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Wheat is cultivated on more than 2.7 million hectares in Afghanistan annually, yet the

country is dependent on imports to meet domestic demand. The timely estimation of

domestic wheat production is highly critical to address any potential food security issues

and has been identified as a priority by the Ministry of Agriculture Irrigation and Livestock

(MAIL). In this study, we developed a system for in-season mapping of wheat crop area

based on both optical (Sentinel-2) and synthetic aperture radar (SAR, Sentinel-1) data to

support estimation of wheat cultivated area for management and food security planning.

Utilizing a 2010 Food and Agriculture Organization (FAO) cropland mask, wheat sown

area for 2017 was mapped integrating decision trees and machine learning algorithms

in the Google Earth Engine cloud platform. Information from provincial crop calendars

in addition to training and validation data from field-based surveys, and high-resolution

Digitalglobe and Airbus Pleiades images were used for classification and validation.

The total irrigated and rainfed wheat area were estimated as 912,525 and 562,611

ha, respectively for 2017. Province-wise accuracy assessments show the maximum

accuracy of irrigated (IR) and rainfed (RF) wheat across provinces was 98.76 and 99%,

respectively, whereas the minimum accuracy was found to be 48% (IR) and 73% (RF).

The lower accuracy is attributed to the unavailability of reference data, cloud cover in the

satellite images and overlap of spectral reflectance of wheat with other crops, especially in

the opium poppy growing provinces. While the method is designed to provide estimation

at different stages of the growing season, the best accuracy is achieved at the end of

harvest using time-series satellite data for the whole season. The approach followed in

the study can be used to generate wheat area maps for other years to aid in food security

planning and policy decisions.
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INTRODUCTION

The agricultural sector in Afghanistan supports the livelihoods
of nearly three-quarters of the total population and contributes
nearly 28% to the Gross Domestic Product (GDP) (Muradi
and Boz, 2018). Thus, agricultural growth is vital for
driving the country’s economy and for ensuring national
food security (World Bank, 2014). Wheat is the most
important crop in Afghanistan, followed by rice, barley,
and cotton. Most cereal crops are utilized for self-consumption.
Wheat is prominent in all of the major farming systems
prevailing in the country and cultivated in every province.
It dominates the total cultivated cereal area estimated as
2.7 to 3 million hectares. Despite being the dominant cereal
crop in Afghanistan, the production of wheat fails to fulfill
the internal demand. About 1 million tons (equivalent to
25% of internal demand) of wheat are imported annually to
meet internal requirements (Martínez and Gilabert, 2009).
This makes Afghanistan one of the leading importers of
wheat in the world. Afghanistan imports wheat mainly
from Turkmenistan and Pakistan, two of its neighboring
countries. Timely and effective management and estimation
of wheat production in Afghanistan are therefore of high
importance for overall food security. It can help in managing
local food demand and provide stability for social security
(Tilman et al., 2011). It can also support decision-makers in
national-level planning for formulation and implementation
of policies related to food procurement, pricing, import-
export, transportation and storage, advance planning, etc.
(United Nations, 2013; Pham et al., 2017).

Limited work has been done in the past for wheat area
estimation by utilizing a conventional ground-based sampling
approach which only provides a qualitative assessment. In
2016, the Food and Agriculture Organization (FAO) carried
out rice mapping using sentinel data in a few provinces of
Afghanistan (Latham, 2017; Haworth et al., 2018). Similarly, the
United Nations Office of Drugs and Crime (UNODC), a pro-
active organization working in opium poppy monitoring using
high-resolution satellite images, conduct annual assessments
of opium poppy sown areas (Simms and Waine, 2016;
Avetisyan, 2017). Concerning wheat sown area mapping,
some qualitative assessments have been done in the past by
the USDA (United States Department of Agriculture) using
NDVI (Normalized Difference Vegetation Index) anomalies
(Shahriar et al., 2014; Baker, 2015). Currently, the Ministry
of Agriculture Irrigation and Livestock (MAIL), Afghanistan
is undertaking yearly qualitative assessments of wheat sown
area using ground sample data (crop cut survey) and some
conventional remote sensing based techniques, i.e., mainly based
on visual interpretation of satellite images (UN FAO, 2016).
Recently, donor agencies like the United States Agency for
International Development (USAID) have shown interest in
food security management in Afghanistan. They have started
projects, such as the Grain Research and Innovation (GRAIN)
and the Kandahar Food Zone (KFZ), funded by USAID, started
working in crop area mapping and health monitoring to
support livelihoods in Afghanistan (USAID, 2017). Currently,

no operational system exists in Afghanistan to provide a rapid
assessment of wheat sown area which is essential to support the
food security management.

Developing an operational system for wheat sown area
assessment for Afghanistan is challenging despite the availability
of several methods based on remote sensing. The major
challenges include security concerns for collecting the reference
data from the ground, small field sizes, cloudy optical imagery,
low internet bandwidth for satellite data downloads, and limited
computing infrastructure for data processing and analysis.
Despite these challenges, through collaborative efforts with
MAIL and other organizations in Afghanistan, we present a
detailed study that develops a map of wheat sown areas utilizing
advanced satellite remote sensing techniques which can be
used to address food security planning and management in
the country.

Crop type mapping using optical and SAR remote sensing
techniques have been attempted by several researchers globally
(Inglada et al., 2015). Optical remote sensing approaches use
spectral-temporal profiles to identify seasonal thresholds of
phenological characteristics to separate different crop types
(Foerster et al., 2012). The acquisition time of the image
is critical to identify seasonal thresholds and distinguish
different crop types. Although spectral-temporal profiles based
on seasonal thresholds require less ground sample points and
provide good accuracy, they fail to classify crops having similar
phenology. Specific to classification algorithms, machine learning
classifiers, such as Random Forest (RF), Support Vector Machine
(SVM), Artificial Neural Network (ANN), etc. require systematic
sampling approaches and a large number of accurate ground data
for training the classification model (Camps-Valls et al., 2003;
Murmu and Biswas, 2015; Tatsumi et al., 2015). Poor field level
data can result in underfitting or over-fitting of the classification
model and result in overestimation or underestimation of the
classification results (Liakos et al., 2018). Although optical data
have shown potential in the identification of crop types, the
data is not reliable under cloudy conditions. Alternatively,
Synthetic Aperture Radar (SAR) is an emerging technique in
crop mapping (Oguro et al., 2001). SAR utilizes the temporal
backscatter (physical) response of a crop and, along withmachine
learning techniques, can be effectively used for crop mapping
and monitoring (Sonobe et al., 2014; Tamiminia et al., 2015;
Gao et al., 2018). Recent studies utilize coarse to fine resolution
satellite imagery for crop type mapping (Wardlow and Egbert,
2010). Some of the well-known approaches for crop type
mapping using different sensors and resolutions are listed in
Table 1.

In this study, we developed a system for in-season wheat
sown area mapping by harnessing the power of multisensory
remote sensing imagery (optical and SAR) and cloud computing
(GEE) techniques (Dong et al., 2016; Gorelick et al., 2017). The
system is designed keeping in mind the challenges in Afghanistan
and provides the capacity for operationalization. The system
can provide independent and evidence-based information on the
status of annual crops at the province level. Ingesting field data
at regular intervals for different seasons in the system will lead to
higher accuracy in crop area estimates at the province level.
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TABLE 1 | Crop mapping approaches.

Research topic Imagery data Spatial resolution Temporal coverage Approach

A comparison of MODIS 250-m EVI and

NDVI data for crop mapping: a case study

for southwest Kansas (Wardlow and

Egbert, 2010)

MODIS 250m 22 March to 30 September

2001

Spectral-temporal classification

Assessment of an Operational System for

Crop Type Map Production Using High

Temporal and Spatial Resolution Satellite

Optical Imagery (Inglada et al., 2015)

Sentinel-2, SPOT4,

Landsat 8

10–30m NA Temporal-supervised

classification

Corn monitoring and crop yield using

optical and RADARSAT-2 images

(Soria-Ruiz et al., 2007)

RADARSAT-2 Images,

SPOT

3–100m NA Temporal back scattered

classification and LAI

Crop Classification Using Short-Revisit

Multi temporal SAR Data. (Skriver et al.,

2011)

Airborne–SAR April to August 2006 Temporal back scattered

classification

Crop identification using harmonic analysis

of time-series AVHRR NDVI data

(Jakubauskas et al., 2002)

AVHRR 1.1 km NA Harmonic Time series NDVI

classification

Crop type mapping using

spectral-temporal profiles and

phenological information (Foerster et al.,

2012)

Landsat TM/ETM 30m NA Spectral-temporal profiles and

Phenological information

First Experience with Sentinel-2 Data for

Crop and Tree Species Classifications in

Central Europe. (Immitzer et al., 2016)

Sentinel 10m NA Supervised classification

Toward operational radar-only crop type

classification: comparison of a traditional

decision tree with a random forest

classifier (Deschamps et al., 2012)

RADARSAT 2 3–100m NA Decision tree and random

forest classifier

3D Convolutional Neural Networks for

Crop Classification. (Ji et al., 2018)

Gafoen 2 15m NA 3D Convolutional Neural

Networks

METHODS AND MATERIALS

Study Area
The study area (Figure 1) covers the whole of Afghanistan (34◦

32′ and 38◦ 1′ 32.16′′ N latitude and 69◦ 9′ and 38◦ 20′ 49.92′′

E. longitude). The Hindu Kush mountain range divides the
country into three very different geographic regions: (a) The
central highlands, characterized by dry hot summers and very
cold winters; (b) the southern plateau consist of sandy deserts
with arable lands along the rivers; (c) the northern plains,
which are highly fertile and include most of the land under
agriculture. The total area of the country is 652,230 sq km
with a population of 34.9 million. Agricultural lands represent
58% of the country with most designated as permanent pasture
(48%), leaving only 11.8% as arable land (CIA, 2019). Total
arable land is 6.5 million hectares of which 3.1 million ha is
irrigated and 3.4 million ha is rainfed (FAO, 2010). Wheat,
rice, barley, and maize are the main cereal crops grown in
the country, with wheat accounting for 80.2% of total cereal
production. Thus, wheat is the most important crop for the food
security of the country (Ahmad, 2018). However, other than
cereals, fruits, vegetables, and opium poppy are also important
crops. The average area under different crops are: wheat−2.2
million hectares; rice−0.13 million hectares; barley−0.19 million
hectares; maize−0.145 million hectares; pulses−0.102 million
hectares; fruits−0.295million hectares; vegetables−0.104million

hectares; (Rashid, 1997); opium poppy−0.216 million hectares
(Avetisyan, 2017).

Dataset Used
Satellite and Other Data
This study used Sentinel 1 SAR and Sentinel 2 multispectral
optical satellite images as the main data sources (Table 2). For
the wheat area classification, bands B4 (Red), B8 (NIR), and
B11 (SWIR) from the S2 were used; whereas the VV (Vertically
transmit Vertically receive) Polarization band was utilized from
the Sentinel 1 data. High-resolution images from Digitalglobe
and Airbus Company (Pleiades) were also used for collecting
reference data for training and validation.

Apart from satellite datasets, agriculture mask (irrigated and
rainfed) from the Afghanistan 2010 land cover (FAO, 2010) was
used to aid in crop mapping. The land cover maps (Figure 1)
have eleven land cover classes viz. irrigated agricultural land,
rainfed agricultural land, fruit trees, vineyards, barren land, sand
cover, forests and shrubs, rangeland, permanent snow, built up,
and water bodies and marshland (FAO, 2010).

Reference Data
Reference data were collected from various sources for training
and validation of the classification model. The field survey was
conducted by professionals from MAIL to collect samples from
the crop field. A random sampling approach was utilized for the
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FIGURE 1 | Study area.

collection of the field data/sample points. During the collection
of samples, the location of the crop field together with field
multi-direction photographs for different crops were collected.
The second set of reference data were collected by MAIL during
a crop cutting survey that covered 17 provinces. Most of the
reference data collected through field and crop cut survey were
mainly from wheat fields. Very few samples were collected
from non-wheat crops, such as vegetable farms, orchards, and
vineyards. Samples for other crops were generated through visual
interpretation by relevant experts and using earlier land cover
maps and time-series images.

The reference data obtained through field and crop cutting
survey covered only 25 out of 34 provinces. For the remaining
10 provinces, samples were generated from high-resolution
images through visual interpretation and analysis of NDVI
time-series for the current and previous years. Google Earth
images andDigital Globe high-resolution images acquired during
October 2016–June 2017 were used for the interpretation.
Overall 16,383 reference? points from wheat (4,797) and
non-wheat (11,586) class were collected. Out of which 70%,
i.e., 11,468 samples were used for training and 30%, i.e.,

4,915 samples were utilized for validation (discussed in the
validation section).

For Helmand province, a set of reference data were received

from the United Nations Office of Drug Control (UNODC) for

opium poppy fields. Additional reference data were collected

through visual interpretation of Airbus Pleiades images. The
distribution of reference data and sources are shown in Figure 2.

Crop Phenology and Crop Calendar
The goal of the classification algorithm was to distinguish the
phenology of wheat from other crop types and land cover. Land
surface phenology (LSP) refers to the timing of different life-cycle
stages of plants (Martínez and Gilabert, 2009). The study of LSP
is important to understand vegetation-growth pattern changes
(Myneni et al., 1997; Fisher and Mustard, 2007). Satellite-
based analysis of LSP addresses the development patterns in
photosynthetic biomass by way of derived vegetation indices (Ahl
et al., 2006), such as the normalized difference vegetation index
(NDVI), the enhanced vegetation index (EVI), and a two-band
enhanced vegetation index (White et al., 1997; Zhang et al., 2003,
2014; Piao et al., 2006). Phenology is measured commonly by (i)
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FIGURE 2 | Distribution of reference data.

TABLE 2 | Satellite data specification.

Characteristics Sentinel 1 Sentinel 2 Airbus Pléiades

Acquisition date Oct. 2016 to

July 2017

Oct. 2016 to July

2017

1, 4, and 27 April

2017

Bands VV Red (B4), NIR (B8),

SWIR (B12)

Blue

Green

Red

Near-infrared

Wavelength range 5.5 cm 443–2,190 nm 430–950 nm

Spatial resolution (m) 10m 10, 20, 60m 0.5 m

Swath 250 km 290 km 20 km

Temporal resolution 12 days 5.5 days Daily

(constellation)

onset of greening, (ii) onset of senescence, (iii) peak development
during the growing period, and (iv) the length of the growing
season (Hudson and Keatley, 2010). Various methods have
been used for the assessment of phenology including threshold,
derivative, smoothing, and model-based methods (Hudson and
Keatley, 2010). Among these, the threshold-based method is the
simplest and is used by many researchers. In the threshold-based
method, the values of VI are plotted against time of year and
single values are chosen to define different stages of phenology
(Karlsen et al., 2006) though the method for specifying the
threshold varies. Some authors use single arbitrary thresholds,
e.g., 0.17 (Fischer, 1994), 0.09 (Markon et al., 1995), and 0.099

(Lloyd, 1990), whereas some authors use threshold specifiers like
the long-term average (Karlsen et al., 2006) or % peak amplitude
of VI (Jonsson and Eklundh, 2002). In this study we have used
NDVI for training samples to determine the thresholds (see
section Wheat Area Mapping Using Optical Images).

Afghanistan has diverse topographic and climatic conditions
resulting in wide variability in growing seasons across the
entire landscape. Knowledge of the growing season is important
for the acquisition of satellite data. The crop calendar is a
tool that provides information on the sowing, growing and
harvesting stages of crops (in our case, wheat). The crop calendar
information can also be used for crop type mapping using the
satellite data. Broad crop calendars at a province-level were
provided by MAIL; these were compiled in 2012. Because of
the variability in climate/weather and other factors, there can be
a shift in the timing of sowing and harvest of wheat over the
years. The calendars (Figure 3) were utilized as a starting point
to characterize the timing of phenological stages of wheat.

Study Methodology
In this study, optical and SAR data were utilized in two steps
in the process of mapping wheat areas. The flowchart of the
detailed methodology is shown in Figure 4. The description of
the methodology is given in the following sections.

Reference Data Preparation
In the first step, reference data collected from wheat and
other crops for 34 provinces of Afghanistan were subjected
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FIGURE 3 | Cropping Calendar by Agro-Ecological Zones for major crops.

to quality check. This is because some of the sample points
collected by the field staff were not always inside the crop fields.
Accordingly, adjustments were made to correct the location

based on three criteria: (a) direction and orientation of the field
photographs; (b) phenological characteristics of the crop; and
(c) visual interpretation through high-resolution Google Earth
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FIGURE 4 | Flow chart for wheat area mapping and estimation.

images. For each province, the reference points were merged and
divided randomly into two categories, i.e., training and validation
samples; 70% of the samples were used for training and the
remaining 30% for validation.

Wheat Area Mapping Using Optical Images
The wheat mapping was done at the provincial level. Optical
Sentinel-2A Level 1-C (top-of-atmosphere) satellite images
with <30% cloud cover from November 2016–July 2017 were
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used for the analysis. The data were preprocessed to remove
clouds/bad pixels. The cloud masking utilizes Sentinel-2 Band
QA60, a quality flag band, to identify and mask out flagged
cloud and cirrus pixels. After that, the median-compositing
function was used on the cloud-masked Sentinel-2 images to
generate a per-pixel median composite of each of the multi-
spectral bands and the indices for every province (Hird et al.,
2017).

NDVI is an effective means to characterize these growth
patterns during the crop cycle (Menenti et al., 1993). Using
randomly collected training samples and the seasonal composite
of sentinel 2 images, NDVI thresholds were identified to
separate the wheat from other crops during sowing, peak and
harvest time at the provincial level. NDVI thresholds were
identified for different seasons (sowing, peak and harvest) and
were different for each province. The difference in the NDVI
thresholds for different provinces is mainly because of the shift
in the phenological cycle (early and late sowing) of wheat and
other crops.

The Normalized Difference Soil Index (NDSI; Equation 2)
values were used as an additional metric to separate the wheat
from fallow land during peak season. The NDSI is preferred
because it is sensitive to canopy structure (Jin et al., 2016) and
is very effective in separating bare soil from other features like
water and sparse vegetation.

NDVI =
NIR− R

NIR+ R
(1)

NDSI =
SWIR− NIR

SWIR+ NIR
(2)

To define the thresholds for separating the wheat from other
crops, the minimum and maximum values of NDVI were
calculated for wheat using the training samples. The separation
was done as below:

Minimum of NDVIwheat samples < Wheatsowing

≤ Maximum of NDVIwheat samples (3)

Wheatpeak ≥ (Minimum of NDVIwheat samples

and NDSI < 0) (4)

Minimum of NDVIwheat samples < Wheatharvest

≤ Maximum of NDVIwheatsamples (5)

The NDVI threshold derived for 2016–2017 were specifically
derived on the basis of collected ground sample points from
the field. The NDVI threshold values depend on various factors,
such as: (i) whether it is a dry year or wet year; (ii) whether
there has been early or late sowing of the crop; and (iii)
atmospheric conditions at the time of data acquisition. Hence, the
NDVI thresholds are specific to the 2016–2017 growing season.
However, Equations (3)–(5) can be utilized for deriving theNDVI
thresholds for other years if field sample points for that particular
year are available.

Refinement of the Wheat Map Using SAR Data
Compared to the other crops, wheat has a different cropping
calendar and growth patterns (Figure 3), except for barley, some

vegetables and opium poppy have growth patterns similar to
wheat. Due to the similarity in cropping season and growth
pattern, it was difficult to accurately separate barley, opium
poppy and some vegetables using Sentinel 2 data despite having
a 5-days temporal resolution. This is because of the limited
availability of cloud-free images which makes it difficult to utilize
the image of a specific time (where wheat can be separated
from other overlapping crops). To overcome this limitation, the
wheat area map obtained from the optical image analysis was
further refined using Sentinel-1 SAR data. SAR sensors have all-
weather capability to acquire images and are sensitive to plant
structure; however, to use the SAR (S1) based classification alone
would require much more sample data for all the crops. The
initial separation of crops using optical data enabled the use
of SAR for only separating the wheat from crops with similar
crop calendar and phenology. The S1 data has a consistent
time-series in terms of incidence angle and has a wide scope
in mapping different crops (Inglada et al., 2015). Initially, SAR
(S1) datasets were preprocessed with VV polarization imagery.
Pre-processing includes orbital file correction, thermal noise
removal and terrain correction. For removing speckle noise,
the median filter with kernel window size 5 × 5 was used
for this research. The selection is based on previous studies
that demonstrate that the median filter with window size 5
× 5 produces consistent and satisfactory results than other
speckle filters and window sizes (e.g., 3 × 3 or 7 × 7)
(Ozdarici and Akyurek, 2010). Monthly median composites
were developed for the entire wheat crop cycle (i.e., sowing
until harvesting).

The analysis of S1 data shows the difference in response
patterns from different crops. However, the variability of
responses shows overlap and makes it difficult for the threshold-
based separation (Figure 5). Thus, a Random Forest (RF)
classification technique was utilized using time series S1 data
and training points to separate the wheat from other crops.
The Random Forest (RF) randomly selects a subset of training
sample through replacement to build a single tree, i.e., it uses
bagging technique where for every tree, data is sampled from
the original complete training set. There are two important
user- define parameters in RF, i.e., (i) Number of trees; (ii)
Number of variables. The generalization error always converges
as the number of trees increases (Breiman, 2001). Therefore, RF
classifier doesn’t have any issue of overfitting which can also
be attributed to the Strong Law of Large Numbers (Bercovici
and Pata, 1996). There is no well-defined rule for selection
of the number of trees. However, Guan et al. (2013) suggest
that number of trees can be as large as possible but beyond a
certain point, additional trees will not help in improving the
performance of the classifier. Also, the increased number of
trees would require high computation. In this study, we have
used the number of trees as 100. The selection was based on
the hit and trial method. Secondly, the number of variables
highly affects the performance of RF classifier, which is usually
set to the square root of the number of input variables. In
our case, we have used time series of the monthly median of
VV polarized sentinel−1 backscatter values. The application of
Random Forest was applied within the classified mask generated
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FIGURE 5 | Seasonal phenological characteristics using NDVI. (A) Laghman, (B) Helmand province.

FIGURE 6 | (A) Phenological characteristics of different crops (Laghman Province); (B) Phenological characteristics of wheat in different AEZ.

from the optical image analysis. This step was applied only after
the harvest season.

Accuracy Assessment
In the context of remote sensing based land cover classification,
accuracy assessment can be defined as an agreement between
a standard assumed to be correct and a classified image of
unknown quality (Grenier et al., 2008). Classification errors
occur when a pixel (or feature) belonging to one category is
assigned to another category. Accuracy assessments can be done
using qualitative methods through visual interpretation and
quantitative evaluation based on statistical methods (Cochran,
1997; Olofsson et al., 2014). The accuracy assessment for this
study was conducted in two steps. First, the results were

checked by comparing with various ancillary data to identify
gross errors. Second, the final data were used for quantitative
accuracy assessment. Of the total reference samples (ground
sample points) collected for different crops, 70% were used
for training and the remaining 30% for validation. Error
matrices were generated for each province separately. Using

these error matrices, the statistical accuracy assessment was done
by generating producer’s and user’s accuracy including Kappa
coefficients. Kappa coefficient is an indicator of accuracy of
the classified map. It is a measure of how the classification
results compare to values assigned by chance. The value of the
kappa coefficient ranges from 0 to 1. If kappa coefficient equals
to 0, there is no agreement between the classified image and
the reference image. If kappa coefficient equals to 1, then the
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classified image and the ground truth image are identical. Higher
the value of kappa coefficient, more accurate the classified map is.

Tools Used
The workflow for the wheat area mapping is implemented in
the Google Earth Engine (GEE) environment using custom Java
scripts. The reference data and other required data were loaded
into GEE asset storage. The preprocessed images were also loaded
into GEE asset to run the classification. The resulting wheat
maps were exported as Geocoded rasters and imported to ArcGIS
software for visual interpretation and accuracy analysis.

RESULTS AND DISCUSSION

Understanding the Phenological and
Temporal Backscatter Characteristics of
Wheat and Other Vegetation
Phenological Characteristics Using Optical Data
Cropping calendar information aggregated by province
(Figure 3) suggests that the sowing season of wheat overlaps
with barley, opium poppy, and vegetables. However, some
differences can be seen in the length of the season including the
start and end of the season, and peak. While analyzing the data,
we consulted province-wise crop calendars. However, due to
cloud cover, it was not possible to create monthly composites
of Sentinel 2 images covering all the provinces to generate
monthly phenology. Therefore, seasonal median composites of
NDVI were created during the sowing, peak and harvest seasons
for wheat. As an example, crop growth patterns for Laghman
province are shown in Figures 5A, 6A which depict vineyards
having distinct signals compared to wheat areas during the
sowing season. The growth pattern is also significantly different.
The orchards had higher NDVI both during the peak and harvest
time. NDVI response from vegetables varied a lot but the values
were lower than the wheat during the peak and the harvest
season. The NDVI values for opium poppy showed higher
overlap during the sowing period. It has relatively higher NDVI

values during the peak and the harvest time. The opium poppy
has a shorter cropping season so separation with barley and
opium poppy would have been possible if cloud-free monthly
images could be obtained. The NDVI characteristics of the
opium poppy in Helmand province (Figure 5B) showed higher
separability from the wheat during the sowing and peak season.
Overall, the NDVI seasonal composites were useful to distinguish
the wheat from orchards, vineyards and some vegetables. Not
much separation between these crops could be achieved using
the sowing period data alone; much more improved results can
be obtained by integrating sowing, peak and harvest season
data. However, significant overlap in NDVI was still observed
between the wheat, opium poppy, and barley using the optical
image composites.

Figure 6B shows the difference in the phenological
characteristics of wheat for different Agro-Ecological Zones
(AEZ) in Afghanistan. By examining Figure 6B, it was
observed that there is not much difference in the phenological
characteristics of wheat in the Eastern, Southern and the South
Western Region. The Western and the Central Western region
have late peak and harvest times. In the Northern and North
Eastern Region, the NDVI values at peak season were generally
low compared to other regions and also the harvest time of the
wheat was late. The shift in the sowing, peak and harvest time
of wheat is due to the different altitude, climatic zones and that
varies according to the agro-ecological zones. The difference in
the growth pattern of the wheat in different AEZs also suggests
the use of different NDVI thresholds for sowing, peak and
harvest season for different provinces.

Analysis of Temporal Backscatter Characteristics of

S1 (SAR Data)
SAR has all-weather capability and good temporal resolution.
Therefore, backscatter characteristics of wheat and other
overlapping crops/vegetation features were also examined
using Sentinel 1 SAR data. The monthly temporal median
composite images from November 2016–July 2017 were

FIGURE 7 | Monthly SAR Backscatter profile by crop. (A) Laghman, (B) Helmand.
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utilized to study the response of backscatter characteristics
of overlapping crops at different periods (Figure 7). Since
SAR backscatter varies by plant structure, distinct signals

TABLE 3 | Confusion matrix.

Irrigated wheat

Class Non-wheat Irrigated Total User’s

wheat accuracy (%)

Non-wheat 1,839 282 2,121 86

Irrigated-wheat 341 1,388 1,729 80

Total 2,180 1,670 3,850

Producer’s accuracy (%) 84 83

Overall 83.8 (%)

AC 0.50

Kappa 0.67

Rainfed wheat

Class Non-wheat Rainfed Total User’s

wheat accuracy (%)

Non-wheat 710 59 769 92

Rainfed wheat 58 238 296 80

Total 768 297 1,065

Producer’s accuracy (%) 92 80

Overall accuracy 89 (%)

AC 0.59

Kappa 0.77

were observed for different crops. However, due to high
overlapping responses from different crops (Figure 7), the
threshold-based separation was not possible using SAR
backscatter datasets. Random Forest classification was used
on the monthly composites of backscatter data to constrain
the classification within the mask (threshold from optical S2
data) obtained by phenological analysis from S2 images in the
earlier stage.

The Accuracy of the Wheat Area
Estimation
Classification error matrices were generated for each province
for wheat and non-wheat areas using validation samples. Table 3
shows the confusion matrix for Irrigated and Rainfed wheat.

The statistics of accuracy (overall, users, producers, and
Kappa) achieved at a provincial level for irrigated and rainfed
wheat is depicted in Figure 8. The mean overall accuracy for
all provinces for irrigated and rainfed wheat areas was 83.8
and 89.0%, respectively. The minimum overall accuracy was
48% for irrigated wheat in the Faryab province. This was
exceptional because of three reasons (i) cloud cover, which
hampers the quality of the images over that province; (ii) the
limited number of sample points, which makes it difficult to
identify the thresholds; and (iii) poor quality of ground sample
points. The overall accuracy was <75% for irrigated wheat
for only six provinces out of 34. For rainfed wheat, only one
province had <75% accuracy. The accuracy for the provinces
without the reference data was generally lower than those where
reference samples were available. The Kappa value forirrigated
wheat for provinces with available field data was 0.69 whereas
it was 0.54 for provinces with no field data. After evaluating the
accuracy of each province, the wheat area was estimatedusing the

FIGURE 8 | Accuracy analysis results by provinces.
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TABLE 4 | Area and accuracy using different combinations of datasets (example Kabul province).

Case Sensor used Temporal Overall accuracy (%) Area (ha)

S1 S2 Sowing Peak Harvest

Case 1 – Yes Yes Yes – 72 31,783

Case 2 Yes Yes Yes Yes – 86 17,466

Case 3 – Yes Yes Yes Yes 89 14,780

Case 4 Yes Yes Yes Yes Yes 93 13935.9

FIGURE 9 | Distribution of Irrigated and Rainfed Wheat area of Afghanistan in 2017.

FIGURE 10 | Web mapping system for dissemination and visualization of wheat map.
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equation (Equation 6).

Wheat area (ha)

=

(

Pixel count
)

∗
(

resolution of the image
)

∗
(

resolution of the image
)

10000

(6)

In the study, we also explored the potential accuracy for using
S1 and S2 datasets and accuracy achieved for the estimation at
different crop growth stages, i.e., sowing, peak, and harvest for
Kabul as a case study (Table 4). The accuracies and the area
estimates for different combinations and periods are presented
in Table 4. From Table 4, it can be observed that the accuracy
of the classification is highest when the assessment is done
at the end of the season, i.e., utilizing both optical and SAR
datasets. However, a decent accuracy can be achieved during peak
season using both optical and SAR images. The peak season area
estimates can be highly useful for food security management and
to address major deviations in the wheat area cultivated during
the specific season.

Distribution of Wheat in Afghanistan
Figure 9 shows the distribution of irrigated and rainfed
wheat areas for 2017 produced using both optical (S2) and
SAR (S1) data and images from sowing until harvest. By
observing the map (Figures 3, 9), it can be concluded that
the majority of the rainfed areas were located in the northern
region of the country, which is mountainous (Hindu Kush
range) and experiences a decent amount of precipitation
and snowfall during the winter season, whereas irrigated
the area is distributed across the entire country. More than
80% of wheat (both irrigated and rainfed) is produced in
sixteen provinces of which Badghis, Takhar, Balkh, Kunduz,
Herat, Helmand, and Kandahar are major wheat-producing
provinces accounting for nearly 50% of the wheat production in
the country.

Operationalization and Dissemination
The wheat mapping workflow is implemented in GEE
using a customized interface for each module. A systematic
capacity building program, including formal and on the job
training, was conducted for MAIL professionals to run the
workflow. A web-based visualization system was developed
(Figure 10) to disseminate the final results. The portal can be
accessed via the following URL link: http://geoapps.icimod.org/
afwheat/.

LIMITATIONS

While the study demonstrated a method for in-season
classification of wheat area for food security planning in
Afghanistan, there are few limitations of the study. Firstly, the
classification system is implemented in the free cloud platform of
Google earth Engine assuming that GEE will continue ingesting
the Sentinel−2 and Sentinel−1 data in its image collection. If
for any reason, GEE discontinues providing access to the GEE

cloud platform, the system could not be automated and all
the Sentinel data would have to be downloaded and processed
offline. Secondly, the threshold-based separation of wheat
from other crops has a limitation in the area where wheat is
mixed with other crops especially vegetables and opium poppy
which have similar phenology. Though SAR images were used
to separate these crops from wheat, it requires field samples
for each year which is quite challenging in the context of
Afghanistan. Alternative source like high-resolution satellite
images could be used for the collection of samples from those
areas. Third, currently, Sentinel-1 SAR images only capture
VV polarized data over Afghanistan. Multiple polarized SAR
data could be a better option for classifying wheat using the
RF algorithm. Fouth, for operationalization of the system,
capacity development has been done for Geospatial staff in
MAIL but, many of the MAIL staff have left during the study
period. Though most of the system is automated and the
system could be implemented with quick training, MAIL has
to ensure the availability of staff and knowledge transfer during
staff turnover.

CONCLUSION AND WAY FORWARD

In this study, a systematic methodology for wheat area
mapping was developed for Afghanistan with the potential
for operationalization to support the management of food
security in the country. To overcome the issues related to
low internet bandwidth, lack of sufficient ground samples
and limited availability of cloud-free optical satellite images, a
cloud-based system combining phenological characteristics using
optical images and temporal backscatter profiles using SAR
images was adopted. The system uses a multi-step approach
to provide area estimation as the wheat season progresses.
The first estimation is provided during the peak season to
give an early indication of wheat cultivated area. The more
accurate estimation is provided immediately after the harvest
season. Considering the low capacity on the use of remote
sensing based crop type mapping in Afghanistan, this approach
was automated in GEE. Through NASA SERVIR, training
activities are underway to enhance the skills of the local staff in
government agencies on mapping and monitoring of crop areas
using GEE.
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