
fenvs-08-00102 July 14, 2020 Time: 17:38 # 1

ORIGINAL RESEARCH
published: 16 July 2020

doi: 10.3389/fenvs.2020.00102

Edited by:
Wesley Moses,

United States Naval Research
Laboratory, United States

Reviewed by:
Tien Dat Pham,

Florida International University,
United States

Kyle Cavanaugh,
University of California, Los Angeles,

United States

*Correspondence:
Samy I. Elmahdy

selmahdy@aus.edu;
samy903@yahoo.com

Mohamed M. Mohamed
mmohamed@uaeu.ac.ae

Specialty section:
This article was submitted to

Environmental Informatics
and Remote Sensing,

a section of the journal
Frontiers in Environmental Science

Received: 28 March 2020
Accepted: 11 June 2020
Published: 16 July 2020

Citation:
Elmahdy SI, Ali TA,

Mohamed MM, Howari FM,
Abouleish M and Simonet D (2020)

Spatiotemporal Mapping
and Monitoring of Mangrove Forests

Changes From 1990 to 2019
in the Northern Emirates, UAE Using

Random Forest, Kernel Logistic
Regression and Naive Bayes Tree

Models. Front. Environ. Sci. 8:102.
doi: 10.3389/fenvs.2020.00102

Spatiotemporal Mapping and
Monitoring of Mangrove Forests
Changes From 1990 to 2019 in the
Northern Emirates, UAE Using
Random Forest, Kernel Logistic
Regression and Naive Bayes Tree
Models
Samy I. Elmahdy1* , Tarig A. Ali1,2, Mohamed M. Mohamed3,4* , Fares M. Howari5,
Mohamed Abouleish6 and Daniel Simonet7

1 GIS and Mapping Lab, College of Engineering, American University of Sharjah, Sharjah, United Arab Emirates, 2 College
of Engineering, American University of Sharjah, Sharjah, United Arab Emirates, 3 Department of Civil Engineering, College
of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates, 4 National Water Center, United Arab Emirates
University, Al Ain, United Arab Emirates, 5 College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab
Emirates, 6 Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American
University of Sharjah, Sharjah, United Arab Emirates, 7 Department of Management, School of Business Administration,
American University of Sharjah, Sharjah, United Arab Emirates

Mangrove forests are acting as a green lung for the coastal cities of the United Arab
Emirates, providing a habitat for wildlife, storing blue carbon in sediment and protecting
shoreline. Thus, the first step toward conservation and a better understanding of the
ecological setting of mangroves is mapping and monitoring mangrove extent over
multiple spatial scales. This study aims to develop a novel low-cost remote sensing
approach for spatiotemporal mapping and monitoring mangrove forest extent in the
northern part of the United Arab Emirates. The approach was developed based on
random forest (RF), Kernel logistic regression (KLR), and Naive Bayes Tree machine
learning algorithms which use multitemporal Landsat images. Our results of accuracy
metrics include accuracy, precision, and recall, F1 score revealed that RF outperformed
the KLR and NB with an F1 score of more than 0.90. Each pair of produced mangrove
maps (1990–2000, 2000–2010, 2010–2019, and 1990–2019) was used to image
difference algorithm to monitor mangrove extent by applying a threshold ranges from+1
to −1. Our results are of great importance to the ecological and research community.
The new maps presented in this study will be a good reference and a useful source for
the coastal management organization.
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INTRODUCTION

Mangroves are woody plants that are extensively distributed in
intertidal and estuary zones and their forests cover thousands
of hectares along the shorelines (Sherrod and McMillan, 1985;
Field et al., 1998). Mangroves are able to store 1200 Mg of carbon
per hectare (Donato et al., 2011; Pham et al., 2019a,b). They
form an essential component of the coastal ecosystem consisting
of salt-tolerant plants with aerial breathing roots that supply a
microenvironment to several marine species (Snedaker, 1982;
Upadhyay and Mishra, 2008).

Mangroves provide a wide range of benefits to the economy
and the environment as they play a vital role in ecology. Some
ways they do this for example, are by supplying a safe breeding
ground and suitable environment for fish species and birds
nesting, as well as and stabilization and protection for shorelines
from hurricanes (Fry and Cormier, 2011; Giri et al., 2011; Inoue
et al., 2011; Barua et al., 2014).

Although mangroves have declined globally by 2% per annum,
the mangroves of the United Arab Emirates appear to have
rapidly increased. This is due to localized plantation activities
and increased public awareness and conservation efforts during
the last decade (Food and Agriculture Organization of the United
Nations, 2007; Loughland et al., 2007; Howari et al., 2009). The
most common mangrove species in the United Arab Emirates
is Avicennia marina or gray mangrove and its protection is
consequently an urgent conservation priority (Figure 1).

Our knowledge on the spatial variation, causes of degradation
of the mangroves are still poor due to; (i) the northern part of
the United Arab Emirates (NUAE) mangrove database suffering
from significant errors and it is sometimes unavailable and
has usage restricted, (ii) inaccessibility of the tidal fluctuation
mangrove forests in isolated islands, and (iii) the majority of
previous studies have been conducted based on field surveys and
measurements over a local scale with manual screen digitizing
(Moore et al., 2013; Alsumaiti, 2014). Understanding the
spatiotemporal changes of the NUAE mangrove over a regional
scale could provide valuable information for the ecologists and
natural resources specialists in the United Arab Emirates and this
requires a potential method.

Remote sensing data has proven to be a good tool for mapping
and monitoring mangrove changes over a regional scale as it has
low-cost and is not time-consuming (Boardman and Kruse, 1994;
Guild et al., 2004; Ghanavati et al., 2008; Mondal et al., 2018, 2019;
Elmahdy et al., 2019, 2020a,b; Spruce et al., 2020). The multi-
temporal Landsat images have been widely used for mapping
and monitoring mangrove changes due to their suitable of
spatial and temporal resolutions, as well as their easy availability
and accessibility (Birth and McVey, 1968; Edwards et al., 2007;
Klemas, 2009; Vo et al., 2013; Nguyen et al., 2013; Kanniah
et al., 2015; Chen et al., 2017; Elmahdy and Mohamed, 2018;
Buitre et al., 2019).

The most common method for mapping vegetation are the
vegetation indices such as the Simple Ratio Index (SRI) of Birth
and McVey (1968), Normalized Difference Vegetation Index
(NDVI) of Edwards and Richardson (2004), and the Normalized
Difference Moisture Index (NDMI) is the oldest and most well

known and most frequently used by several researchers (Fang
and Liang, 2003; Huete et al., 2010). These indices were designed
to enhance the sensitivity of the spectral reflectance contribution
of vegetation while minimizing the soil background reflectance
or atmospheric effects (Fang and Liang, 2008; Huete et al.,
2010) and widely used in the literature (Díaz and Blackburn,
2003; Ishil and Tateda, 2004; Jean-Baptiste and Jensen, 2006;
Kovacs et al., 2009; Rodríguez-Romero et al., 2011; Laongmanee
et al., 2013; Nascimento et al., 2013; Pereira et al., 2018; Otero
et al., 2019; Liu et al., 2020). These indices sometimes cannot
discriminate between mangrove and non-mangroves areas such
as grass and algae (Howari et al., 2009; Elmahdy and Mostafa
Mohamed, 2013a,b). Generally, the classification methods can be
divided into five types: (i) unsupervised learning; (ii) supervised;
(iii) advanced learning; (iv) object-based image analysis (OBIA);
and (v) sub-pixel. Recently, several machine learning algorithms
have been designed for mapping and classifying land use land
cover (LULC). Ensemble machine learning algorithms such
as Random forest (RF) is widely used in LULC classification
and mangrove mapping from Landsat images (Erftemeijer and
Hamerlynck, 2005; Pal, 2005; Sesnie et al., 2008; Mountrakis
et al., 2011), mangrove and sea grass mapping (Heumann, 2011;
Hossain et al., 2015; Buitre et al., 2019; Diniz et al., 2019;
Small and Sousa, 2019; Toosi et al., 2019), prediction in water
resources (Zhao et al., 2012; McGinnis and Kerans, 2013; Naghibi
et al., 2016; Naghibi and Dashtpagerdi, 2017), and prediction
of land subsidence (Elmahdy et al., 2020a). Further studies
combined image transformation and supervised classification to
map and classify mangrove forests (Yokoya and Iwasaki, 2010;
Ouerghemmi et al., 2018). Locally, only limited numbers of
studies have been carried out using remote sensing data (Embabi,
1993; Moore et al., 2013; Almahasheer, 2018). However, these
studies were based only on traditional techniques of traditional
classifiers and visual interpretation of Landsat and spot images,
sometimes coupled with manual digitization techniques for
mapping mangrove forests. These techniques introduced a level
of human bias and can be subjective and time-consuming owing
to the rapid changes in the United Arab Emirates mangroves
(Crouvi et al., 2006; Adam and Hutchings, 2010). Therefore, to
construct and maintain a flexible regional database for the NUAE
mangroves, it is urgent to modify an integrated powerful machine
learning classifier.

Integration of RF, Kernel logistic regression (KLR), Naive
Bayes Tree (NBT), and Image difference (ID) have shown the
ability to achieve classification over a regional scale and precise
monitoring extent of the mangrove (Colkesen and Kavzoglu,
2017). These techniques can reduce the variance and overfitting
of the classification maps and assess many variables separately
compared to traditional classifiers, such as maximum likelihood
(Ha et al., 2020). Thus, integration of RF and KLR and ID
was adopted to extract spatiotemporal information about the
NUAE mangrove forests. The use of machine learning algorithms
decreases the overfitting and variance in the classified maps
(Belgiu and Dăguţ, 2016; Feng et al., 2018; Mondal et al.,
2019; Elmahdy et al., 2020b; Ha et al., 2020). Thus, the main
goals of this study were to present a novel ensemble machine
learning approach which integrates RF with KLR and NBID
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FIGURE 1 | Photos of the NUAE mangrove forests showing their spatial patterns and environment.

algorithms and uses Landsat images for spatiotemporal mapping
of the NAEU mangroves, comparing the performance of these
algorithms, and implementing a novel image to image change
detection technique for monitoring mangrove changes over
multiple scales.

STUDY AREA

The study area is in the eastern and western coastal areas of
the United Arab Emirates. In particular, it extends between the
longitudes E 53◦56′ 23′′ and E 60◦15′ 22′′ and latitudes 24◦
21′ 2′′ and 26◦ 12′ 20′′ N (Figures 2, 3). The area consists

of two mangrove ecosystems; the Khor Fakkan mangrove is
located in the Gulf of Oman (5.5 km length) and the Dubai’s
Greek, Ajman’s Creek, Hammraih’s Creek, Umm Al Quwain
and Ras Al Khaimah (RAK) Estuaries (Figures 2, 3). They are
facing the Gulf of Oman in the east and the Arabian Gulf in
the west and dominated by gray mangroves (A. marina) and
locally referred to as Al Qurm, which is one of the most habitat-
tolerant mangroves (Boer and Aspinall, 2005; Howari et al., 2009;
Alsaaideh et al., 2013). The United Arab Emirates mangroves
are able to grow in saline soil that exceeds the seawater salinity
of the Arabian Gulf and Gulf of Oman (Alsumaiti, 2014). An
Assessment of A. marina Forest Structure and Aboveground
Biomass in Eastern Mangrove Lagoon National Park, Abu Dhabi
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FIGURE 2 | RGB 541 band combination of Landsat image of the UAE showing the spatial distribution of the UAE mangroves and in the study area (red polygons).

(Alsumaiti, 2014). The height of the United Arab Emirates
mangrove trees ranges from a few centimeters to 3–8 m (Moore
et al., 2013; Alsumaiti, 2014). The mangrove soil texture is
loamy clay and silt and characterized by high porosity and
low permeability, which allows keeping the seawater in the soil
porosity for a long time, especially during tidal times (Cintron
et al., 1978; Bashitialshaaer et al., 2011).

DATASETS AND METHODS

Datasets and Preprocessing
Two remotely sensed data were used in this study. The first
dataset was the Landsat Thematic Mapper (TM) acquired on
August 23, 1990, the Landsat Enhanced Thematic Mapper
(ETM+) acquired on August 23, 2000 and August 19, 2010
and the Operational Landsat Imager (OLI) Landsat 8 acquired
on August 15, 2019 (Path 160, rows 42 and 43).The data
were obtained via the USGS Earth Resources Observations
and Science (EROS) Center through the Global Visualization
Viewer1. The mangrove forests in Landsat images (coastal
areas) were then clipped into five subsets to reduce the
image processing time by avoiding unnecessary calculations

1www.glovis.usgs.gov

(Amarsaikhan et al., 2009; Diniz et al., 2019; Ma et al., 2019).
We used the Landsat images due to their suitability spectral
and spatiotemporal resolutions, free of charge, easy accessibility,
and time-series availability (Chander, 2009; Irons et al., 2012;
Elmahdy and Mohamed, 2018; Milani, 2018; Toosi et al., 2019).
Additionally, Landsat images are provided in orthorectification
format at a lower level of cloud cover (Darvishsefat, 1995).
The second dataset includes the QuickBird images with a
spatial resolution of 0.6 m acquired on August 22, 2019,
the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), and Earth Observing-1 (EO-1) images
with a spatial resolution of 30 m acquired on August 13, 2019
and July 29, 2019, respectively.

The spectral coverage of ASTER sensor consists of four
visible and near-infrared bands (0.52–0.86 µm) with a spatial
resolution of 15 m, six shortwave infrared (SWIR) bands
(1.6–2.43 µm) with a spatial resolution of 30 m and five
thermal bands (8.125–1165 µm) with a spatial resolution
of 90 m. The EO-1 Advanced Land Imager (ALI) provides
Landsat type panchromatic and multispectral bands. These
bands have been designed to mimic six Landsat bands
with three additional bands covering 0.433–0.453, 0.845–0.890,
and 1.20–1.30 µm. The ALI also contains wide-angle optics
designed to provide a continuous 15◦ × 1.625◦ field of view
for a fully populated focal plane with a 30-m resolution
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FIGURE 3 | RGB 541 band combination of Landsat image of the NUAE and zooms of the mangrove locations distributed along the eastern and western coastal
areas in the NUAE.

FIGURE 4 | Flowchart of the methodology applied in this study.

for the multispectral pixels and 10-m resolution for the
panchromatic pixels.

These datasets were downloaded via the USGS EROS Center
through the Global Visualization Viewer (see footnote 1). We
used these various datasets to collect training datasets as input
to the classifiers and visual verification of the obtained mangrove

maps and compare the textural features (mangroves and non-
mangrove areas), mapped from Landsat images against those
mapped from the ASTER and EO-1 images using RF, KLR,
and NB algorithms.

After collecting the remote sensing data, the datasets were all
re-sampled to UTM WGS 84 projection, at a spatial resolution
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of 30 m with mean root square error values of less than 0.40
pixels. All the United Arab Emirates images were assigned to
a UTM zone 40 N and datum WGS 48 (Jensen, 1996; Foody,
2002) followed by an atmospheric correction. The atmospheric
correction was performed by Fast Line-of-sight Atmospheric
Analysis of Hypercubes (FLAASH) implemented in Envi
v. 4.6 software. Fast Line-of-sight Atmospheric Analysis of
Hypercubes process consists of radiometric calibration and
dark subtraction. In radiometric calibration, beta nought
calibration, all digital number (DN) values were converted into
Top Of Atmosphere (TOA), reflectance. Top Of Atmosphere
was performed using four parameters, namely, calibration
type (reflectance), output interleave (BSQ), output data
type (float), and scale factor value of 1. In dark objects
subtraction, TOA was converted into surface reflectance
(SR) using band minimum (Green et al., 1988; Foody, 2002;
Todd and Chris, 2010).

Training Data Collections
The training data collection is a very important step in producing
a higher quality of classification, especially when the classifiers
trained with training datasets with higher spatial resolutions
(Elmahdy and Mohamed, 2018). The training datasets were
collected from QuickBird images with a spatial resolution of
0.6 m using a straight random sampling or proportional method,
which reduces error and bias. This method divides the population
into homogenous groups and produces training sample sizes that
are directly related to the size of the classes. We used this method
due to its ability to reduce bias and errors (Van Niel et al., 2005;
Elmahdy and Mohamed, 2018).

Random sampling collection was performed using Envi v.
4.5 software. In total, 536 training datasets were collected and
divided into 375 (70%) for training and mangrove mapping and
161 (30%) for validation of this study. The collected training
datasets were checked using visual interpretation and knowledge
and background of the authors and where they live (Figure 4).

Machine Learning for Image
Classification
Random Forest
To classify and map mangrove forests in an accurate and low-cost
way, it is important to employ machine learning algorithms, then
learn these algorithms with training datasets with a higher spatial
resolution as well as algorithm optimal parameterization (Huang
et al., 2009; Elmahdy and Mohamed, 2018).

The RF algorithm can provide a higher quality of classification
than linear classifiers and has been employed previously to map
and classify mangroves in Iran based on Landsat images (Kamal
and Phinn, 2011; Kamal et al., 2015). The algorithm performs well
for mangroves mapping over a regional scale and its ability to
handle data with unclassified pixels (Prasad et al., 2006; Taalab
et al., 2018; Thomas et al., 2018). Random forest algorithm is
a non-parametric ensemble machine learning and one of the
most popular algorithms that provide high-quality of mangroves
classification and environmental modeling (Strobl et al., 2008;
Vyas et al., 2011; Bachmair and Weiler, 2012; Torres and Qiu,

FIGURE 5 | Flow chart of classification using machine learning algorithms.

2014; Fu et al., 2017). It is a combination of classification and
regression tree (CART).

A regression tree is a hierarchy and comprises of a root
node, node separator (decision rules) and end of a leaf
node (desired classes). The algorithm involves an ensemble
of tree- structure classifiers and each tree starts by choosing
a set of random model units selected separately. Then, it
creates a forest using the vote on all decision “tree” in the
“forest.” Then, two-thirds of the set was employed to make
the decision tree and the remaining data are then used to
estimate the model performance based on a bootstrapping
procedure (Breiman, 2001; Schapire, 2003). Finally, the best
model was chosen based on the majority vote approach (Yu
et al., 2011). The model is flexible and can be used to solve
problems related to classification and exploit the information
provided by several condition variables (Catani et al., 2013; Ha
et al., 2020). The model uses a random selection of predictor
variables to divide each node of the trees. After that, each
tree was developed in such a way as to reduce errors in the
classification process. However, this type of random selection
influences the results, hence creating a very unsuitable single-tree
classification (Figure 5).

The algorithm is widely employed in environmental modeling
(Strobl et al., 2008; Bachmair and Weiler, 2012), although only
rarely in land subsidence and sinkholes susceptibility mapping
(Vorpahl et al., 2012).

For b = 1 to B:
(b) Grow a random-forest tree Tb from the bootstrapped

data, by recursively repeating the following steps for each
terminal node of the tree, until the minimum node size
nmin is reached.

1. Select m variables at random from the p variables.
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FIGURE 6 | A comparison of the precision (A), recall (B), and F1 scores (C) for the Landsat image (August 15, 2019) using RF, KLR, and NB classifiers and total
area in ha mapped using RF, KLR, and NB (D) and feature extracted from the Landsat images (E), ASTER images (F), and EO-1 (G) for the year 2010.
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FIGURE 7 | Spatiotemporal variation of mangrove forests in Khor Kalba of the Emirate of Sharjah for the years 1990 (A), 2000 (B), 2010 (C), and 2019 (D).

2. Pick the best variable/split-point among the m variables.
3. Split the node into two daughter nodes.

Kernel Logistic Regression
Kernel logistic regression is a discriminative machine learning
classifier that differentiate the mangrove and non-mangrove
classes perfectly where probabilistic output are evaluated based
on minimizing the negative log-likelihood function using
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization
(Yokoya and Iwasaki, 2010). It is described as the kernel
version of logistic regression capable of converting into a high-
dimensionality feature space of the original input feature space
kernel functions (Tanaka et al., 2011).

The kernel function can be defined as the basic function in
which φ is supposed to be unidentified:

K
(
x, x′

)
= ϕ (x)T

(
x′
)

(1)

where T is the inner product in the Z space.
Suppose a set of training dataset

{
xi, yi

}Ni=1 with xi ε Rn as
input parameters with n variables and N data samples. Here,
the input parameters are dense mangrove, dispersed mangrove
and non mangrove.

yk ε {1,0} is the related label that indicates mangrove and non-
mangrove classes. The KLR was applied to built a non-linear
decision boundary that may divide the two classes in the feature
space based on the following equation:

p (x) = ey(x)/
(

1+ ey(x)
)
=

NI=1∑
ᾱiK

(
xi, xj

)
+ b (2)

where y (x) is the logistic function with values in [0,1]; αi is a
vector of dual model parameters, whereas b is the intercept; K(xi,
xj) is the kernel function.

For our study, radial basis function (RBF), which is used
widely in the literature, was chosen due its flexibility and
reliability (Bui, 2015; Hong et al., 2015).

Naive Bayes Tree
Naive Bayes (NB) is a machine learning classifier that creates
a probability-based model. It works based on Bayes Theorem,
which is known as Naive Bayes. The NB uses a decision tree
(DT) for its structure and organizes the NB model on every
leaf node of the constructed DT. The NBT exhibits a significant
classification performance and accuracy (Liang et al., 2006;
Wang et al., 2015).

During the NB process, the impact of an attribute value on
a specific class is an independent value of another attribute
and known as class conditional independence. This conditional
independence of NB makes the datasets to train quicker and it
considers all the vectors as independent and applies the Bayes rule
(Farid et al., 2014).

The theorem of the Bayes can be explained as follows:

P (A|B) = P (B|A)P (A) /P (B)

where:
P(A|B) = conditional probability of A given B;
P(B|A) = conditional probability of A given B;
P(A) = probability of event A;
P(B) = probability of event B.
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FIGURE 8 | Spatiotemporal variation of mangrove forests on the coastal area of RAK for the years 1990 (A), 2000 (B), 2010 (C), and 2019 (D) and zooms of Mina Al
Arab (southwest), Dafan creek (middle), and Shamm (northeast). Red polygons and dark green highlight dense mangroves.

This classifier was chosen due to its: (i) quick training and
classification, (ii) powerful to irrelevant features, (iii) easy to use
and understand, and (v) ability to work with few numbers of
training datasets (Ho, 1998).

The model starts by estimating the probability of each class
in the model, calculating covariance and variance matrix, and
building the discrimination function for each class (Pham and
Yoshino, 2015; Wang et al., 2015).

For the KLR and NB, mapping and monitoring of mangroves
were performed using SATISTICA v. 7 (Fleiss et al., 2003; Hill and
Lewicki, 2006) and Salford system (Friedman, 2001; Friedman,
2002). These tools have a stochastic gradient boosting tree which
is used widely for regression problems related to predict and map
a continues dependent variables (Hill and Lewicki, 2006). After
that, the setting and optimizing of all parameters were performed.
These parameters namely; learning rate, the number of additive
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FIGURE 9 | Spatiotemporal variations of mangrove forests for the years in Ajman-Hammriah (A–D), and Ras Al Khor (E–H) natural reserves for the years 1990,
2000, 2010, and 2019. Red polygons and dark green highlight dense mangroves.

trees, the proportion of subsampling, and so forth. Here, the
optimal value for the learning rate was set as 0.1, additive trees
were 185 and the maximum size of the tree was 5. These values
may lead to precise result accuracy (Friedman, 2001).

To get the optimum RF parameter values, we tested several
RF parameter values. These parameters include the maximum
total of tree depth, the minimum numbers of samples per
node (sample), and maximum tree number (tree number). The
tested values of tree depth and minimum sample per node were
0,1,5, 10, 20, 50, 100, 500, and 1000, while the maximum tree
number values were 50, 100, 200,400,800, and 1000. After that,
the best band combination of RF parameters and the highest
overall accuracy was chosen and applied. RF was applied to each
Landsat image separately using 536 training data sets collected
from QuickBird images with a spatial resolution of 0.6 m.
The classification process was performed using the R package
(Catani et al., 2013).

Ensemble of RF, KLR and NB
Among several ensemble methods, the stacking algorithm was
employed to build the ensemble model with a threshold of 0.9
used to detect mangrove pixels. The algorithm builds a model on
of the RF, KLR, and NB machine learning algorithms based on
the selected training datasets R package via the “glmet”.

Evaluation of the Performance of the Classifiers
To evaluate the performance of the classifiers, maps of
mangroves were standardized and compared based on a pixel
by pixel producing numerical values for mangrove commission,
mangrove omission, total incorrect pixels, percentage of incorrect

pixels, precession, recall, and F1 score (Congalton et al.,
1983; Raschka, 2018; Raschka and Mirjalili, 2019). Once the
classification process was achieved, it is important to evaluate
classifiers’ performance. Confusion metrics include accuracy,
precision, recall, F1 score was found to the best technique and
used widely in this literature (Ha et al., 2020). The calculation
of accuracy, precision, recall, and F1 score is based on four
parameters namely; true positive (TP), true- negative (TN), false-
positive (FP), and false-negative (FN). Accuracy, precision, recall
and F1 score can be calculated via the following equations:

Accuracy = TP + (TN/TP)+ FP + FN + TN (3)

or

Accuracy
(
y, ypredi

)
= 1/nsamples

nsamples−1∑
i=0

1
(
ypredi = yi

)
where ypredi is the predicted value and y is the corresponding
true value

Kappa = po − pe/1− pe (4)

where po is the observed agreement ratio and pe is the expected
agreement

Precision = TP/TP + FP (5)

Recall = TP/TP + FN (6)

F1 = 2× precision× recall/precision+ recall (7)

where TP is the true positive; FP is the false positive; and FN is
the false negative.
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FIGURE 10 | Spatiotemporal variations of mangrove forests in Umm Al Quwain natural reserve for the years 1990 (A), 2000 (B), 2010 (C), and 2019 (D). Red
polygons highlight dense mangroves.

The performance of machine learning algorithms were
evaluated using the open source R 4.0.0 software.

Further evaluation of the performance of the RF, KLR, and
NS algorithms were performed by applying them on the ASTER
and EO-1 with a spatial resolution of 30 m and calculate the total
area of mangrove (Mondal et al., 2019) and the textural features
(mangroves and non-mangrove areas) evident from Landsat
images were compared against those from the ASTER and EO-
1 images with a spatial resolution of 30m using RF, KLR, and
NB algorithms. This method was applied to the Kalba mangrove
natural reserve on the eastern side of the study area. These
two methods can be considered as an alternative way of field
observation, especially when the mangrove forests are located in
remote and inaccessible areas (Elmahdy and Mostafa Mohamed,
2013a,b; Elmahdy and Mohamed, 2018; Estoque et al., 2018).

Change Detection
Among several change detection techniques, ID algorithm
was chosen to monitor mangrove changes. The ID algorithm
was chosen due to its ability to locate the changes in
mangroves within each class (dense and sparse) (Mishra
et al., 2017; Elmahdy and Mohamed, 2018). The ID algorithm
determines the difference in the DN values in each pair
of mangrove images (1990–2000, 2000–2010, 2010–2019, and
1990–2019). This can serve as an indicator of mangrove
change which has occurred over the NUAE. Monitoring
changes start with proper input parameters such as the
number of classes, threshold value and change detection type.
Threshold value locates the changes in mangroves within
each class, epending on the type of remote sensing data
(Singh, 1986).
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FIGURE 11 | The annual rate of the NUAE mangroves growth (A), and mangrove types for Khor Kalba (B), RAK (C), Ajman-Hammriah (D), Ras Al Khor (E), and
Umm Al Quwain (F).

The threshold values are evenly spaced between (−1)
and (+1) for simple difference (the initial state image is
subtracted from the final state image). The positive changes
(positive value) represent the first (n/2) classes, while the
negative changes represent the last (n/2) classes. The no-
change class [(n/2) + 1] represents the middle class (Figure 4),
and normalizing the images (raster maps) by subtracting
the image minimum. On the final change detection maps,
a positive change was identified when pixels took on a red
color code (final state image), while a negative change was
identified when pixels took on a blue color code (initial
state image). Monitoring the NUAE mangrove changes were
performed using a change detection tool implemented in the
Envi v.4.5 software.

RESULTS

Optimal Parameterization and Evaluation
of Machine Learning Performance
Figures 6A–C show different precision, recall, and F1 values
for RF, KLR, and NB. Random forest and KLR yielded the
highest values (0.95) for F1 score, while NB presented the lowest
value (0.75) for F1. Slight differences in F1 score between RF
and KLR algorithms were observed. This difference appears
to be due to the difference in precision and recall scores and
this difference to be due to the difference in overall incorrect
pixels between RF, KLR, and NB. Both RF and KLR showed
a strong ability in discriminating between dense mangrove
compared with NB. However, all models showed less ability
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FIGURE 12 | Mangrove pattern change between 1990 and 2000 (A), 2000 (B), 2010–2019 (C), and 1990–2019 (D) for Khor Kalba natural reserve. Red color
highlights changes in mangroves.

to distinguish dispersed mangroves as indicated from F1 score
(<0.8), and thus, lower ability to detect mangrove forests. This
lower accuracy due to lower ability in discriminating between
mangrove and non-mangrove areas and the lower ability in
discriminating owing to the lower reflects. Results of cross-
validation showed that the RF and KLR classifiers predicted
and classified mangrove from the EO1 ALI better than NB
classifier. The extent predicted mangrove areas by the RF and
KLR have a wider range compared to those predicted by
NB (Figure 6D).

Both RF and KLR predicted an area of 72.86 and 71.7 ha,
respectively. However, the mangrove extent predicted by the
NB has a lower range of mangroves from the Landsat, ASTER
and EO-1 images. Although these images have the same spatial
resolution, the ASTER and EO-1 miss the regular time span and
geographical coverage of the NUAE mangrove. Further validation
of the proposed approach was performed by comparing textural
features from Landsat images against those extracted from the
ASTER and EO-1 images using RF, KLR, and NB algorithms
(Figures 6E–G).

Mangrove Mapping and Classification
Maps of mangrove forests produced from the Landsat images
using RF classifier with a population minimum of 100 and 8
neighbors are shown in Figures 7–10. The figures comprise
of two color codes to facilitate visual interpretation. The first
color code is dark green corresponding to dense mangroves
(healthy mangroves). These dense mangroves are located
on the gentle slopes of tidal flats, easily discriminated and

concentrated in the middle parts of the mangrove patches.
The second color code is light green, corresponding to
disperse mangroves and are difficult to discriminate and
map and are clustered around the dense mangroves and
submerged in the water. The figures show that the mangrove
forests are mainly spatially distributed in creeks (Khors in
local language) of Kalba (Figures 7, 11B), Ras Al Khaimah
(Figures 8, 11C), Ajman-Hammria and Dubai (Figure 9),
and Umm Al Quwain (Figure 10), which represent about
35% of the total area of the United Arab Emirates mangrove
(Elmahdy and Mostafa Mohamed, 2013a,b).

In Khor Kalba (the Emirate of Sharjah), mangrove
areas are spatially distributed as linear and curvilinear
strips with a length of 5 km and a width of 300 m. Their
common trends were found to be in the NNW-SSE and
NNW-SSE directions (Figures 7, 11A). From 1990 to 2019,
sparse mangroves have slightly increased from 28.89 ha
(1.53%) in 1990 to 34.56 ha (2.037%) in 2019, while dense
mangroves increased from 49.95 ha (2.7%) in 1990 to 61.74 ha
(4.11%) in 2010 and 63.9 ha (4.80%) in 2019. Most of the
mangrove areas are mainly distributed in creeks and estuaries
(that now are natural reserves) along the coastal area of
the Arabian Gulf.

The highest spatial distribution of mangroves was observed to
be in the estuarine area of Umm Al Quwain, covering an area
ranging from 700 to 1200 ha, while the lowest spatial distribution
of mangrove was observed to be in Ras Al Khor of Dubai
covering an area ranging from 4 to 9 ha, where the saline tidal
flats distributed in an area is currently dominated by intensive
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FIGURE 13 | Mangrove pattern changes between 1990 and 2000 (A), 2000–2010 (B), 2010–2019 (C), and 1990–2019 (D) for the RAK natural reserves.

urbanization. Moving to the west, in Ras Al Khaima, mangroves
are mainly distributed in Mina Al Arab (south), Dafan Creek
(middle) and Shaam estuarine areas (north) (Figures 8, 11C).

In Ajman and Hammria Creeks, dispersed mangroves
occupied an area of 2.1 ha (0.0021%) in 1990, 28.42 ha (0.39%)
in 2000 and 36 ha (0.41%) in 2019. Between 1990 and 2000,
the mangroves were dispersed and occupied an area of 28.42 ha
(0.39%) (Figures 9A–D, 11D). In 2010, both types of mangroves
were clearly observed. Dense and dispersed mangroves occupied
an area of 29.88 (0.41%) and 60.39 ha (0.83%), respectively. Like
the Ajman-Hammria area, small patches of dispersed and dense
mangroves were observed in the 1990 map. Moving to Dubai,
mangrove forests were observed to be the smallest mangrove area
(Figures 9E–H).

The total area of dispersed mangroves in these three locations
was 468 ha (1.38%) in 1990, 149.22 ha (0.305%) in 2000
and 163.53 ha (0.33%) in 2019 (Figure 11D). Similarly, dense
mangrove occupied an area of 217.71 ha (0.44%) in 1990 to
187.65 ha (0.832%). These small patches of mangroves were

observed in the western edges of Ras Al Khor and occupied
an area of about 18.99 ha in 2010 and 40.95 ha in 2019,
respectively. Dense mangroves were observed to be clustered in
the southern edge of the Ras Al Khor and easily definable in
remote sensing data than the dispersed mangrove distributed
in the western edge of the Ras Al Khor. Since 1990, dense and
dispersed mangroves have gradually increased from 4.3 ha in
1990 to 94.23 ha in 2019 (Figure 11E) and spatially distributed
in the Ras Al Khor area. The dispersed mangroves were
observed to be distributed in the western part of the Ras Al
Khor, while dense mangroves were observed to be distributed
in the southwestern edge of Ras Al Khor (Figures 9, 11E).
They occupied an area of about 3.22 ha (0.51%) and 0.97 ha
(0.071%), respectively.

In Umm Al Quwain estuarine, dispersed mangrove occupied
an area of 590.22 ha (2.29%) in 1990, 453.24 ha (1.764%) in 2000
and 715.32 (2.784%) in 2019 (Figures 10, 11F). Similarly, the
dense mangrove occupied an area of 194.13 ha (0. 75%) increased
to 366.57 ha (0.42%) in 2000 and 518.58 ha (2%), then slightly
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FIGURE 14 | Mangrove pattern changes between 1990 and 2000 (A), 2000–2010 (B), 2010–2019 (C), and 1990–2019 (D) for Umm Al Quwain.

declined to 449.55 (1.74%) in 2019. In 2019, dispersed and dense
mangroves increased, occupying an area of 36 ha (0.46%) and
76.14 ha (0.91%), respectively.

Change Detection of the NUAE
Mangrove Forests
The results of monitoring mangrove changes in four periods:
1990–2000, 2000–2010, 2010–2019, and 1990–2019 with a time-
span of 10 years are shown in Figures 12–16 and their statistics
are shown in Figure 17. In Khor Kalba (Figure 12), the total
area of mangroves increased by about 10.35 ha from 1990 to
2000 and 7.47 ha (0.26%) between 2000 and 2010, and then
decreased slightly by about 0.36 ha between 2010 and 2019.
It can be noticed that although the Khor Kalba mangroves
expansion is small. The rate of growth of the Khor Kalba
mangrove remains relatively stable during the last 29 years
(Figures 12, 17).

In RAK areas, there is a negative change (mangrove loss) of
-414.27 and -334.53 ha during the periods from 1990 to 2000 and
from 1990 to 2019, respectively (Figures 13A–D). From 2000 to
2010, the mangrove increased slightly by 20.79 ha and more than
double (58.95 ha) during the period from 2010 to 2019.

In Umm Al Quwain estuarine, similar changes (mangrove
loss) were observed during the period from 2000 to 2010
(Figures 14E–H). The estimated lost area was about -
122.76 ha. Conversely, the mangrove forests increased sharply
by approximately 467.82 ha from 2010 to 2019. Between
1990 and 2019, the mangrove forests increased by about
380.52 ha (Figure 17).

Further south, the mangrove area in Ajman and Hammria
creeks increased by about 26.32 ha from 1990 to 2000, then
increased sharply by about 61.85 ha between 2000 and 2010
(Figures 15A–D). From 2010 to 2019, the mangroves increased
slightly by about 28.87 ha. Since 1990, the total area of the
mangroves increased by about 110.04 ha (1.88%).
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FIGURE 15 | Mangrove pattern changes between 1990 and 2000 (A), 2000–2010 (B), 2010–2019 (C), and 1990–2019 (D) for Ajman-Hammriah.

In Ras Al Khor of Dubai, the lowest positive changes were
observed to be during the periods from 1990 to 2000 (25.18 ha)
and from 2000 to 2010 (4.36 ha), respectively. The largest
changes were observed from 2010 to 2019 of about 60.39 ha
(Figures 16, 17). Since 1990, an increase (positive change) in the
mangrove area was reported. The estimated area of mangrove

was 89.93 ha which represents the third after Umm Al Quwain
and Ajman and Hammria Creeks. Generally, the mangrove areas
showed an increase in all locations except the RAK and Umm Al
Quwain areas. Comparing between the two mangrove ecosystems
there appears to be stability in the mangrove area faced to the Gulf
of Oman than those facing the Arabian Gulf.
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FIGURE 16 | Mangrove pattern changes between 1990 and 2000 (A), 2000–2010 (B), 2010–2019 (C), and 1990–2019 (D) Ras Al Khor, Dubai.

DISCUSSION

Evaluation of the Performance of the
Classifiers
The use and comparison of the performance of RF, KLR, NB,
and ID algorithms permitted precisely mapping, classifying,
and monitoring mangrove changes over 29 years in different
ecological systems. Among the machine learning, RF yielded
high precision, high recall and F1 score. This means that the RF
has a powerful ability to map the mangrove forests in different
ecosystems. These results also indicated that the RF and KLR
are able to detect patches of dense mangrove that represent the
majority of mangrove forests. On the other hand, NB yielded the

lowest value for the F1 score (<0.8), and thus, lower ability to
detect mangrove forests (Figure 6).

Random forest iterations predicted a slightly wider range
of mangrove forest extent compared to those by KLR with F1
scores of 0.93 and 0.90, respectively. These findings were in
good agreement with several studies that have indicated that
RF algorithm has higher accuracy compared to CART (Mondal
et al., 2019), support vector machine (SVM; Chen et al., 2020),
and maximum likelihood (Ha et al., 2020) who compared
machine learning methods against traditional classifiers and assist
potentiality of groundwater.

These findings are also in accordance with Toosi et al. (2019)
who compared different classifiers for monitoring mangrove
changes and concluded that the RF which uses freely available

Frontiers in Environmental Science | www.frontiersin.org 17 July 2020 | Volume 8 | Article 102

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-00102 July 14, 2020 Time: 17:38 # 18

Elmahdy et al. Enhancing RF Performance

FIGURE 17 | The graphical representation of the NUAE mangrove forests extent from 1990 to 2019 (in hectare). The graph shows a significant decrease in RAK
Mangroves from 1990 to 2000 (in hectare) and a slight decrease in Umm Al Quwain Mangroves from 2000 to 2010.

Landsat images, had performed best. Feng et al. (2018)
implemented a novel change detection approach based on visual
saliency and RF from multi-temporal high-resolution remote-
sensing images. However, the opposite occurred for mapping
mangrove using traditional classifiers.

The use of freely available Landsat images offered the ability
to detect mangroves with overall accuracy comparable to the
machine learning classifiers that involved the commercially
remote sensing data such as LiDAR and WorldView-3 (Elmahdy
and Mohamed, 2018; Toosi et al., 2019). Although the LiDAR,
WorldView, and RapidEye images have high spatial resolution,
the overall accuracy of RF only reached 82% (Ha et al., 2020).
Other studies confirmed that the rotation forest (RoF) algorithm
had a higher accuracy than the canonical correlation forest (CCF)
in LULC classification, which has less sensitivity compared to the
RF algorithm (Colkesen and Kavzoglu, 2017; Ha et al., 2020).

The proposed approach represents a significant modification
in mangroves and LULC, as well as an enhancement of the
performance of linear and non-linear classifiers. The machine
learning algorithms, especially, when optimized, have their
robust and a higher efficiency and quality of classification
(Coppin and Bauer, 1996; Banfield et al., 2006; Wang et al., 2015;
Gong et al., 2019).

The wide availability and ease of implementation of machine
learning and free availability of Landsat images permitted an
exceptional simplicity in processing vast amounts of remote
sensing data promptly and at low costs (Elmahdy et al., 2019;
Mondal et al., 2019).

Mangrove Classification
The use of machine learning algorithms and Landsat images
provides up-to-date mangrove maps over multiple scales and
able to discriminate between mangrove and non-mangrove areas
and dense mangrove and dispersed mangrove patches than

currently available. Between 1990 and 2019, the largest increase
in mangrove forest extent occurred in the Umm Al Quwain
Estuarine (1200 ha), while the largest decrease occurred in Dubai
Natural Reserve (9 ha). Locally, these results are consistent with
Su et al. (2009), Martins et al. (2016), Elmahdy and Mohamed
(2018), and Gong et al. (2019) who optimized SVM, SAM, and
RF classifiers and much more precisely than those mapped by
Moore et al. (2013) using manual screen digitizing and field
observations. This result is not consistent with our results, which
indicated the mangrove of Khor Kalba was over 800 ha. The maps
produced by Moore et al. (2013) had a lot of errors and bias and
cannot be used as a reference. However, our results permitted
better understanding of the NUAE mangrove’s extent and can be
updated in any future study, as well as building a new framework
of the change detection. The proposed approach provides a better
accuracy by reducing the level of noise associated with remote
sensing data and helping in discriminating between mangrove
and non-mangrove areas.

Mangrove Change Detection
During change detection, we observed that the ID algorithm
using pair of bi-temporal mangrove classification of images
with a threshed value between -1 and +1, is better than other
algorithms such as an image to map and map to map (Elmahdy
and Mohamed, 2018; Ma et al., 2019). The ID minimizes the
errors created in one or two of the classification maps detecting
greater presence pixels (+) and absence pixels (-) than those
detected by image to map and map to map approaches. These
approaches suffer from error propagation and differences in
image calibration between Landsat sensors.

The rapid changes in mangrove forests during the period
from 2010 to 2019 are much more than those during the
period from 1990 to 2000. These changes are due to localized
plantation activities and increased public and the local authorities
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awareness and conservation efforts during the last decade (Food
and Agriculture Organization of the United Nations, 2007;
Loughland et al., 2007; Howari et al., 2009). Additionally, most
of the mangrove forests are natural reserve and inaccessible
areas. The mangrove forests play a vital role in ecosystems,
supporting biodiversity and protecting coastal areas from erosion
and storms. Mangrove forests have an incredible ability to store
blue carbon in soil and subsoil and removing carbon from
the atmosphere and the Arabian Gulf (Food and Agriculture
Organization of the United Nations, 2007; Loughland et al., 2007;
Howari et al., 2009). The soil of the United Arab Emirates stocks
about 25% quantile of other sites globally (Schile et al., 2017).

The results of mangroves change detection show a significant
change in mangrove forests facing the Arabian Gulf, while a slight
increase in mangrove forests facing the Gulf of Oman, possibly
due to lower human activities and urbanization, lower sea surface
temperature (SST), lower sea surface salinity (SSS; Freeman et al.,
2008; Elmahdy and Mohamed, 2018; Noori et al., 2019), and the
coarser soil texture (Ooi et al., 2011; Rodriguez et al., 2016). These
factors strongly influence the spatial distribution and density of
mangrove forests and thus the carbon pools (Schile et al., 2017).

A low-cost remote sensing approach that integrates machine
learning and ID algorithms have not been employed for
mapping and monitoring mangroves extent over different
ecological systems for the first time. The proposed approach is
of great benefit for monitoring mangrove changes in remote
and inaccessible areas where ecological and environmental
information are unavailable, and the need for shoreline
protection and fish breeding is critical. It performs very well
in coastal and inland areas as well as the dense and dispersed
mangroves. The main limitation of the proposed approach and
Landsat images is that it cannot identify mangrove species,
heights and small patches of mangroves in a submerged form.
In future research, it might be interesting to estimate mangrove
height using dual HH/VV SAR data and coastal survey using
Lidar data, and compare the results from that study with those
from the current study. Future studies will assess and investigate
the impact of the climate and environment on landscape change.

CONCLUSION

This study presented an integration approach based on learning
RF with training data with a higher spatial resolution, RF optimal
parameterization and applying a post-classification enhancement
to the produced mangrove maps. The best parameters were
7 for sample node, 0 for tree depth and 75 for a tree in
a forest. The results indicated that the integration approach,
which uses Landsat images, is able to discriminate mangrove
and non-mangrove areas and had an overall accuracy of more

than 90% with an increase of 6.7% compared with supervised
classifications. The results also demonstrated that the NUAE
mangroves increased in all locations over the last 29 years. The
majority of the NUAE mangroves are spatially distributed in the
western coastal area than those in the eastern coastal area and
the dense mangrove is much more than dispersed mangrove and
much easier to discriminate and map. The mangrove forests of
Khor Kalba facing the Gulf of Oman are more stable than those
facing the Arabian Gulf. The highest distribution of mangroves
was observed to be in the Umm Al Quwain estuarine, occupying
an area of 1200 ha, while the lowest distribution of mangrove
was reported to be in Ras Al Khor of Dubai covering an area
of about 9 ha. Although there is a rapid change in the built-
up area along with the eastern and western coastal areas of the
NUAE, the mangroves had increased in sites of the NUAE and
predicted to increase further over the next decade. The proposed
approach can be applied to any area in arid and semi-arid regions
and the results can be used as reference maps and updated
by future studies as well as to provide useful ecological and
environmental information.
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