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Crop production statistics at the field scale are scarce in African countries, limiting
potential research on yield gaps as well as monitoring related to food security. This
paper examines the potential of using Sentinel-2 time series data to derive spatially
explicit estimates of crop production in an agroforestry parkland in central Burkina Faso.
This type of landscape is characterized by agricultural fields where cereals (millet and
sorghum) and legumes (cowpea) are intercropped under a relatively dense tree canopy.
We measured total above ground biomass (AGB) and grain yield in 22 field plots at the
end of two growing seasons (2017 and 2018) that differed in rainfall timing and amount.
Linear regression models were developed using the in situ crop production estimates
and temporal metrics derived from Sentinel-2 time series. We studied several important
aspects of satellite-based crop production estimation, including (i) choice of vegetation
indices, (ii) effectiveness of different time periods for image acquisition and temporal
metrics, (iii) consistency of the method between years, and (iv) influence of intercropping
and trees on accuracy of the estimates. Our results show that Sentinel-2 data were
able to explain between 41 and 80% of the variation in the in situ crop production
measurements, with relative root mean square error for AGB estimates ranging between
31 and 63% in 2017 and 2018, respectively, depending on temporal metric used
as estimator. Neither intercropping of cereals and legumes nor tree canopy cover
appeared to influence the relationship between the satellite-derived estimators and
crop production. However, inter-annual rainfall variations in 2017 and 2018 resulted in
different ratios of AGB to grain yield, and additionally, the most effective temporal metric
for estimating crop production differed between years. Overall, this study demonstrates
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that Sentinel-2 data can be an important resource for upscaling field measurements
of crop production in this agroforestry system in Burkina Faso. The results may be
applicable in other areas with similar agricultural systems and increase the availability
of crop production statistics.

Keywords: remote sensing, parkland, Sudano-Sahel, intercropping, yield mapping, crop statistics, food security,
monitoring

INTRODUCTION

Smallholder agricultural systems are the dominant livelihood
strategy in most of sub-Saharan Africa (Morton, 2007), with a
very high proportion of food and cash crop production coming
from farms that are generally smaller than 2 ha (Gollin, 2014;
Lowder et al., 2016). The importance of these systems in the
light of the projected population growth and subsequent food
production requirements on the continent cannot be overstated.
At present, low actual crop yields relative to potential yields
limit the possibilities to achieve food security and reduce poverty
(World Bank, 2008). Such yield gaps and their causes need to be
understood in order to design effective measures to increase crop
production (Tittonell and Giller, 2013).

A basic requirement for conducting research on yield gaps
is the availability of field level crop production estimates. Such
data make it possible to understand causes of yield gaps and to
evaluate the effectiveness of interventions and changes in land
use techniques, as well as impacts resulting from changes in
agricultural policy. However, agricultural statistics collected by
field surveys in Africa are mainly reported on national level and
generally considered to be unreliable (Carletto et al., 2015b; Burke
and Lobell, 2017).

Satellite remote sensing represents an alternative method for
deriving quantitative estimates of crop production and grain yield
with a number of potential benefits, including the ability to cover
large areas, repeated observations and low costs (Lobell, 2013;
Chivasa et al., 2017). Crop production estimation has been a
key research topic for several decades (Atzberger, 2013; Rembold
et al., 2013). The main efforts have been directed toward intensive
commercial systems where the fields are generally large, crops
are homogeneous, and reliable agricultural statistics are accessible
to calibrate and validate remote sensing based estimates (Lobell,
2013; Chivasa et al., 2017). Yields of these agricultural systems
can be easily estimated even if the remotely sensed imagery has
relatively coarse spatial resolution.

Such preconditions do not apply in the heterogeneous African
smallholder systems where the agricultural fields are typically
very small, irregular in shape and discontinuous in space and
in crops cultivated (Burke and Lobell, 2017). Estimates based
on household surveys from four African countries suggest that
more than 50% of the fields are below 0.4 ha in size and 25%
are smaller than 0.2 ha (Carletto et al., 2015a). In addition,
a large proportion of the fields are intercropped, with high
within-field heterogeneity in productivity (Bayala et al., 2014,
2015) and in situ measurements of crop production are generally
unavailable (Tittonell et al., 2007; Bayala et al., 2014). A further
complicating condition is that many of the smallholder farmers,

in particular in West Africa, practice agroforestry where trees and
shrubs are integrated in the fields and thereby pose an additional
challenge for remote sensing-based estimates of crop production
(Vancutsem et al., 2013; Sweeney et al., 2015; Bégué et al., 2018).

Consequently, coarse-to-medium spatial resolution systems,
such as MODIS and Landsat, provide limited possibilities for
accurate crop production estimation in these heterogeneous
agricultural landscapes because of the inability to distinguish
small individual fields. Under such conditions, these satellite
systems integrate the spectral measurement over an area that goes
beyond the field boundaries, which means that other landscape
components influence the signal and thereby results in mixed
pixels. An important technological development was achieved
when the Sentinel-2 satellite systems became operational (2A
in 2015 and 2B in 2017). Sentinel-2 combines key spectral
wavelengths at 10–20 m spatial resolution with a relatively
short revisit-period (5 days at Equator) and an open-access data
policy. These improvements have opened up new possibilities
for more frequent high-resolution observations of agricultural
fields, which is a precondition for satellite-based crop production
estimation in African smallholder systems (Duncan et al., 2015).

Recent research in both eastern and western Africa has
demonstrated the feasibility of satellite-based crop production
estimation in smallholder systems. Burke and Lobell (2017) used
1 m Terra Bella Skysat imagery to estimate maize production
during two growing seasons in Kenya and found promising
agreement between satellite and in situ crop production estimates
at individual field level. These authors concluded that the low
availability of cloud-free imagery was an important limitation
for improving accuracy in the estimates. Jin et al. (2017, 2019)
expanded on the research in Kenya by also assessing the utility
of satellite imagery from RapidEye and Sentinel-2. They found
that the inclusion of red-edge wavelengths was useful for crop
production estimation and reported considerable improvements
in accuracy when aggregating field scale estimates to district level.
Also using Sentinel-2 imagery, Lambert et al. (2018) developed
crop type specific regression models to estimate production of
millet, sorghum, maize and cotton in Mali. They showed that
peak growing-season values of vegetation index (VI) and leaf area
index (LAI) were the best estimators for the different crops.

The aim of this study is to assess the utility of Sentinel-
2 data to estimate crop production at individual field scale
in a smallholder farming system in central Burkina Faso.
The landscape type in focus is referred to as agroforestry
parklands in which the fields include a significant tree component
and represents an important subsistence base in West Africa
(Bayala et al., 2014). We investigated several critical aspects of
satellite-based crop production estimation in this farming system,
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FIGURE 1 | Location of study area and distribution of in situ crop production plots.

including (i) choice of vegetation indices (VI), (ii) effectiveness
of different periods for image acquisition and temporal metrics,
(iii) consistency of the method between years, and (iv) influence
of intercropping and trees on accuracy of the estimates. We also
assessed the relationship between crop above ground biomass
(AGB) and grain yield based on the reasoning that AGB has a
stronger influence on the remote sensing data and is therefore
easier to estimate.

MATERIALS AND METHODS

Study Area
The study area is an agroforestry parkland system situated in the
rural commune of Saponé (12◦04′48′′N, 1◦34′00′′W) located 30
km south from Ouagadougou in central Burkina Faso (Figure 1).

FIGURE 2 | Monthly rainfall distribution reported by Saponé Agricultural
Service.

This is a typical Sudano-Sahelian smallholder landscape where
the fields are rainfed and farmers primarily grow pearl millet
(Pennisetum glaucum (L.) R. Br.), sorghum (Sorghum bicolor
(L.) Moench) and legumes, such as cowpea (Vigna unguiculata),
for household consumption. Parklands are the main production
system throughout this region. Farmers apply various forms
of organic amendment to the fields, including manure, crop
residues, woody litter and compost, but rarely mineral fertilizers
(Koussoubé and Nauges, 2016). Doses of applied manure vary
from 0.8 to 15 t ha−1, with an average dose of 5.5 ± 0.72 t
ha−1 (Sanou, 2010). Crop residues also represent an important
source of fodder for the small-scale livestock production, which
is a common activity throughout this region.

The local terrain is relatively flat with small variations in
elevation (293–363 m above sea level). The soils are shallow
(on average ca. 60 cm), sandy loamy reosols (FAO classification)
with very low nutrient content in terms of nitrogen, phosphorus
and organic material (Bazié et al., 2012). In addition, the soils
are weakly acidic with low cation exchange capacity (Bayala
et al., 2002). Mean tree canopy cover is 15% and mainly
consists of traditional agroforestry species, in particular Vitellaria
paradoxa, Parkia biglobosa, Lannea microcarpa, and Mangifera
indica (Karlson et al., 2015).

Average annual rainfall is around 800 mm with high inter-
annual variability, which strongly influences crop development
and production. Total rainfall was 850.7 mm in 2017 and
789.1 in 2018, with relatively large inter-annual differences in
the monthly distribution (Figure 2). Annual mean potential
evapotranspiration (PETPenman) is 1900± 210 (Bazié et al., 2018).
The rainy season generally extends between May and October,
with high variability between seasons, and the main proportion of
rain is usually falling between July and September. The cropping
season starts between May and July, depending on crop type
and the onset of the rainy season, whereas harvesting generally
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takes place at the end of October to November. However,
unreliable rainfall at the start and end of the rainy season
can lead to large windows for both sowing (May 15–July 15)
and harvesting (October 15–December 15). This is even more
variable nowadays due to high climate variability, as evidenced by
farmers sometimes continuing to sow in August, as well as rains
continuing to the beginning of November.

Crop Production Data
We measured total AGB and grain yield in 22 plots (20 × 20
m) during the harvest period (late October to early November)
in 2017 and 2018 (Figures 1, 3). The plot locations included
agricultural fields with different tree canopy cover and crop
combinations, where agreements with the local landowners were
organized. Tree canopy cover within and around the fields ranged
between 1 and 34% (see section “Analysing the Influence of Tree
Cover and Intercropping on Estimation Accuracy”). Each plot
was geo-referenced using a Garmin Oregon GPS device with a
locational error <3 m. Three different crops were cultivated in
the sampled fields, including sorghum, pearl millet and cowpea.
The plots included both intercropped and single crop fields. For
each plot and crop, we cut, dried and weighed the different
plant components. The millet and sorghum plant components
included ears, grain and straw, and for cowpea the components
included pods, grain and residues. Total AGB represents all dried
plant components, including the grain.

Satellite Data
Sentinel-2 A/B data from 2017 to 2018 growing seasons (June-
October) were processed to Level 2A using version 1.8.3 of
the Sentinel-2 for Agriculture system (Bontemps et al., 2015;
Defourny et al., 2019). Following these protocols, atmospheric
correction, detection of clouds and shadows and retrieval of
aerosol optical thickness were done using the MACCS algorithm
(Hagolle et al., 2010, 2015). From the two growing season time
series, images with cloud cover below 30% were selected for
further processing, resulting in six 100 × 100 km granules
(30PXU) from 2017 (9/6, 29/6, 29/7, 7/9, 7/10, 22/10) and seven
from 2018 (14/6, 14/7, 24/7, 17/9, 27/9, 7/10, 22/10). The image
acquisition aimed to select dates from similar points in time for
each of the 2 years. MACCS output enabled masking of clouds
and shadows in the time series images. Sentinel-2 acquires red-
edge and shortwave infrared bands at 20 m resolution. These

bands were resampled to 10 m using bilinear interpolation to
allow integration with the visible and near-infrared bands.

In addition, we acquired a cloud free Pléiades image (0.5 m
spatial resolution) in October 2017 and used it to delineate tree
crowns around the field plots. This ancillary dataset enabled an
assessment of the potential influence of parkland trees on the
Sentinel-2-based crop production estimation.

Vegetation Indices
We used various spectral VI derived from the Sentinel-2 data
as estimators of crop production. Table 1 presents candidate
VI previously used for estimating crop production in similar
agricultural systems. These were identified in recent studies
focusing on satellite based estimation of crop production and
yield at high spatial resolution in smallholder systems located in
comparable agro-ecological zones with similar crops, including
Burkina Faso (Forkuor et al., 2018), Mali (Lambert et al., 2018),
and Kenya (Jin et al., 2017). Our review indicated that VI with
a strong relationship to crop production often included red-
edge wavelengths or were designed to be sensitive to canopy
chlorophyll content. We also included traditional VI, such as
NDVI and EVI, for reference.

Temporal Metrics for Crop Production
Estimation
The image dates used to derive VI, as well as the method used
to integrate a time series of vegetation index values to derive
temporal metrics, such as peak or mean values, are critical issues
that strongly affect the accuracy of crop production estimation
(Chivasa et al., 2017). First, clouds limit the possibility to acquire
gap free observations during the growing season, especially
in tropical areas, and thereby generally reduces the possibility
to acquire dense time series (Roy et al., 2010). Secondly,
the phenological phase characterized by the observations is
critical for establishing strong relationships between VI and
crop production (Duncan et al., 2015). The optimal timing of
image acquisition or method for deriving temporal metrics can
differ between years, geographical regions and crops, and also
depends on the planting period and climatic factors, in particular
rainfall (Rasmussen, 1992; Maselli et al., 2000). We evaluated both
individual dates and temporal metrics (Table 2) as estimators of
crop production. The temporal metrics were derived from the

TABLE 1 | Vegetation indices (VI) selected for crop production estimation in Saponé, Burkina Faso.

Vegetation index (VI) Equation References

Normalized Difference Vegetation Index (NDVI) (B8−B4)
(B8+ B4) Rouse et al., 1974

Enhanced Vegetation Index (EVI) 2.5 ×(B8−B4)
(B8+6 ×B4+7.5 ×B2+ 1) Huete et al., 1997

Red Edge 1 NDVI (B8−B5)
(B8+ B5) Forkuor et al., 2018

Red Edge 2 NDVI (B6−B4)
(B6+ B4) Forkuor et al., 2018

Triangular Vegetation Index (TVI) 0.5 (120 (B4− B3)− 200(B4− B3) Broge and Leblanc, 2001

MERIS Terrestrial Chlorophyll Index (MTCI) (B8−B5)
(B5− B4) Dash and Curran, 2004

The equation references the Sentinel-2 band numbers.
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full growing season (GS; June–October), as well as the end of the
growing season (EGS) defined here as September to October.

Crop Production Estimation
In order to identify the most effective estimators for crop
production, we compared average and maximum Pearson
correlation coefficients (p < 0.05) between in situ measurements
of crop production and the candidate VI. The comparison was
done for both the temporal metrics and individual acquisition
dates. In the final selection of VI to use as estimators in the crop
production models, we gave preference to those that provided
high correlation coefficients for both 2017 and 2018. The reason
for this was to test whether a crop production model developed
in 1 year (2017) was applicable for estimation of crop production
in the following year (2018).

Crop production estimation models were calibrated using
the most effective estimators identified in the previous step
as independent variables in simple Ordinary Least Squares
regression. Due to the relatively small sample size (n = 22),
we used 10-fold cross validation for model calibration and
for computing model accuracy measures (Hastie et al.,
2008), including coefficient of determination (R2), root
mean square error (RMSE), relative RMSE (relRMSE), and
standard deviation (SD).

Analysing the Influence of Tree Cover
and Intercropping on Estimation
Accuracy
Using the 2017 Pléiades image as reference, we manually
delineated individual tree crowns in 60 m × 60 m areas centred
over the crop harvest plots and tree canopy cover (%) was
calculated within each 3600 m2 area. From the in situ crop
production data, we also computed the proportional contribution
of cowpea to total AGB, which enabled an assessment of the
influence of intercropping on the crop production estimation.
Cowpea is a low growing legume and represents the primary crop
to combine with cereals (millet and sorghum). We hypothesized
that a higher proportion of cowpea in the fields would increase
the error in the estimates since this crop is partly obscured
from the view of the satellite sensor by the taller cereal canopy.
Separate linear regression models were computed to analyse
the relationships between residuals from the crop production
estimation models and the field level proportion of cowpea AGB,
as well as percent tree cover.

TABLE 2 | Temporal metrics used for crop production estimation based on full
growing season (GS) and end of growing season (EGS) VI time series.

Temporal metric Time period

GS mean VI June–October

GS median VI June–October

GS peak VI June–October

EGS mean VI September–October

EGS sum VI September–October

RESULTS

Crop Production Measurements
Crop production measured in situ differed substantially between
the 2 years, in particular for AGB, which was higher
in 2018, whereas inter-annual differences in mean grain
yield was comparatively small (Table 3). On the other
hand, maximum and minimum values, and consequently
the range of AGB and grain yield showed large differences
between the 2 years with considerably higher values in
2018. The higher AGB in 2018, when total rainfall was
lower compared to 2017, can be explained by variations in
the interannual rainfall distribution. Relatively high rainfall
in July (2018) can provide more favorable conditions for
plant growth, whereas heavy rains in August (2017) can
damage the more developed plants through effects of sustained
flooding of the soil.

There was strong linear relationship between AGB and
grain yield in both years, with an R2 of 0.88 and 0.86 in
2017 and 2018, respectively (Figure 4). However, the slope of
the regression line differed between the years with a lower
AGB to grain yield ratio in 2018 compared to 2017. This
suggests that AGB is a very strong indicator of grain yield
despite the high prevalence of intercropping of cereals and
legumes, which differ markedly in their structure. The results
also show that the relationship can be subject to considerable
inter-annual differences. We choose to focus the remaining
analysis of satellite-based crop production estimation on total
AGB instead of grain yield for two reasons. Firstly, AGB is
what influences the signal in the Sentinel-2 data and any
attempt to estimate grain yield is dependent on the strength
of this relationship. Secondly, in addition to the grain yield, all
other crop material constitutes an important source of fodder
for livestock, which represents a key component of the area’s
livelihood (Bayala et al., 2014).

Identification of Crop Production
Estimators
The strength of relationships between the candidate VI and
AGB varied slightly with no clear consistency between the years,
with the exception of MTCI that did not provide a significant
correlation in either 2017 or 2018 (Table 4). When considering
both 2017 and 2018, RENDVI 2 proved to be the most stable VI
and was therefore selected as the VI to develop regression models
for crop production estimation. The temporal metrics with the
strongest relationship to AGB also differed between the years,
with GS peak VI consistently ranking highest in 2017 and GS
median VI in 2018.

In addition to the temporal metrics, we also investigated
the potential of the most effective VI (i.e., RENDVI 2) from
individual dates as estimators of AGB. Figure 5 shows a relatively
similar temporal pattern for both years, where RENDVI 2
from early to mid-September appears to provide the strongest
correlation to AGB. The difference in the September image
acquisition dates between 2017 and 2018 needs to be considered
when comparing the maximum correlation coefficients.
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TABLE 3 | Descriptive statistics of in situ crop production measurements in Saponé, Burkina Faso.

Year Crop combination AGB ton ha−1 Grain yield ton ha−1

Min Max Mean Min Max Mean

2017 Sorghum (n = 4) 0.74 2.09 1.18 0.17 0.57 0.33

Millet (n = 6) 0.06 1.79 0.66 0.01 0.38 0.15

Sorghum – cowpea (n = 7) 0.10 2.19 1.10 0.05 0.89 0.36

Millet – cowpea (n = 1) 0.73 0.73 0.73 0.15 0.15 0.15

Millet-sorghum – cowpea (n = 4) 0.56 1.85 0.99 0.16 0.87 0.41

Total 0.06 2.19 0.96 0.01 0.89 0.30

2018 Sorghum (n = 8) 0.29 4.67 1.92 0.04 1.12 0.37

Millet (n = 5) 0.53 4.89 2.1 0.08 0.82 0.35

Sorghum – cowpea (n = 3) 0.29 2.51 1.13 0.05 0.73 0.31

Millet – cowpea (n = 5) 0.65 1.38 0.98 0.14 0.26 0.22

Millet-sorghum – cowpea (n = 1) 1.73 1.73 1.73 0.36 0.36 0.36

Total 0.29 4.89 1.62 0.04 1.12 0.32

FIGURE 3 | Two examples of field plot locations. Early growing season (left) and before harvest (right).

Estimating Crop AGB Production
The regression equations and the validation metrics for the AGB
estimations based on temporal metrics and individual dates are
presented in Table 5. The strength of the linear regression models
between in situ AGB and VI estimates is generally high, with
R2 ranging between 0.41 and 0.80. However, there are clear

TABLE 4 | Correlation coefficients between vegetation index (VI) temporal metrics
and aboveground biomass (AGB) in Saponé, Burkina Faso.

2017 2018

Vegetation index (VI) Average Max Average Max

EVI 0.63 (4) 0.69 – Peak 0.68 (5) 0.73 Median

NDVI 0.68 (4) 0.77 – Peak 0.65 (5) 0.75 Median

RENDVI 1 0.70 (1) 0.70 – Peak 0.53 (4) 0.58 Median

RENDVI 2 0.68 (6) 0.76 – Peak 0.73 (5) 0.83 Median

TVI 0.62 (4) 0.77 – Peak 0.57 (5) 0.60 Peak

MTCI – – – –

Numbers in parentheses indicate the number of temporal metrics with a significant
(p ≤ 0.05) relationship to AGB that were used to compute the mean value.

differences in accuracy between the 2 years when using VIs
from individual dates as estimators. Specifically, the regression
model based on RENDVI 2 from September 7 (2017) resulted
in the most accurate estimates overall, with an R2 of 0.80 and
relRMSE of 32.2%. This contrasts with the lowest accuracy
for AGB estimates that were derived using RENDVI 2 from
September 17 in 2018, both in terms of R2 (0.41) and relRMSE
(63%). Using temporal metrics (GS peak and median) derived
from the full growing season time series as estimators resulted
in relatively high accuracy for both 2017 and 2018 with small
inter-annual differences.

Above ground biomass estimates in 2017 were within the
range of the in situ measurements and the estimation models did
not show any signs of bias (Figure 6). In 2018, the AGB estimates
were mostly between 0.5 and 3 ton ha−1 and generally smaller as
compared to the in situ measurements. The 2018 temporal metric
(median) showed less tendency for bias and clearly outperformed
the individual date (September 17, 2018) in terms of accuracy.

Inter-Annual Consistency
As an additional experiment, we applied the 2017 peak
RENDVI 2 regression model to estimate AGB in the
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FIGURE 4 | Relationships between in situ aboveground biomass (AGB) and grain yield in 2017 (left; R2 0.88) and 2018 (right; R2 0.86) in Saponé, Burkina Faso.

TABLE 5 | Linear regression models used for aboveground biomass (AGB) estimation and validation metrics for 2017 and 2018 for the Saponé site in Burkina Faso.

Year Regression model R2 RMSE (ton ha−1) Rel RMSE (%) SD (ton ha−1)

2017 AGB (ton ha−1) = −4.0 + 12.7 × peak RENDVI 2 0.62 0.54 56.2 0.68

AGB (ton ha−1) = −2.7 + 10.4 × Sep 7 RENDVI 2 0.80 0.31 32.2 0.76

2018 AGB (ton ha−1) = −8.3 + 31.9 × median RENDVI 2 0.68 0.77 47.5 0.93

AGB (ton ha−1) = −2.1 + 9.6 × Sep 17 RENDVI 2 0.41 1.02 63.0 0.80

Remotely sensed estimators are highlighted in italics.

following year using the 2018 Sentinel-2 time series as
input data. The 2017 peak RENDVI 2 model was able to
produce relatively accurate AGB estimates in 2018 in terms
of R2 (0.66), RMSE (0.81 ton ha−1) and relRMSE (50%;
Figure 7). However, the AGB ranges and mean values are
different between the years, and AGB in 2018 was generally
underestimated when using the model developed in 2017. The

FIGURE 5 | Correlation between RENDVI 2 from different image acquisition
dates and aboveground biomass (AGB) at harvest in Saponé, Burkina Faso.

estimates for plots with only millet in particular resulted in
large errors, whereas AGB in plots with mixed crops were
accurately estimated.

Influence of Tree Cover and
Intercropping on Estimation Accuracy
We found no significant correlations between residuals
and percent tree cover inside and around the fields
(Figure 8), nor between regression residuals and
the proportional contribution of cowpea to the total
AGB. Consequently, these factors do not appear to
significantly influence the satellite-based estimation of
AGB in this study.

DISCUSSION

The ability to produce accurate and spatially explicit estimates of
crop production at sub-field level from freely available satellite
data would be a major development for the monitoring and
analysis of smallholder farming systems in Africa. This study
demonstrates that this may be feasible even in the highly
heterogeneous and complex agroforestry parklands that extend
over large parts of the Sudano-Sahel in West Africa. The
following section discusses the relevance of our results for the
application of the method to estimate crop production at regional
or national level.
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FIGURE 6 | Relationship between in situ and estimations of aboveground biomass (AGB) based on peak VI 2017 (A), 7 September 7, 2017 (B), median VI 2018 (C),
and September 17, 2018 (D) for Saponé site in Burkina Faso.

Comparison to Previous Crop Production
Estimation Based on Satellite Imagery
Depending on the estimator used and the year considered, our
method was able to explain between 41 and 80% of the variation
in the in situ crop production measurements, with RMSE ranging
between 0.31–0.54 and 0.77–1.02 ton ha−1 AGB in 2017 and

FIGURE 7 | Result when applying the 2017 peak RENDVI 2 regression model
to the 2018 time series data for Saponé site in Burkina Faso.

2018, respectively. Previous research on the use of medium
to high spatial resolution satellite imagery for crop production
estimation in Africa is limited compared to other continents. In
addition, comparing results from this study to previous research
is complicated due to differences in the crops in focus, the
spatial scale used for estimating crop production and measures
used to report accuracy. While the commonly reported RMSE

FIGURE 8 | Relationship between normalized residuals from AGB estimation
based on RENDVI 2 temporal metrics (peak 2017; median 2018) and percent
tree cover in and around in situ plots for Saponé site in Burkina Faso.
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provides a quantitative measure of accuracy, its interpretation is
dependent on the local crop production conditions, in particular
the production per spatial unit.

Earlier efforts that focused on similar crops (i.e., millet and
sorghum) primarily used coarse resolution AVHRR imagery for
estimating crop production at district level (Rasmussen, 1992;
Maselli et al., 2000), with limited relevance for comparison with
our sub-field level results. In terms of accuracy, our results
are comparable to the study in Mali by Lambert et al. (2018)
who used peak LAI derived from Sentinel-2 imagery acquired
at the end of August to estimate crop yield of millet, sorghum
and maize. These authors report results from crop type specific
regression models, with R2 ranging between 0.48 and 0.80
and RMSE between 0.5 and 1.0 tons ha−1. Other studies in
Africa have also focused on single crop agricultural systems,
mainly maize production, with varying results. For example, Jin
et al. (2017) achieved R2 between 0.28 and 0.36 for field level
estimates of maize production in western Kenya using Sentinel-
2 imagery but did not report RSME. In the same area, Burke
and Lobell (2017) estimated maize production using Terra Belle
high spatial resolution imagery and reported R2 of 0.4 at field
level. Other studies have estimated maize production at a higher
level of spatial aggregation. Azzari et al. (2017) used peak VI
from coarse spatial resolution MODIS data at province level in
Zambia and reported R2 of 0.55 and RMSE of 0.4 ton ha−1.
In Kenya and Tanzania, Jin et al. (2019) reported district level
results with an accuracy of R2 of 0.5 and RMSE of 0.39–0.54
ton ha−1. Consequently, the accuracy of our estimates is in the
same range as those previously reported even though a large
proportion of the sampled fields in this study included both
mixed crops and trees.

Effectiveness of Crop Production
Estimators
We assessed several VI for their effectiveness in estimating
crop production. Correlation analysis did not show substantial
differences in the strength of the relationship between the
different VI and AGB, in particular in 2017. In 2018, RENDVI
2 marginally outperformed the other VI and was therefore
selected as the principle VI for crop production estimation in
this study. The importance of the Sentinel-2 red-edge bands
confirms previous research on crop mapping applications in the
Sudano-Sahel (Forkuor et al., 2018; Lambert et al., 2018). A main
reason for the high correlation between AGB and RENDVI 2 is
likely the sensitivity of the Sentinel-2 red-edge bands, in our case
particularly band 6, to key elements in photosynthesis, including
canopy content of chlorophyll and nitrogen. However, the small
differences in predictive performance suggests that the choice
of VI does not appear to be a critical consideration in this
particular agricultural system. The main exception was MTCI,
which previously has been identified as an effective estimator of
maize production (Jin et al., 2019), but was not in our study.

The effectiveness of the temporal metrics used as crop
production estimators differed between the 2 years. In 2017,
growing season peak values provided the strongest relationship
between AGB for all VI, whereas median VI values were generally

the most effective estimator in 2018. This is likely caused by
a combination of differences in i) availability of cloud free
imagery between the years, and ii) local growing conditions
related to rainfall amount and temporal distribution. The rainfall
distribution differed substantially between 2017 and 2018, which
may have affected both the total crop production, as well as the
relationship between VI and AGB. Growing season peak values
are the most commonly used estimator in comparable studies
(Azzari et al., 2017; Lambert et al., 2018; Jin et al., 2019). However,
our results suggest that the optimal estimator is likely a function
of annual crop growth dynamics and crop density, which in the
Sudano-Sahel is tightly coupled to the amount and distribution
of rainfall (Rockström and de Rouw, 1997; Gibon et al., 2018).

Inter-Annual Consistency of VI-AGB
Relationships
There was a relatively large disparity in estimation accuracy
between the 2 years in this study with relRMSE ranging between
32.2–56.2% in 2017 and 47.5–63% in 2018. The rather high
relRMSE is mainly an effect of the generally low AGB values
resulting from unfavorable growing conditions (soil and rainfall)
in the area. The higher relRMSE in 2018 can be explained by a
combination of two factors: the substantially higher mean AGB
and a weaker relationship between the VI based estimators and
crop production. The large difference in AGB between the 2 years
is the result of high climate variability that characterize this region
(Sultan and Gaetani, 2016). In addition, clouds restricted the
collection of imagery during late August and early September
in 2018. This relatively short window of time appears to be
crucial for achieving a strong relationship between VI and AGB
at the EGS (see Figure 5), and likely corresponds to the period
when crops reach maximum growth and greenness in this region
(Lambert et al., 2018). From mid-September, the crops start
to ripen with accompanying leaf senescence and chlorophyll
breakdown, which results in reduced correlation between AGB
and VI based estimators. Since the harvest of millet, sorghum
and cowpea usually takes place between late October and early
November, this time window opens up for using imagery from
this period as an important source of information for predicting
the harvest 1–2 months before the end of the growing season.
Such information is a key component of early warning systems
focusing on food security (Meroni et al., 2014a). However, the
duration of this study is too limited to characterize the high inter-
annual climate variability and its influence on crop development,
as well as the ratio between AGB and grain yield. A longer time
series of in situ crop production measurements is needed to
derive well-founded conclusions.

In 2017, the use of RENDVI 2 from an individual date
(September 7) resulted in slightly more accurate AGB estimates
compared to using growing season peak values. When applying
this method to map larger areas, the potential increase in accuracy
achieved from using single date imagery needs to be contrasted
with the possibility of increased data gaps caused by high cloud
cover coinciding with the period of maximum vegetation growth.
The use of a temporal metric, such as peak VI, has the benefit of
limiting the impact of clouds by combing VI values from multiple
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image acquisitions and thereby increasing the possibilities for
deriving gap free data coverage.

The results from this study using 2 years of data represent
conditions in a relatively small area, which needs to be kept
in mind. Several factors may influence the timing of maximum
crop growth and therefore the relationship between VI and AGB,
including inter-annual rainfall variability, soil moisture, sowing
date and differences between crop varieties or combinations
(Meroni et al., 2014b; Sanon et al., 2014; Wolf et al., 2015). These
factors are highly variable in space within the Sudano-Sahelian
zone, which makes it difficult to predict optimal timing for image
acquisition in a specific area. When applying this method for
estimating crop production on a regional or national scale, it is
therefore advisable to use temporal metrics as estimators instead
of individual dates for image acquisition. Besides reducing
the influence of clouds, the use of temporal metrics can also
compensate for local differences in the timing of maximum crop
growth, and consequently strengthen the relationship between VI
and AGB. However, further research using both longer time series
of in situ crop production, as well as sampling plots distributed in
a larger area is needed to clarify this issue.

The collection of in situ crop production measurements
is a work intensive and time demanding task. Hence, it
would be advantageous if a crop production model developed
for 1 year could be applied to estimate crop production
for future years. Identifying a temporal metric that is stable
through time and space will be an important task in this
context in order to facilitate operational application of satellite-
based crop production estimation. Our initial attempt to
test this showed that reasonably accurate estimates in terms
of R2 and RMSE could be achieved when using the 2018
Sentinel-2 time series as input to the 2017 peak RENDVI
2 model. However, the results also showed that large inter-
annual differences in the range of in situ AGB could cause
problems for the estimation model. In our study, this generally
resulted in severe underestimation (relRMSE = 50%) of the
2018 crop production. Another explanation for the high
relRMSE in 2018 when using the model developed in 2017 can
be that the crop combination changed substantially between
the 2 years. More accurate predictions may be possible in
areas where the crop rotation cycle is more stable, and the
same crops or crop combinations are grown in the fields in
consecutive years.

Effects of Intercropping and Tree Cover
on Crop Production Estimation
When considering that previous research reported accuracies
for single crops or used crop specific prediction models,
our results derived from a high proportion of intercropped
fields are encouraging. Intercropping cereals with a significant
proportion of legumes is a common agricultural strategy
in Sudano-Sahel for improving food and nutrition security
and replenish soil nitrogen (Franke et al., 2018; Kulkarni
et al., 2018). We did not find evidence suggesting that a
high degree of intercropping affected the relationship between
VI and AGB, and consequently did not affect the ability

to estimate crop production from Sentinel-2 imagery. Crop
specific regression models may increase estimation accuracy
but require a land-cover map in which fields are classified
based on crop type or crop combinations. This adds a layer of
uncertainty that needs to be considered. In northern Burkina
Faso, Forkuor et al. (2018) showed that it is possible to
separate mono-crop fields with either cereals or legumes with
relatively high accuracy using Sentinel-2 image classification.
However, accurately distinguishing intercropped fields in remote
sensing imagery is virtually impossible (Bégué et al., 2018).
In addition, separation between millet and sorghum using
image classification is generally not reliable due to their
similar structure and spectral properties (Lambert et al.,
2018). Taken together, this limits the applicability of crop
specific regression models in smallholder agricultural systems in
the Sudano-Sahel.

In addition to intercropping, the prevalence of a substantial
tree cover in the fields is generally considered an important
factor that restrict remote sensing for agricultural applications
in African smallholder systems (Lobell, 2013; Sweeney et al.,
2015). In this study, tree cover inside or in close proximity
to the fields did not seem to influence the crop production
estimation negatively. However, other sources of error may
have disturbed the relationship between VI and AGB and
reduced the accuracy of the estimations. Quantitative measures
of weeds or shrub coppices in the field were not recorded
during the in situ data collection. A high presence of such
vegetation is likely to influence the performance of the satellite
based estimation (Burke and Lobell, 2017), but could not be
assessed here due to lack of this information in the collected
reference data. The collection of such data is a key issue
for future studies.

Potential Applications of Satellite-Based
Crop Production Estimates
High-resolution crop production estimates of sufficient accuracy
have several applications of prime importance, especially in an
African context. Firstly, collection of field level data on crop
production is expensive and seldom reported systematically
in African countries, including in the Sudano-Sahel (Burke
and Lobell, 2017). Lack of such data limits the possibilities
to understand the causes of yield gaps in different types of
agricultural systems. Knowledge about yield gaps and their
causes is a key prerequisite for improving crop production
and increasing food security through various interventions
(Tittonell and Giller, 2013). In the agroforestry parkland
system, such interventions could include different strategies
for managing the tree cover, including crown pruning, tree
species selection and modifying tree densities in the fields
(Bayala et al., 2015). Detailed characterization of parkland
tree cover, including canopy structure and species composition
can be achieved using satellite remote sensing (Karlson
et al., 2014, 2016). The combination of detailed and spatially
explicit information on both trees and crops opens up
new ways of studying the mechanisms of this important
agriculture system.
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Crop production statistics reported at district to national
levels are generally considered unreliable in many African
countries (Carletto et al., 2015b), including Burkina Faso.
While limited in geographical scope, our results indicate that
Sentinel-2 imagery may represent an important complementary
data source to improve the situation. Other researchers
have shown that the accuracy can be improved when crop
production estimates are aggregated at a coarser spatial
unit, including districts and provinces (Azzari et al., 2017;
Jin et al., 2019). In Burkina Faso, national statistics of
the main crops are based on field level estimates that are
aggregated at regional and national level. These surveys
are conducted throughout the different regions of the
country and thereby captures the spatiotemporal variability
in crop types and combinations, and crop production
capacity. If quality of the surveys can be ensured and the
field level measurements are accurately geo-references,
these data could be used to calibrate Sentinel-2 based
crop production estimation models, which allow national
scale mapping. An important prerequisite for such an
approach is, however, accurate maps of agricultural field
boundaries. Previous research has demonstrated that such
maps can be derived from optical satellite systems, such
as Landsat 8 and Sentinel-2, even in the heterogeneous
smallholder systems of Sudano-Sahel (Forkuor et al.,
2018). Another option for this task may be high-resolution
cubesat imagery with daily revisit periods provided by
systems such as PlanetScope to capture this highly dynamic
landscape where fields are regularly fallowed, and new land is
subsequently cleared.

CONCLUSION

This study investigated the potential of Sentinel-2 data for
mapping crop production at 10 m pixel resolution in a
smallholder agroforestry area situated in central Burkina Faso.
Several factors contribute to making this a challenging landscape
for this type of mapping, including pervasive cloud cover
during the growing season and heterogeneous agricultural
fields in terms of size, shape and a high prevalence of
intercropping of cereals and legumes, as well as interspersed
trees and shrubs. Our results based on 2 years of in situ
crop production data show that inter-annual variability in
climate conditions can lead to relatively large differences in
the relationship between crop development and VI, which
constitutes the basis for estimating crop production from
satellite data. This was manifested by interannual differences in
the effectiveness of satellite data acquisitions and the method
used for deriving VI temporal metrics. While the temporal
dimension of crop production estimation appears to be highly
influential on mapping accuracy, the choice between different VI
appears to be of lesser importance in the agroforestry parkland
system, which was in focus here. A way forward would be
research targeting a wider area, additional years of in situ
data and different crop combinations and densities to confirm
these observations.

The method presented here based on freely available satellite
data and processing tools was able to explain between 41
and 80% of the variability in the in situ crop production
data, depending on year and approach used for deriving
temporal metric from VI time-series. This relatively high
mapping accuracy is encouraging, especially since a high
proportion of the in situ data represented fields where cereals
and legumes were intercropped. From an operational mapping
perspective targeting regional or national scales, such field
conditions are to be expected for large areas of the Sudano-
Sahelian zone. These results contribute to a growing body
of research showing that sufficiently accurate and spatially
explicit estimates of crop production at landscape scale may be
feasible not too far into the future, even for the challenging
smallholder systems that dominates African agricultural systems.
Such information is of prime importance to improve the
quality, extent and resolution of national crop statistics, as
well as for research analyzing the causes of yield gaps.
While the quality may be questionable, field surveys collecting
national crop statistics are regularly conducted in many
African countries, including Burkina Faso. Relatively small
modifications in such survey protocols to better align with
the requirements of calibrating satellite-based crop production
estimates could be an efficient investment to improve field data
availability in this region.
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