolbox of correlative analyses of 2D imaging techniques
and 3D X-ray µCT for fast imaging of several samples may
reveal patterns of soil biochemical processes at the pedon level
of intact soils.

In this study, we developed a procedure for the correlative
image analysis of 2D imVNIR and 3D X-ray CT on intact
soil cores. Our approach consisted of X-ray µCT scanning,
followed by impregnation with resin, slicing, imVNIR and
classification of the same undisturbed soil core sample. After
image registration, the classified imVNIR images and the X-ray
µCT images were analyzed with correlative image analysis,
e.g., by analyzing the OM distribution as a function of distance
to pores and biopores. We used cores sampled from a space-
for-time reclaimed chronosequence. These displayed both
structural and chemical differences within the same substrate
(Lucas et al., 2019; Pihlap et al., 2019) and thus provided perfect
conditions for validating the correlation analysis method on
undisturbed field samples.

MATERIALS AND METHODS

Sampling and Sample Preparation
Intact soil cores were obtained from reclaimed soils in the
Garzweiler open pit mine area, 40 km west of Cologne
(Germany). A detailed site characterization together with a
description of the reclamation procedure and crop rotation of the
space-for-time chronosequence is described in the study of Pihlap
et al. (2019). Briefly, an approx. 20-meter-thick layer of loess,
including approx. 2.2 m of developed Luvisol, was excavated
during coal mining, mixed to afford a Luvisol/loess ratio of
1:10 and deposited. This mixture was used for reclamation with
alfalfa (Medicago sativa) in a pioneering phase for 3 years.
Between the 4th and 6th year, the reclamation was based on
a crop rotation including Triticum aestivum L. (wheat) and
Hordeum vulgare L. (barley). In the years after, a variation of
T. aestivum L. (winter wheat and summer wheat), H. vulgare
L. (winter barley), Brassica napus L. (rapeseed) and Zea mays
L. (maize) were grown. About 30 t/ha of organic fertilizer
(compost or manure) were added in the 4th and 7th year of the
reclamation procedure.

Three cores with different soil structures were selected
on the basis of the study of Lucas et al. (2019) for
correlative analysis with imVNIR, representing different soil
development levels (3, 6, and 12 years after reclamation) and
management stages (no tillage/tillage) (Table 1). The selected
undisturbed soil cores (height 20 cm and diameter 10 cm)
were obtained from fields with different ages, in depths of 0–
20 and 40–60 cm, using a custom-made drill for undisturbed
sampling of cylindrical soil cores (UGT GmbH, Germany). To
overcome the trade-off between resolution and sample size,
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TABLE 1 | Basic soil parameters from selected samples.

Sample name Year after
reclamation

Sampling
depth [cm]

Bulk density
[g cm−3]

Macroporosity
>38 µm
[Vol-%]

OC [mg g−1] pH Biopore length
density

[cm/cm3]

No-tilled topsoil 3 10–13 1.59 3.05 3.70 7.59 11.22

Tilled topsoil 6 3–6 1.48 13.3 5.89 7.44 17.80

Subsoil 12 55–58 1.45 19.30 3.26 7.52 17.60

Macroporosity and biopore length density are shown for the exact same sample (Lucas et al., 2019), whereas bulk density, organic carbon (OC) concentration and pH
values represent a mean value from the plot where the sample was taken (Pihlap et al., 2019).

three subsamples of 3 cm diameter and 3 cm height were
collected per core.

The no-tilled topsoil is an immature soil with low OM content
and dense soil structure that was not affected by soil tillage. After
6 years of reclamation, the tilled topsoil was characterized by
high macroporosity due to plowing and high OM content owing
to the organic fertilizer amendment. The subsoil represents a
sample with many macropores due to high biological activity,
namely, high biopore density, which developed for 12 years under
a tilled topsoil.

X-ray µCT Scanning at 19 µm Resolution
The cylindrical subsamples with a diameter of 3 cm were
scanned using an X-ray microtomograph (X-TEk XCT 225,
Nikon 162 Metrology). Reconstruction was achieved with a
spatial resolution of 19 µm, and the images were processed
and segmented into solids and pores, as described in detail by
Lucas et al. (2019). Specifically, all biopores were segmented in
the binary images using the Tubeness plugin in Fiji to separate
all tubular objects. All biopores, including filled biopores with
roots or earthworm cast, were separated from the remaining,
irregularly shaped, pore network in the binary images. Biopores
in the resulting images were therefore empty, and the rough
pore wall was excluded. These biopores were dilated five
times in all 3D directions (kernel diameter of 3 voxels), and
then the image of the segmented pores was subtracted in
Fiji. This allowed us to include the walls of the biopores
and solids, like earthworm cast within the biopores, to the
resulting image.

imVNIR Scanning at 53 µm Resolution
After X-ray µCT analysis, the same intact soil cylinders were
dehydrated gradually with acetone [series from 30–100% (v/v)],
and subsequently, the soil cores were impregnated with polyester
resin (PALATAL P 6-01, BÜFA, Germany). After 5 weeks of
polymerization, the cores were placed in an oven at 40◦C for 48 h
to cure the surface of the impregnated samples. All cores were
cut in two slices of 1 cm thickness, polished and scanned with
a hyperspectral camera (VNIR-1800, Norsk Elektro Optikk Ås,
Norway). The camera lens distance from the sample surface was
set to approx. 30 cm, and the sample was illuminated with two
light sources in front of and behind the camera (angle about 45◦).
An image of 53 × 53 µm2/pixel (1800 pixel/line) and spectral
range with 196 bands between 400 and 990 nm was thus obtained.
A certified reflectance standard (reflectance 50%) was adopted
and used to normalize the reflectance on the target image in order

to adjust the differences in illumination:

ρobj =
Lobj

Lref
× ρref ,

where Lobj is the radiance of the recorded sample, Lref the
radiance of the certified reflectance standard and ρref the
reflectance of the certified reflectance standard (Peddle et al.,
2001; Steffens and Buddenbaum, 2013)

Hyperspectral images were processed in ENVI Classic
(Version 5.2, Exelis Visual Information Solutions, Boulder,
Colorado, United States) following the workflow in Figure 1.
In particular, we used a principal component analysis (PCA)
to concentrate the spectral information in images and remove
the correlation between neighboring bands (Rodarmel and Shan,
2002; Kavzoglu et al., 2018). PCA images show spectral spatial
variability of different components on the soil surface and
helps us to define number of endmembers (classes) (Steffens
et al., 2014). Each endmember represents pure spectra from a
selected component (class) and it is a basis for determining
the composition of each pixel with linear spectral unmixing
(LSU). The first 10 principle components were used to separate
polyester resin and pores filled with polyester from the soil
matrix and to identify pure spectral endmembers of observed
components for the subsequent image processing steps. The
main criteria for the endmember collection were to select the
most abundant features (from PCA analyze) and to cover pixels
from different spatial segments in the image. According to the
PCA analyze in total we selected six different components as
endmembers, such as loess parent material, OM particles, Fe-
oxide (FeOx) dominated pixels and iron-manganese concretions.
For the tilled topsoil and subsoil, two additional endmembers
were selected because of their specific features. The tilled
topsoil was affected by plowing, which created voids on top
of the loess. As a polyester resin is a transparent material,
in tilled topsoil we captured also a reflectance “noise” from
the loess that was underneath the shallow tillage void. This
gave different reflectance than the voids created by roots and
earthworms extending vertically through the entire sample.
Thus, additional endmembers for tillage voids were necessary.
An additional endmember was also selected from the subsoil
to describe fresh, OM-rich pixels, which displayed the most
defined OM spectrum compared with that of other OM-
dominated areas. The statistical significance of the selected
endmembers was tested with the Jeffries–Matusita distance
test (Dabboor et al., 2014). For detecting and mapping the
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FIGURE 1 | Workflow of imVNIR image processing. After X-ray µCT analysis, the intact soil cylinders impregnated with polyester resin were cut in two slices of 1 cm
thickness. These slices were scanned with a hyperspectral camera. In the first image processing step, scanned images were used to compute a principal
component analysis (PCA), which concentrates the spectral information on images and removes correlations between neighboring bands. Principle components
were used to separate polyester resin, pores filled with polyester from the soil matrix, and to identify pure spectral endmembers of observed components. In the
example of the workflow, we selected five different classes as endmembers (ROI-s) and they were used to calculate relative abundance in each pixel with linear
spectral unmixing (LSU). With LSU, abundance maps of each endmember is created, where the most intensive color refers to the highest contribution of selected
endmember to the pixel. Obtained abundance maps were subsequently used for a supervised classification using maximum likelihood, and the area coverage of
each class can be calculated.

abundance of each spectral endmember, LSU was conducted
using the manually selected endmembers (Supplementary
Figure 1). LSU generates abundance maps, where the relative
contribution of the selected endmembers to each pixel is
depicted (Ravel et al., 2018). The obtained abundance maps
(Supplementary Figures 2–4) were subsequently used for a
supervised classification using maximum likelihood classifier
(Borra et al., 2019). For the supervised classification, new
additional ROIs were selected along with the Jeffries–Matusita
distance evaluation. The subsequent area coverage of the classes
was calculated in the classified images. Maximum likelihood
classification is created by results of the abundancy maps
(LSU), of which we know every class contribution to every
pixel in 2D space. This means that for example a pixel
classified as Fe is dominated by iron, but may also contain
fractions of other endmembers. The accuracy and the kappa
coefficient of the classification were tested with a confusion
matrix processed in ENVI Classic software. For the confusion
matrix we selected random pixels that were not part of the ROIs
used for the classification itself and compared them with the
classification results. The kappa coefficient is a basis to estimate
the agreement of classification and it is computed in the ENVI
Classic software as follows (L3Harris Geospatial Solutions, 2020):

k =
N

∑n
i=1 mi,i −

∑n
i=1(GiCi)

N2 −
∑n

i=1(GiCi)

where i is the number of classes, N is the total number of classified
values compared to truth values, mi,i is the number of values that
belongs to the truth class i and have also been classified as class i,
Ci is the total number of predicted values belonging to class i, Gi
is the total number of truth values belonging to class i.

Image Registration
The images obtained from X-ray µCT and imVNIR had different
resolution and orientation. To overcome these constraints, an
image registration was needed prior to correlative analysis. The
aim of the registration is to find a geometric transformation to
map the pixels of the first (moving) image into the second (target)
image. Therefore, 2D/3D image registration was performed using
the elastix software (Klein et al., 2010; Shamonin et al., 2013)
along with a protocol similar to that described by Schlüter et al.
(2019). In the current study, the moving image was always the
filtered X-ray CT image and the imVNIR image was the target
image. Both images were used as gray scale images, however, the
information transported by a certain gray scale value differs with
the source. We also used a combination of two metrics, the mean
of the Euclidean distance between the corresponding landmark
points and the mutual information criterion (Mattes et al., 2001).
The mutual information is a statistical measure of the degree
of dependences of two random variables A and B. It is closely
related to the entropy, i.e., the amount of uncertainty, of the two
variables and hence also to the joint entropy. More precisely, this
means it quantifies the “amount of information” given by the
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random variable A about the variable B and vice versa (Maes
et al., 1997). Here, it defines the objective function that has to
be optimized and such allows the entropy to be matched with the
corresponding image pairs For example, homogenous features,
such as macropores in µCT images, should be matched with
homogenous features visible in imVNIR (Figure 2). A second
metric, which uses landmarks (at least three manually selected
points), was also added. This ensured that the optimization of
the moving image did not result in local minima. A pyramid

schedule was used to achieve a fast registration, starting with a
coarse resolution and moving toward the next finer scale.

The best results were obtained by using a similarity transform,
defined firstly by the objective function of the two metrics.
Afterwards, the resulting parameters were used as the initial
transform for affine transformation, for which only one metric
was used to define the objective function. A first rough
registration was thus performed and was mainly guided by the
landmark points, and a second step, using only the mutual

FIGURE 2 | Principle of the image registration. (A) 2D section of the 3D µCT image (gray) and a 2D imVNIR slice were chosen as a registration example with the
software elastix. They were not aligned on each other in the beginning of the registration [(A), left]. Through different iterations, the µCT image was transformed so
that both images match at each position [(A), right]. For this, the two metrics Euclidean distance and mutual information were used for optimization. The Euclidean
distance metric aims to minimize the distance between the manually set points (red crosses). In this example, it is minimized from a mean of 237 to 4 pixel. The
second metric represents the extent of mutual information between the registered µCT image and the imVNIR image, i.e., it measures the “amount of information”
given by the µCT image about the imVNIR and vice versa. The scatter plots of gray values from imVNIR and CT (B) at the beginning of the registration reveals two
clusters, which are formed by the µCT image (pores and matrix) but are not shared by the corresponding imVNIR pixel values. This results in a low mutual
information of 0.19. After the final iteration, pore and matrix clusters were formed by both variables, which is also reflected by the isolines showing high kernel
densities. Thus at the end of the registration mutual information is high (0.86).
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information metric, resulted in a more accurate result that did
not rely on manually set points. Additionally, the similarity
transformation involved rotation, translation and scaling and
therefore had 7 degrees of freedom in 3D. Instead, the affine
transformation added aspect ratio and shear to the allowed
transformation, resulting in 12 degrees of freedom in 3D (Klein
et al., 2010). Corresponding elastix script and example images can
be found in the Supplementary Material.

Correlative Image Analysis
X-ray µCT analysis allowed the characterization and the
localization of pores >38 µm (2 pixel), whereas imVNIR enabled
the determination of the soil’s chemical composition. From
imVNIR we derived OM and FeOx abundance maps obtained
with LSU, whereas from CT images we used the binary (pore)
images and the images of Euclidean distances to pores and
biopores. The Euclidean distance transformation (EDT) in Fiji
was computed to obtain the straight-line distance of each pixel
to the next pore/biopore in 3D. In order to compare the data
from the two sources (correlative image analyses) the CT images
were transformed with transformix, a subroutine of elastix, using
the transformation parameters of the original CT image to assure
that the images match the corresponding imVNIR image (see
section “Image Registration”). Thereafter, multichannel images of
the Euclidean distances, pores and results of LSU were created in
Fiji, from which we could calculate the relative contribution of
OM-rich pixels (obtained with LSU) with distance to pores or
biopores (obtained with EDT). In addition, the solid and pore
volume was also measured with distance to biopores. This made
possible to take into account density shifts around biopores by
normalizing the relative contribution of OM-rich pixels by the
solid volume fraction. Only distances with a certain number of
pixels (100), equal to an area of about 0.3 cm2, were taken into
account, to avoid high standard deviation for smaller quantities.
It should be noted that correlative imaging does not necessarily
include correlation in a statistical sense.

RESULTS

Soil Composition Characterization Using
imVNIR
Figure 3 displays the maximum likelihood classification images
for the three soil cores and the respective coverage of the
five endmembers. The maximum likelihood classification was
conducted through relative abundance of each component
obtained from LSU. The overall classification accuracy was 92.0%
(k = 0.89) in the no-tilled topsoil, 91.6% (k = 0.90) in the tilled
topsoil and 88.3% (k = 0.85) in the subsoil. Our technique enabled
the clear separation of voids and soil matrix in all samples. The
soil matrix was characterized irregular distribution of loess and
Luvisol that were mixed during the soil reclamation procedure.
Images recorded at later reclamation stages (tilled topsoil and
subsoil images) also showed soil management effects on the soil
chemical structural composition. Specifically, the no-tilled topsoil
was characterized by a dense soil matrix with a higher area
coverage of loess soil and spherical aggregates, as e.g., shown in

the areas E5,F, L1–2, and M3 in Figure 3. In two tilled topsoil
slices, we observed an increase in OM content and aggregate
shape, due to the organic fertilizer amendment (Figure 3, B,C11
and B12, K11–12, L,M10, and L,M11). The area coverage of
OM in the slices of the subsoil was comparable with that of the
tilled topsoil, although the total organic carbon of the topsoil was
rather low (Table 1). Although Fe/Mn concretions could only be
found in the no-tilled topsoil, all samples contained FeOx-rich
areas. The most distinguishable was slice one from the no-tilled
topsoil sample, which had exceptionally high percentages of
FeOx-dominated areas.

Image Registration
Only 4–5 common points were sufficient to align the µCT images
with the imVNIR images by a similarity transformation. This
initial registration was suitable to ensure a good result of the
affine transformation, which relied only on mutual information.
Figure 4 depicts all 2D slice cuts corresponding to original
µCT images, which were mapped according to the imVNIR
images. The similarity could be distinguished especially in large
pores, such as the central biopore in the subsoil sample or
in large cracks. An example for a large crack can be found
in A–E14,15 and G–J14,15, whereas a large biopore is visible
in N–P15,16 and S–U15,16 (Figure 4). These characteristics
were less pronounced in other denser or more mixed samples.
However, other features such as aggregates also indicated correct
registrations. For example, in the tilled topsoil sample (e.g.,
Figure 4, areas G10,11 and U9), the identified aggregates were
rich in OM and therefore had lower reflectance in the imVNIR
images. The corresponding regions in the µCT image were also
darker because of the low electron density of the OM compared
with that of the other solid substances. However, in some areas,
slight differences could be observed because of the pre-treatment
of the intact soil cores during resin impregnation. It should be
noted that some pores in the imVNIR images are not black.
In shallow pores, solid material from deeper layers was visible
through the transparent resin (Figure 4, areas I9, H10, I10, H12,
and T9), hence the reflectance was affected by the signal from
the material below.

Correlative Analysis of µCT and imVNIR
Detectable Features
The EDT was computed individually for segmented pores and
biopores, and the corresponding images show the Euclidean
distance from any non-pore/non-biopore voxel to the next
pore/biopore. Figure 5 illustrates the results of the correlative
analysis by observing the OM intensity distribution over the
distance to the macropores and biopores. Correlative analysis
with macropore distances in the no-tilled sample demonstrated
a small increase in OM content with increasing distance.
In contrast, the tilled topsoil sample revealed a decreasing
trend of OM content with increasing distance to macropores.
Furthermore, in the tilled topsoil sample, there were no soil
matrix pixels more than 0.5 mm away from the next macropore.
The subsoil sample (slice 1) had a relatively small abundance of
OM-rich pixels near the pores, which then increased to about
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FIGURE 3 | Classification images and relative coverage of each class. Classification was computed on images of linear spectral unmixing (LSU). LSU images contain
information about each endmember contribution to each pixel in the 2D space. When we classify images according to their abundancy, classes are calculated based
on the highest domination of selected component. It means that for example a pixel classified as Fe is dominated by iron, but may also contain fractions of other
endmembers.

100% at a distance of 0.75 mm. This relatively high distance was
observed only in the subsoil sample.

The density of biopores in samples was much lower compared
with that of the total amount of macropores, leading to
much longer distances (>4 mm). Compared with the distance
to pores, the OM trends around the biopores were less
pronounced (Figure 5). In both slices of the tilled topsoil
sample and in one slice of the subsoil, a small increase
in OM was observed with increasing distance. Moreover,
the biopores (0 mm distance) of the tilled soil samples
exhibited low OM content.

Figure 6A illustrates the macroporosity distribution relative to
the distance to biopores. In all samples, macroporosity decreased
with increasing distance (up to roughly 0.2 mm), but this
gradient was predominant in the subsoil (Figure 6A). The
relative abundance of OM in the vicinity of the subsoil biopores
increased after normalizing the local OM contribution by the
corresponding fraction of dense soil material, i.e., taking the shift
in macroporosity into account (Figure 6B).

The contribution of FeOx (Supplementary Figure 5) did
not significantly change in any sample with the distance to
pores and biopores. Interestingly, the FeOx abundance next to
biopores increased in the no-tilled topsoil sample. The deviation
of the FeOx distribution directly in the pores from zero can be
attributed to the high amount of pores, which are smaller than
the spatial resolution of the hyperspectral camera (53 µm). In this
case, smaller pores are not detectable in the imVNIR images, but
they are visible in µCT (19 µm resolution), resulting in a mixed
spectrum of pores and FeOx-rich solid volume. This can explain
the strong signal of FeOx in the LSU images at locations that are
classified as pores in the µCT image instead.

DISCUSSION

ImVNIR is a non-destructive analysis to characterize
physicochemical properties in soil. However, when slicing
field moist samples, several artifacts such as smearing soil can

Frontiers in Environmental Science | www.frontiersin.org 7 April 2020 | Volume 8 | Article 42

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-00042 April 9, 2020 Time: 18:28 # 8

Lucas et al. Combine X-ray µCT and imVNIR

FIGURE 4 | Image pairs of registered 2D slices of µCT (gray) and imVNIR images (visible spectra). Gray values of µCT represent dense areas (white) and pores
(black). The pores in the imVNIR images can be black or light colored, since the resin used is transparent.

be created, thus destroying the macropore system and creating
surface topography that leads to shadows. In our study, we
successfully applied, for the first time, resin impregnation with
polyester followed by cutting in combination with subsequent
imVNIR. The developed impregnation procedure allowed us
to sustain the integrity of the soil microstructure and avoid
the destruction of the macropore system (Rasa et al., 2012;
Jangorzo et al., 2014; Gutiérrez Castorena et al., 2016; Mueller
et al., 2017; Schlüter et al., 2019). In rare instances, we observed
small changes occurring especially in looser areas, due to sample
preparation artifacts. In the acetone dehydration pre-treatment,
a large pore collapsed in the tilled topsoil (Figure 4, areas C11
and H,I11) during the impregnation, whereas some cracks that
were visible in the no-tilled topsoil (Figure 4, areas O6 and T6)
diminished. Although there are different dehydration methods
available (e.g., drying in the oven), they can create other specific
artifacts, such as crack formation, that could complicate the

registration and interpretation (Jongerius and Heintzberger,
1975). Despite the occurrence of small changes, the currently
developed sample pre-treatment method allowed the horizontal
cut of the soil in larger slices without smearing (Figure 4),
and thus, a good registration of µCT and imVNIR images was
achieved (Figure 4).

The impregnated soil slices provided a perfect basis for the
segmentation of different compositional and structural features,
such as OM- and FeOx-dominated areas (Figure 3), with
imVNIR. The slopes in the spectrum (Supplementary Figure 1)
of selected endmembers were in line with data reported by
Steffens and Buddenbaum (2013), as their selected regions, such
as Mn- and FeOx-dominated areas in a loess-derived stagnic
Luvisol, exhibited comparable spectra. As soil cores originated
from the same substrate, imVNIR image processing revealed
that the chemical and structural features were distributed
differently within the samples due to the soil development
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FIGURE 5 | Area based relative contribution of OM in linear spectral unmixing images with the 3D Euclidean distance to pores (upper graphs) and biopores (bottom
graphs). The pictures on the right display the same cutout of macropores and biopores (gray) and the corresponding distances (small distance = purple, high
distance = orange).

after reclamation. In the no-tilled topsoil and subsoil, we
observed features that were influenced by the reclamation
process. Moreover, µCT revealed structural pores inside the
OM-rich aggregates of these samples. These aggregates, known
as “rolled aggregates”, are typically formed on the conveyor
belt during transportation of the reclamation soil in the area
and can be rich in OM due to the admixture of old topsoil
(Luvisol) (Pihlap et al., 2019). In contrast, the sample from the
tilled topsoil was characterized by a tillage-induced structure and
contained distinctively shaped, OM-rich aggregates (Figure 3,
areas B,C 11,12 and K11,12). Segmentation and analysis of the
soil composition in undisturbed soil cores defined their 2D spatial
distribution and their heterogeneity in 53 µm resolution from
samples of 3 cm diameter.

Correlative imaging allowed the enhancement of the
information obtained by imVNIR with data provided by µCT.
Hence, we were able to correlate the compositional information
of the solid phase with the soil structure, such as the OM
distribution as a function of the 3D Euclidean distance to
pores and biopores (Figure 5). Nowadays, besides imVNIR,
several techniques are available for chemical mapping of 2D
slices, such as SEM-EDX, near edge X-ray absorption fine
structure spectroscopy, nanoSIMS, or matrix-assisted laser
desorption/ionization (Baveye et al., 2018). These techniques
could be also applied for correlative analyses to obtain additional
chemical information on the 3D pore structure derived from
the µCT, as reported in the study of Schlüter et al. (2019) for

SEM-EDX and nanoSIMS analysis. Most of these techniques
can even have a resolution on the nm scale and thus exceed the
resolution of both imVNIR and µCT. However, high-resolution
results in small sample sizes, thus limiting these techniques to
microaggregate analyses (Baveye et al., 2018). In contrast, the
combination of imVNIR and µCT can be applied to scan soil
cores up to 10 cm width and infinite length. Thus the linkage
between soil structure and soil composition can be investigated
in larger soil volumes up to a complete pedon. In addition,
relative fast imaging (µCT ∼30 min, imVNIR ∼5min), the fast
and parallelized elasitx registration method (∼5 min) and the
possibility to embed all samples at the same time make it possible
to use the method on multiple soil cores in a full field study, even
if samples are sliced several times (every 0.5 cm).

The methods employed in the present correlative imaging had
different spatial resolutions. The resolution of the 3 cm scanned
samples in X-ray µCT images was higher (19 µm) than that of
the Vis-NIR images (53 µm), thus making only the pores with
>38 µm (2 pixel) detectable, whereas local differences within
the micropores (diameter <38 µm) could not be addressed.
Alternatively, sub-resolution features from greyscale µCT images
could have been taken into account by using the gray values
around macropores to normalize the OM contribution (Baveye
et al., 2018), instead of using only visible pore and solid fraction
(Figure 6). However, the normalization we used indicated
a closer linkage between the soil composition and the soil
structural features, visible in µCT, i.e., macropores >38 µm.
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FIGURE 6 | (A) Porosity and (B) spectral intensity of OM normalized by the solid volume fraction, as a function of the 3D Euclidean distance to biopores. The
normalization made it possible to account for the density shifts around the biopores as visible in (A).

Potentially, an even broader spectrum of pore sizes could be
investigated using subsamples for µCT images and combining
the information of pore size distribution from different sample
sizes (Vogel et al., 2010). In the current study, we demonstrated
that registering higher-resolution µCT images and combining
them with imVNIR images expands the information level on the
sub-resolution features in larger samples.

Correlative imaging with imVNIR and µCT revealed patterns
in FeOx and OM distribution through the distance to pores and
biopores (Figure 5). The different trends in OM, as a function
of distance to macropores, demonstrated that OM accumulated
with increasing distance to macropores, most probably due to
physical protection, as the absence of macropores may lead to
a deficient aeration but may also hinder microorganisms of
reaching OM (Dungait et al., 2012). The comparison between
the tilled topsoil and subsoil samples revealed how tillage
affects the OM distribution, as shown by previously observed
homogenization in OM distribution (Yang and Wander, 1999;
Kay and VandenBygaart, 2002). In contrast to our expectations,
we did not identify higher OM quantities in biopore walls; in
some samples even lower intensities were detected (Figure 5),
perhaps due to local differences in macroporosity that were
higher close to biopores (Figure 6). When the OM contribution
was normalized according to the density shift from µCT, the
OM in the no-tilled topsoil and subsoil was higher next to the
walls of biopores compared with that in bulk soil (Figure 6).

Consequently, based on the OM quantity per gram soil, the
OM content would be higher close to pore walls. This shows
the possibility and strength of the new method to explain
spatial OM distribution obtained by imVNIR image analysis
and additionally explain possible contradictory results in OM
distribution by incorporating the shifts in density revealed by
µCT. Considering that the impact of soil management on carbon
stabilization has been particularly investigated (Follett, 2001;
Chivenge et al., 2007; Cárcer et al., 2019), correlative analysis
with imVNIR and X-ray µCT may broaden our understanding
of OM distribution, associated with physical protection due to its
location in the porous soil.

CONCLUSION

In this study, we present an approach for the identification and
correlation of soil chemical composition and pore structure in
intact soil cores. To that end, we developed a novel combination
of 2D imVNIR and 3D µCT through registration and correlative
analysis. As a proof of principle, we analyzed three intact soil
samples, each with two slices that differed in soil structure
and OM content (no-tilled topsoil, tilled topsoil and subsoil).
Correlative analysis along with 3D soil structural information
about pores can give new insights into the linkage between the
biopore network and the soil chemical composition including
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OM distribution. The analysis indicated that, when the soil
is not disturbed by tillage, OM accumulates and is more
protected as the distance to macropores increases. µCT
data gave valuable input not only by locating pores and
biopores but also through local shifts in bulk density. As
both techniques give complementary and partly corroborating
information on the same material, the development of
the applied method improves our understanding on the
spatial distribution of soil components and their correlation
to soil structure.
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