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Kenya is composed of diverse geographic regions and is heavily impacted by climatic
variability. Habitat heterogeneity has led to a diverse number of plants and animals.
Invasive species, however, threaten this biodiversity. This study mapped the current
distribution of Acacia reficiens and Opuntia spp. using occurrence data, then applied a
species distribution model to identify where suitable habitats occur under current and
projected climatic scenarios under Representative Climate Pathways (R) 2.6 and 8.5.
Occurrences of the two invasive plant species were sampled using an android-based
application and a GPS (Global Positioning System) device. Predictor variables included:
elevation, distance to streams and rivers, human population density, and vegetation
indices (monthly Normalized Difference Vegetation Indices (NDVI) and Enhanced
Vegetation Indices (EVI) derived from MODIS products 1-km spatial resolution). The
mean of 25 replicates was used in identifying suitable habitats. We evaluated model
performance using the average test AUC, mean testing omission rate metrics, and
mean regularized training gain. The predictive models for both species performed
better than random chance (p < 0.05). Mean test AUC values of 0.96 and 0.97 for
A. reficiens and Opuntia spp. respectively, were achieved and their associated 95%
confidence intervals showed the fitted models realized the high discriminative ability to
differentiate optimal conditions for invasive plant species from random pseudo-absence
points. The mean test AUC results for A. reficiens (0.97 ± 0.02) and Opuntia spp.
(0.985 ± 0.01) were regarded as high. The models yielded moderate test gain values
of 2.4 and 2.7, respectively. The model predictions show the distributions of A. reficiens
and Opuntia spp. may increase under future climatic scenarios; with current extents
estimated at 339,000 and 183,000 ha, respectively, with projected future spread
reaching 732,800 and 206,900 ha, respectively, by 2070. Data on mapping, monitoring,
and assessment of the invasive species can provide governments with insight into how
the poor and vulnerable people are affected by the loss and degradation of biodiversity
and ecosystems due to the spread of such species. This information is key in achieving
the Sustainable Development Goals 15 (SDG) of the UN, aimed at the protection,
restoration, and promotion of sustainable use of terrestrial ecosystems.
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INTRODUCTION

Invasive species are a major threat to global human well-being,
biodiversity, and economies. The threat of incursion is directly
linked to the rate at which the invasive species propagules are
introduced and the level of disturbances that encourages their
establishment (Hernández et al., 2006). Invasive plant species
are plants that produce large numbers of offspring, with greater
chances of spreading widely (Ratnayake, 2015). Deforestation,
climate change, and habitat degradation have led to the loss of
biodiversity and have allowed for the proliferation of invasive
species (Thomas and Thomas, 2013). There are situations when
native species are regarded as “invasive.” This occurs when
conditions responsible for controlling a species are weakened or
absent, for instance, due to climate change. Suddenly, the species
realizes an enormous and abnormal increase. Acacia reficiens,
native to Kenya, have generally shown an aggressive invader
tendency similar to those of invasive species. Though such species
are important components of their habitats and ecosystems at
large, some suggest they should not be referred to as “invasive”
but “expansive” or “super-dominant” (Ratnayake, 2015).

A. reficiens is a bush, or small tree, about 3–4 m tall,
the top is usually flattened, the branches are reddish-brown
and it’s a native of Ethiopia, Somalia, Kenya, Namibia, Sudan,
Uganda, and Angola (Witt, 2017). A. reficiens are regarded
as a very aggressive invader in many places, especially, but
not necessarily, in disturbed areas. Opuntia spp. of the family
Cactaceae is found in many arid and semi-arid parts of
Kenya. They are drought tolerant with flattened succulent
stems that keep moisture most of the year. The spines
cause injury to the intestines and mouths of wildlife and
livestock (Witt, 2017). Opuntia spp. is among the most
spread and naturalized invasives in the arid and semi-arid
areas of Northern Kenya, hampering rural livelihoods and the
ecosystems. The invasion has been linked to changes in land-
use practices which leads to degradation. They were introduced
mostly intentionally for ornamental purposes (Obiri, 2017;
Githae, 2019).

There is no known record or quantification of either
current or potential distribution of A. reficiens or Opuntia
spp. in Kenya. The use of species distribution models can
help identify habitat suitability for the occurrence and potential
distribution based on climate data. Correlative models allow for
the prediction of species’ potential niches by associating their
occurrences to environmental proxies like climate, topography,
vegetation indices, and then apply a relationship to identify
areas of similar environmental conditions over which the
species are likely to establish (Mitchell et al., 2016). The
objectives of this research were to (1) use citizen science
derived A. reficiens and Opuntia spp. occurrence data to map
their current distributions, (2) map the current distribution
of A. reficiens and Opuntia spp. in Samburu – Laikipia
region using a time-series of MODIS vegetation indices
and topographic environmental variables, and (3) predict the
potential distribution under different climate change scenarios
using bio-climatic variables.

MATERIALS AND METHODS

Study Area
The larger Laikipia-Samburu is a diverse ecosystem, consisting
of different habitats and land use practices (Wittemyer et al.,
2010). Laikipia is predominantly made up of large-scale ranches
with resident wildlife species. Conversely, Samburu is a lower-
elevation pastoralist grazing region composed of forested ranges
(Omondi et al., 2002). The region is in a transition area
for the three major vegetation types; semi-desert grassland,
shrubland, and Acacia. The vegetation is mainly grassland,
woodland, bushland, and dry forest with a scattered declining
riparian forest that is important for the maintenance of the
region’s biodiversity. Forests cover 6% of Laikipia, and the
region’s soils are mainly black cotton, with significant areas
also characterized by red sandy soils’ (Jong et al., 2015). The
rainfall is generally bimodal, where the long rains occur during
April-May period, often accounting for 80% of the total yearly
rainfall. The short rains fall later in October-November. The
long-term annual precipitation mean between 1990 and 2010
was recorded at approximately 630 mm (Bergmann et al., 2016).
The Laikipia drainage constitutes the upper Ewaso Ng’iro River
catchment, which is the only major source of water. In dry
spells, water flowing through perennial rivers are fed by the Mt.
Kenya and Ndarua Range catchments (Government of Kenya,
2007; Figure 1).

Species Occurrence Data
The study focused mainly on five counties (Laikipia, Samburu,
Isiolo, Marsabit, and parts of Meru) which have been heavily
affected by A. reficiens and Opuntia spp. reducing forage spaces
for livestock and wildlife. Both Opuntia spp. and A. reficiens
occur in the same geographical space, so we used the same sets
of environmental predictors.

Citizen Science Data
Because reliable spatial information on the invasive plant species
was not available, we collected point locations from the study
area using a custom-built electronic application installed in
android phones, christened the Invasive Species Mapper (ISM)
(see Appendix A) currently available on the Google Play Store.
The ISM is customized to include any list of local invasive plant
species, take photos, and work offline in remote areas with limited
internet access.

We applied the ISM Android App, in fixed plot sizes of
1,000 m2. This ensured that the data collected were consistent
with assessments of the relative cover of invasive species in a
particular location. In addition to fixed plot sizes, plots were
stratified by the conservancy and randomized to ensure that the
landscape was sampled consistently and that the plots without
Opuntia spp. or other invasive species were also included. In
addition to estimating the infested area within each plot, the total
number (count) of individual plants were counted for the invasive
species detected.

Local field assistants and rangeland coordinators that had
functional knowledge of local vegetation distribution, especially
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FIGURE 1 | Study area and locations of records used for modeling.

of the invasive species were trained on how to use the ISM in
data collection. The data collected are remotely archived on an
online platform for visualization and sharing1 (see Appendix A).
To reduce the spatial bias/autocorrelation, the data collection
on A. reficiens and Opuntia spp. occurrences were random
within a minimum distance of 200 m between the occurrence
points. A total of 362 A. reficiens and 338 Opuntia spp. geo-
tagged presence observations were randomly collected from

1http://mobiledata.rcmrd.org/invspec/

2016. Another set was collected from May to June 2017 and finally
from September to November 2019. Five (5) counties of Meru,
Samburu, Laikipia, Marsabit, and Isiolo were targeted. These
counties comprise several conservancies with most occurrences
recorded in Samburu and Laikipia counties (Figure 1).

Environmental Predictors
At the sub-national scale, we assumed climate is an important
parameter for plant growth and survival. Correlative modeling
of species ranges needs environmental data that have a direct
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or indirect link to the species’ spatial distribution. The proximal
variables (direct) have an immediate effect on species while the
distal variables (indirect) are dependent on the former with some
varying degrees (Koh, 2008). Elevation, slope angle, and slope
aspect are indirect variables and only correlate with organisms
through their interactions with parameters like temperature and
precipitation (Austin, 2007). Air temperature, soil water levels,
and solar radiation directly define plant niches (Dymond and
Johnson, 2002). The current and projected future climate data
used were obtained at the highest-available resolution of (30 arc-
seconds (∼1 km). The current climate data were derived through
interpolation of observed data representing 1960 through 1990
(v.1.4). Future climate projections relied on predictions of the
GISS – E2 – R model being part of CMIP5 (IPPC 5th Assessment)
for climate average 2041–2060 for RCPs 2.6 and 8.5 being the
lowest and highest emission climate scenarios, respectively. For
comparison of the single-sourced derived current and future
climate data, the WorldClim’s current data (version 1.4) were
used in the downscaling and calibration process2. MODIS
products (MOD 13Q1) derived at 1-km2 resolution comprising
Enhanced Vegetation Index (EVI) and monthly Normalized
Difference Vegetation Index (NDVI) were used as measures of
vegetation productivity for the year 2017. Non-climatic variables
were resampled to 0.00833 degrees (∼1 km2 at the equator) using
the nearest neighborhood algorithm to coincide with WorldClim
climate derived predictors. Data sets used in modeling were
derived from different sources at different resolutions, so scale
conversion was done for consistent analyses (Park, 2011). Slope
and elevation were derived from Shuttle Radar Topography
Mission (30 m SRTM).

Modeling Approach
The MaxEnt program uses a maximum-likelihood algorithm
to produce a probability distribution. The MaxEnt algorithm
applies pixels of known species occurrence data and randomly
generated pseudo-absence background data to form sample
points (Hernández et al., 2006; Young et al., 2013). A collinearity
analysis was computed to eliminate highly correlated variables.
The correlation coefficient and the variance inflation factor (VIF)
were calculated. The VIF helps measure inflation of variance of
the coefficient estimate due to multicollinearity. In this study, the
analysis of collinearity was done within the full list of original
variables. Any variable with a VIF value above five was flagged
off as collinearity concern (Dormann et al., 2013).

The distal variables are normally avoided because such
indirect correlation tends to propagate errors when models
predict species’ potential niches under different climate scenarios
(Baldwin, 2009; Pearson, 2010). A species distribution model
(SDM) hierarchical process was applied. First, the invasive
species were modeled specifically using the 19 bioclimatic
variables3. The subsequent models run included the 24 MODIS
variables representing monthly EVI and NDVI, elevation,
soils types, distance to rivers, and population density. The
relative importance of the predictors was determined by the

2http://www.worldclim.org/version1
3https://www.worldclim.org/bioclim

percent contribution and permutation importance derived from
MaxEnt results. The variables of less importance were removed
systematically, leaving variables with a significant contribution
to model performance, resulting in an AUC > 0.8. The
initial analyses reduced the number of variables to 8 non-
correlated vegetation indices and topographic predictors for
both A. reficiens and Opuntia spp., respectively, and seven non-
correlated climatic variables for mapping the occurrence and
projecting potential niches, respectively.

The resulting model was tested for variable correlation,
because correlated variables may mislead interpretations. We ran
a pairwise Pearson correlation in R Studio, and only variables
with r ≥ ± 0.8 were used in the final model prediction. In the
mapping of current A. reficiens and Opuntia spp., distribution,
NDVI for August and May, and EVI for August and January were
used. Other remote sensing proxies included: altitude, distance to
rivers, soil drainage, and population density. The current climate
data derived through interpolation of observed data representing
1960 through 1990 (v.1.4) were also used in mapping the
current extent of the invasive species. These were Isothermality,
mean diurnal range, temperature seasonality, precipitation
seasonality, annual precipitation, precipitation of wettest quarter,
and precipitation of wettest month. For predicting the potential
habitats of the two species, similar current climate variables were
used under RCPs 2.6 and 8.5, respectively (Table 1).

The model parameters were set as follows: replication type was
set to sub-sample, 30% random test, the number of iterations
was set to 5,000 with replicates of 25 and a regularization value
of 1. The MaxEnt model allows one to run a model multiple
times and then averages the results from all the model runs.
A default setting of 10,000 background points was used and
over 700 sites across the study area were used to ensure good
representation of all environments (Elith et al., 2011). The model
performance was evaluated based on the mean test AUC, testing
omission rate, and mean training gain. The threshold used in
converting MaxEnt probability outputs into binary maps have
effects on the extent of predicted distribution (Baldwin, 2009).
The minimum training presence logistic considers suitable all
sites that are at least suitable within the training set. It is a
conservative approach preferred in modeling invasive species.
The last models used to identify suitable niches were built based
on the means of 25 replicates grids in MaxEnt. The average
logistic threshold was used in estimating optimal niches for the
invasive plant species. Continuous output binary is created by
choosing a value of the relative occurrence rate under which a
given species being modeled is considered present (Merow et al.,
2013). Determining biologically accurate thresholds may depend
on a species population density or prevalence, for example
in this study this information is not fully known, therefore
arbitral threshold values are not recommended (Hernández
et al., 2006). MaxEnt uses threshold-dependent and independent
tests to evaluate a model output. For the threshold-dependent
tests, it uses a specific threshold to divide a response as either
suitable or unsuitable. A variety of threshold-dependent values
are generated, and it’s at the user’s discretion to choose a value
based on their objectives (Young et al., 2013). For instance,
in the case of research or management reasons, an accurate
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TABLE 1 | Permutation and percent importance of remote sensing and topo-climatic predictor variables of the two MaxEnt models for A. reficiens and Opuntia spp.
under the current and potential distribution.

Variable % contribution Permutation importance % contribution Permutation importance

Acacia reficiens Opuntia spp.

Altitude 48 60 53 70

Population density 29 19 N/A N/A

May NDVI 11 9 4 5

Distance to rivers 7 2 N/A N/A

August NDVI 6 1 8 5

Soil drainage 3 4 0 1

August EVI 2 2 19 8

January EVI 1 5 9 8

Isothermality 45 1 32 10

Temperature Seasonality 19 45 N/A N/A

Mean Diurnal Range 19 6 N/A N/A

Precipitation of the Wettest Month 7 4 N/A N/A

Precipitation Seasonality N/A N/A 22 48

Annual Precipitation NA NA 14 29

Precipitation of the Wettest Quarter NA NA 10 5

Precipitation of Coldest Quarter NA NA 8 1

prediction of species presence (sensitivity) rather than species
absence (specificity) would be of greater emphasis. A threshold
weighted to achieve sensitivity would be ideal for this study.
The models’ significance against random chance is determined
in MaxEnt using the threshold – dependent metrics which
applies a one-tailed binomial test (Phillips, 2008). The output
binary was converted to raster format and the distribution
maps were generated by classifying images into two classes,
0.00 to 0.5 and 0.5 to 1.0. Pixels in the lower range were
considered as areas of less than 50% chances of species occurrence
and the higher ranges to depict areas with at least 50%
probability of species existence, hence a highly suitable habitat.
The areas which are projected to have changed under different
climate scenarios were estimated by calculating the difference
in future distribution and present distribution. The negative
values denoted range expansion; the zero values denoted no
change while positive values were areas of range reduction
(Figures 2, 3). In most cases selecting suitable modeling
algorithms and associated datasets are a challenge in ecological
modeling, so limitations of overestimation of the presence of
species are inherent. The SDMs assume random sampling of
the presence of species within a grid cell, which leads to a high
probability of presence in each grid cell, and overestimation
(Thapa et al., 2018).

RESULTS

The models generated p < 0.005, performing better than
random prediction. The high mean test AUC values (0.97
and 0.98 for A. reficiens and Opuntia spp., respectively), is
an indication that the models fitted could easily discriminate
optimal conditions for the invasive species from the randomly

generated background points. The highest test AUC value of
0.986 was derived from the models built for Opuntia spp. under
future climatic projections (see Appendix B). An analysis of
the relative contributions of individual remote sensing variables
used in mapping the current distribution of both A. reficiens
and Opuntia spp. showed that elevation was the greatest
predictor of presence points of both A. reficiens and Opuntia
spp. with percent importance of 48.3 and 53.4, respectively.
Besides, climate variables whose contribution was significant in
mapping the current extents of both species included temperature
seasonality and Isothermality. In predicting the future extents
under different climate scenarios, Isothermality was the most
important variable predictor for both species (Table 1). We
diagnosed the input variables based on the results of the jackknife
procedure. This helps to identify the loss or gain in the predictor
power as each variable is omitted from the models or used
independently. A jackknife test of variable importance indicated
that the variables which decreased model test AUC most when
removed were August EVI and Soil drainage for A. reficiens
and Opuntia spp., respectively, for the current distribution.
Under future projection Precipitation of Wettest Month and
Mean Diurnal Range reduced the test AUC value the most
for A. reficiens and Opuntia spp., respectively, and contain
information that is not present in other variables. Suitable
habitats for both species under study were predicted widely in
most conservancies. From the areas calculated based on the
model results, the current extents of A. reficiens and Opuntia spp.
were 339,000 and 183,000 ha, respectively, (Figures 2, 3). The
future distribution is predicted to expand to other conservancies
within the projected climate scenarios within RCP 2.6 and RCP
8.5 by the year 2050 and 2070. Quantitatively, reduction of
the suitable habitats is also expected to increase marginally
especially for both species. This will be highly pronounced by
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FIGURE 2 | The current and potential distribution under RCP 2.6 and RCP 8.5 for the years 2050 and 2070 for A. reficiens.

2070 (Figures 2, 3). The future rates of expansion and reduction
of suitable habitats are projected to shift consistently within
the conservancies over different climate scenarios. The average
proportion of suitable habitats for both species under reduction
is slightly higher than areas under expansion over the same RCPs
(see Appendix C).

DISCUSSION

In this study, altitude, population density, distance to rivers,
NDVI of May and August, EVI of January and August
were important variables in identifying the current extents of
the two invasive species whose distributions were modeled.
Minimal seasonal variations in temperature and rainfall were
important predictors in mapping the current extents and
in predicting suitable areas of invasion in 2050 and 2070.
Generally, rainfall, human interventions, distance to rivers, soil
drainage, precipitation seasonality, and temperature seasonality
explained the distributions of A. reficiens and Opuntia spp. (see
Appendix D). The model prediction shows the distributions
of A. reficiens and Opuntia spp. are projected to shift (extend

and reduce) under future climatic scenarios (2050 and 2070).
This could pose an imminent threat to native plants and the
well-being of the local communities who are largely pastoralists.
The current distribution of A. reficiens and Opuntia spp. are
mainly within the community conservancies within Laikipia
and Samburu counties. The areas infested were overlaid on
soil type information, and it showed that well-drained soils on
the slopes of the hills with a mean elevation of about 1200 m
above sea level, provided suitable conditions for the growth of
A. reficiens and Opuntia spp. (see Appendices E, F). Livestock,
humans, and wildlife feed on Opuntia spp. and are believed
to be agents of dispersal (Witt, 2017). This is confirmed by
the existence of Opuntia spp. on the banks of rivers and in
densely populated areas within the conservancies. The relative
probability of presence of A. reficiens and Opuntia spp. increases
with the increase in altitude and population density, though
they diminish with the increase of distance from rivers and
streams (see Appendices E, F). The results show that the current
predicted distributions of A. reficiens infestation cover mainly
Samburu County, while Opuntia spp. is predominant in Laikipia
County. Both range reduction and expansion for A. reficiens
and Opuntia spp. are consistent over different climate scenarios.
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FIGURE 3 | The current and potential distribution under RCP 2.6 and RCP 8.5 for the years 2050 and 2070 for Opuntia spp.

The invasive species range expansion is projected to begin as
early as 2050. A. reficiens and Opuntia spp. are projected to
expand by 5 and 1%, respectively, relative to the study area,
with expansion marginally increasing by 2070. Comparatively,
the rate of reduction of suitable niches for both A. reficiens
and Opuntia spp. is slightly higher than the rate expansion
over 2050 and 2070 climate scenarios (see Appendix C). When
A. reficiens encroaches landscapes, it results in an imbalance
in bush grass ratios and decreasing biodiversity, lowering the
grass productivity (Winowiecki, 2014). Its seeds germinate
easily and can displace other species without disturbance. It
is found mostly on plains but also grows on hills and dry
rivers seldom on the sand. Even though A. reficiens causes
challenges, several of its parts are utilized by the locals as a
source of traditional medicine (Wakshum Shiferaw et al., 2018).
Both fire and herbivory independently can affect tree cover
by altering demographic height transitions. According to the
local communities, A. reficiens is preferred by wild animals
and livestock and could as well explain the increase in their
invasion over-time.

The relative probability of presence of A. reficiens increases
with increases in variance in temperature parameters

(Isothermality, temperature seasonality and mean diurnal
range) (see Appendix D). The phenological variations of
A. reficiens were detected by NDVI of May and August, EVI of
January and August. The grasses, crops, and other herbaceous
vegetation are likely to turn brown in August and January, while
the shrubs and woody vegetation would appear green making
it possible to discriminate predominantly A. reficiens infested
areas. Due to its deep root system, A. reficiens is likely to absorb
moisture from precipitation of the driest months to remain
green and can be easily discriminated in the dry months of
August, January, February, and March due to contrast in general
vegetation cover. With global climate change, the potential
distribution of A. reficiens in northern Kenya may increase;
thereby expanding the areas at risk of invasion. A. reficiens
is an aggressive invader and is expected to increase its water
use efficiency in the future allowing it to invade xeric habitats4

(Accessed on the 1st of May, 2020). Its increased probability of
presence in wide annual temperature ranges may enable it to
out-compete other native species, especially for water resources.

4http://www.nbri.org.na/sites/default/files/treeatlas/pdf/TAP_Acacia%20reficiens.
pdf
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The relative probability presence of Opuntia spp. increases
steadily with an increase in precipitation of the wettest quarter,
precipitation seasonality, and annual precipitation (see Appendix
D). They are easily identified in the dry months of August and
January by both EVI and NDVI of those months. Opuntia spp.
displace native species of plants, degrades the pasture, and
inhibits the free movement of wildlife, people, and livestock. It
also blocks access to water with a high frequency of replication,
creating a dense colony over new areas (Githae, 2019). Most of
Opuntia spp. have shoots comprising of flattened stem portions
(cladodes) which are relatively tolerant to lower temperatures
of −6◦C, though extremely endures high temperatures of up
65◦C (Nobel et al., 2003). It can thrive in rainfall regimes of 250–
1200 mm per year with very hot summers of over 40◦C. Opuntia
spp. have a superficially extending root system, penetrating in
the shallow and rocky substratum. Consequently, precipitation
of the driest months reaches to their roots easily and enable them
to thrive (Rocchetti et al., 2018).

The accuracy of the models was determined by the AUC
value, which can either be ≤0.5 (no-better-than-random) or
1 (perfect). The discriminative ability of species distribution
models has been widely tested using AUC statistics. There are
concerns about relying on the AUC as the sole measure of model
performance (Jiménez-valverde, 2012). Though AUC has been
found to perform comparatively better than other measures in
scenarios where the species, the target area, and the occurrence
data (test and training samples) are uniform across the compared
model, same case as this study (Lecours et al., 2016).

Though model overall accuracy is high for current and future
maps of the two species, we believe this can be improved by
increasing the number of samples within the wider Samburu
Laikipia region. Ecological niche models usually suffer some
limitations, for instance, over-estimation of the presence of
species. MaxEnt uses presence-only data which may lead to
high predicted figures for environmental conditions beyond the
specified range. Though, this is avoided by applying a threshold
value to the output raster (Thapa et al., 2018). The presence-
only and climate-based models can potentially contribute to error
propagation in the interpretation of the results, for instance,
areas visited more often will depict strong geographic bias.
The MaxEnt modeling technique employs cross-validation which
uses fewer data sets as a way to offset the challenges of data
deficiency. Besides, species distribution models can be biased
resulting in local biasness and model generalization impacting
on model reliability. MaxEnt depends on the jackknife kriging
which maintains ordinary kriging simplicity and unbiasedness as
well as reducing local-scale bias and over-generalization tendency
(Odeny et al., 2019).

Information on current and possible future extent of
invasive species would help ecosystem managers focus scarce
conservation and restoration resources on areas with a high
probability of invasion, narrowing down to areas with high
probabilities of suitable environments and regions of lower
probabilities values. Habitat suitability thresholds are usually
selected subjectively with limited information to guide in
choosing appropriate thresholds for presence- dependent
modeling (Phillips et al., 2006). The results of this study

demonstrated that climate and remotely sensed data can be
analyzed to help in the development of predictive models over
areas of conservation concern, providing conservationists with
vital information in developing current and future eradication
and control plans. Early detection methods help in the control
or eradication of the invasive species thereby minimizing the
control costs (Rejmánek and Pitcairn, 2002). Also, the outcome
of this research will help achieve sustainable development
goal number 15, which aims at protecting, restoring, and
promoting sustainable use of terrestrial ecosystems. This
research demonstrated the strengths of citizen science in data
collection through a mobile-based application. Through this
process, over 1,000 presence points of both A. reficiens and
Opuntia spp. have been collected reducing financial and time
constraints. By providing invasive species extent and distribution
data to the conservation practitioners, the impacts of invasive
alien species on land and water ecosystems can be reduced.
Formulating policies on informed data would help in achieving
the SDG target number 15.8 by 2020, through controlling and
eradicating the priority invasive species.

We are cognizant of some challenges associated with species
distribution modeling when applied to near and long-term
climate projections (Thuiller and Maa, 2009; Jarnevich et al.,
2015). In most cases, biological field data are biased representing
an untrue picture of species distribution and abundance.
Important areas may have been under-sampled, models may be
heavily influenced by sample bias, and there may be mismatches
in the resolution of sample plots relative to the resolution and
accuracy of predictor variables. Furthermore, climate projections,
especially long-term climate projections, have unknown (and
often unknowable) accuracies and uncertainty associated with
them. We view these model results as “hypotheses” that can only
be verified and improved with iterative monitoring and modeling
(Jarnevich et al., 2015).

CONCLUSION

Our findings suggest that suitable habitats for A. reficiens and
Opuntia spp. are throughout most parts of Laikipia Samburu
regions. The seeds from A. reficiens and Opuntia spp. can be
dispersed by domestic, wild animals and by run-off water. This
explains the distributions of these species mostly along the
streams and river banks. The predicted expansion of Opuntia
spp. and A. reficiens throughout most of their ranges means that
if the seeds continue to be propagated by agents like floods,
humans, and animals, increased vigilance is needed to identify
and eradicate new invasion with focus on floods, humans,
and wildlife dispersal. It will also be important to raise public
awareness on the proliferation threats posed by invasive species,
identification and, appropriate control measures. For the first
time, this research estimated the current and potential extents of
A. reficiens and Opuntia spp. in Northern Kenya. Though there
was limited occurrence data, we anticipate further expansion
of both species in most parts of Laikipia Samburu region.
The study revealed that topo-climatic variables combined with
remotely-sensed data (vegetation indices) can be used with the
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invasive species occurrence data in a predictive model to quantify
the current and potential extents of A. reficiens and Opuntia
spp. The method used is easy and transferable to areas with
similar challenges of invasive species. Currently, there is a push
for increased evidence-based conservation, with challenges in
collecting better site-specific information to prioritize areas for
conservation and inform actions on priority areas. Documenting
the distribution data on invasive species is important to this
end. The predictive maps created from the models are being
used as a baseline for current and future monitoring initiatives.
Regional governments can use the modeled maps and the
distribution data to help conservationists and decision-makers in
the formulation of policies to assist in managing and monitoring
the ecosystems. For future studies, we propose the inclusion
of presence data from the broader Samburu Laikipia area
including the species native ranges. High-resolution time-series
images and additional variables such as grazing density may
result in new findings on the distribution of invasive species in
Northern Kenya.
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