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It is increasingly recognized in science and policy that landscapes need to be managed
for multifunctionality. Multi-objective land-use allocation and agent-based modeling are
two potent tools to explore the potential of landscapes to provide multiple ecosystem
services. However, in the case of the former, the real-world feasibility of the biophysically
optimal land-use configurations remains unclear. Meanwhile, agent-based models
are not well-suited to recognize the biophysical potential of landscapes to provide
multiple ecosystem services. In this paper, we propose an approach to align multi-
objective optimization with agent-based modeling in order to investigate the economic,
institutional and social feasibility of biophysically optimal landscapes. It especially
allows to contrast biophysically optimized land-use patterns with the option space
circumscribed by relevant policy frameworks. We argue that a structured comparison
of biophysical optimization with an exploration of the parameter space of an agent-
based model can be used to identify the real-world feasibility and the barriers to reaching
multifunctional landscapes. We demonstrate the applicability of our approach by using
it on a virtual landscape, which allows us to detect the importance of various economic,
institutional and behavioral factors that facilitate or hamper moving the social-ecological
system toward its biophysical potential. Particularly, we demonstrate the essential role
of tailored policy instruments. Our approach can be useful in informing land-use policy
with respect to its effectiveness and efficiency in achieving multifunctional landscapes.

Keywords: agent-based modeling, agri-environmental policy, biodiversity, ecosystem services, land-use
allocation, land-use policy, multi-objective optimization, multifunctional landscapes
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INTRODUCTION

Traditionally, land-use policies put strong emphasis on biomass
production (food, feed, fiber). Given increasing landscape
degradation in Europe and elsewhere (IPBES, 2018a,b), the
concept of multifunctional landscapes has recently gained
popularity (O’Farrell and Anderson, 2010), stressing that a
landscape can be managed to provide multiple ecosystem
services. Still, any landscape’s capacity to provide ecosystem
services is limited by its biophysical, geomorphological
and climatic characteristics. Different ecosystem services
“compete” for scarce underlying resources such as water,
space or nutrients. Therefore, management of multifunctional
landscapes involves trade-offs between multiple ecosystem
services (Cord et al., 2017). An important question is then:
how much can a landscape provide in terms of different
ecosystem services?

One way of answering this question is multi-objective land-
use optimization/allocation (Kaim et al., 2018; Strauch et al,
2019), where metaheuristic search algorithms can be combined
with statistical and/or simulation models (e.g., hydrological,
biodiversity, or socio-economic models) to efficiently explore
a large number of land-use configurations with respect to
their potential to minimize trade-offs among multiple, and
often competing, objectives. Here, evolutionary optimization
algorithms (Coello Coello et al., 2007; Deb, 2014) are of
particular value as they allow to identify Pareto-optimal
solutions, 1i.e., solutions for which no objective can be
further improved without compromising at least one of the
other objectives (non-dominated solutions). However, multi-
objective land-use optimization has three major limitations:
first, it generates a large number of biophysically Pareto-
optimal landscape configurations, and it is non-trivial to
identify the societally optimal one among them, i.e., the one
that maximizes social welfare'. Second, even when land-use
constraints are included in the optimization procedure (Strauch
et al, 2019), the real-world feasibility of a given solution
is unclear. Third, the potential pathway from the status quo
toward the optimal solution is also unknown, given that
the multiple objectives include public goods which will be
underprovided by land managers in the absence of appropriate
incentives. The first of these limitations has been recognized
in the literature (Cavender-Bares et al., 2015; King et al,
2015). The second and third limitations have received little
attention so far.

Another increasingly common approach in studies of human-
shaped landscapes is agent-based modeling (Schulze et al., 2017).
Agent-based models (ABM) are used to analyze the influence
of the behavior of individual agents (farmers, households,
consumers) on the emergent properties of the system (e.g.,
landscape) in a dynamic way. This model type can and has
been used to generate realistic representations of factors such

!Note that it is non-trivial to formulate a social welfare function, and there are
various objectives that may enter such a function (including individual preference
satisfaction, distributional concerns etc.). See also Klauer et al. (2017).

as preferences, social interactions, policies, property rights and
markets (Schliiter et al., 2017; Huber et al., 2018). ABM
are usually spatially and temporally explicit, and they can
account for path dependencies and (social-technological) lock-
ins. When applied to model land-use change, the results
of ABM are strongly dependent on assumptions regarding
agents’ behavior, their interactions and the social, economic
and institutional boundary conditions. Even highly realistic
and comprehensive ABM can thus miss the potential of a
landscape to provide multiple ecosystem services in a sustainable
way. Therefore, both modeling approaches — biophysical land-
use optimization and ABM - can benefit from each other.
Together, they can provide answers to the questions: how to
determine economically, institutionally and socially feasible (i.e.,
achievable) landscape configurations that are at or close to
the biophysical optimum? And, which accompanying policy
interventions can be used to trigger pathways toward feasible
solutions?

Various approaches dealing with related questions can be
found in the literature (a list of selected relevant publications
can be found in Supplementary Material S1). For instance,
Whittaker et al. (2017) used a bilevel evolutionary optimization
approach combining a process-based biophysical model with
a data envelopment analysis (DEA) for spatial targeting
of agri-environmental policy. Brunner et al. (2016) used
an ABM and discrete choice experiments for qualitative
backcasting from normative scenarios (see also Mo et al,
2018). Ligmann-Zielinska and Jankowski (2010) loosely coupled
multi-objective land-use allocation and ABM to investigate
the feasibility of alternative arrangements of residential land
from a planning perspective. Haslauer et al. (2016) developed
a stylized spatially explicit backcasting model and applied
it to future scenarios with ABM. However, few papers
combining landscape-scale optimization with ABM or similar
modeling approaches explicitly considered the effects of policies
within their framework. Exceptions include Brunner et al.
(2016), who modeled different pathways of ecosystem services
supply based on an elaborated set of agricultural and spatial
planning policy interventions within a four-step backcasting
procedure, and Whittaker et al. (2017), who focused on the
responses of homogeneous agents to a specific spatially targeted
policy instrument.

In this paper, we show how multi-objective land-use
optimization and agent-based modeling can be fruitfully
aligned. Our aim is to develop an approach that uses both
modeling frameworks in order to illuminate (i) the social,
economic and institutional feasibility of biophysically optimal
land-use patterns, (ii) barriers involved, and (iii) paths and
mechanisms necessary for their achievement (e.g., in terms of
relevant policy instruments). In contrast to other studies, which
focus on selected issues related to the challenge at hand, we
demonstrate the usefulness and policy relevance of combining
biophysical optimization, agent-based modeling and an explicit
consideration of governance arrangements (such as policy
instruments). We do this by exploring conceptually, and in
a virtual case study, how to align static biophysical land-use
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optimization and dynamic ABM simulation to demonstrate the
relevance of various boundary conditions in the social part of the
social-ecological system.

ALIGNING AGENT-BASED MODELING
WITH MULTI-OBJECTIVE LAND-USE
ALLOCATION

Multi-objective land-use optimization is one way to understand
and navigate the trade-offs between different ecosystem
services in multifunctional landscapes. However, conventional
optimization approaches focus on the biophysical potential
of a landscape and usually ignore or oversimplify other
dimensions such as economic, institutional and social feasibility.
Therefore, many questions, which multi-objective land-use
optimization alone is not well-suited to answer, remain open:
is the biophysically optimal landscape configuration also
consistent with the economic survival of farm businesses (El
Benni et al., 2012)? Can an optimal landscape be achieved
given existing property rights regimes (Bartkowski et al., 2018;
Binder, 2019)? Are the incentives provided by agricultural and
environmental policies conducive to achieving the optimal
landscape configuration (Pe’er et al., 2019; Hristov et al., 2020)?
What are the societal demands and expectations related to the
analyzed landscape (Martin-Lopez et al., 2012; Cavender-Bares
et al., 2015)? What about traditions, norms, social pressure and
other behavioral and informal institutional factors inhibiting
change (Bartkowski and Bartke, 2018; Dessart et al., 2019)?
In light of these societally and policy-relevant questions,
the valuable information provided by multi-objective land-
use optimization needs to be complemented by other types
of analysis that allow for including economic, social and
institutional factors. Agent-based modeling is a broad class of
models particularly well suited to fill these gaps (see Kremmydas
et al., 2018; Reidsma et al., 2018).

Agent-based models (ABM) have been used extensively to
model social-ecological systems (SES) (Schulze et al., 2017;
Schliiter et al., 2019). They represent flexible bottom-up models,
which allow for the inclusion of behavioral, economic, social
and institutional factors that are usually lacking in multi-
objective optimization approaches (e.g., Schulze et al., 2017;
Huber et al, 2018). In ABM, SES are analyzed in a dynamic
way, ie., their evolution over time is considered. This allows
for explicit analysis of pathways of change and the distinction
between incremental and discontinuous changes in the system.
Furthermore, ABM usually have a spatial dimension, so they
can be used to analyze the evolution and response of the same
landscapes as the models used in biophysical optimization. At
the same time, the realistic and comprehensive representation
of the human part of SES means that the biophysical potential
of landscapes may be missed when applying ABM alone,
due to the large number of non-biophysical constraints
thus introduced.

This provides a strong rationale for combining biophysical
land-use optimization with ABM to test the institutional,
economic and social feasibility of the formers results. The

main reason is that there might be large differences between
landscape configurations generated by an ABM on the one
hand, and purely biophysical optimization on the other hand -
and these differences can be very instructive and policy-
relevant. Even though ABM incorporate many factors related
to feasibility, they still must be based on assumptions, holding
particular “boundary conditions” (e.g., a given set of policies)
constant. Therefore, comparing and aligning (Ligmann-Zielinska
and Jankowski, 2010) static biophysical land-use optimization
and dynamic ABM can demonstrate the relevance of those
boundary conditions and provide hints at which additional
institutional, political or economic changes would be needed to
fully exploit the potential of multifunctional landscapes. Against
this background, the basic conceptual idea of this paper is
to use the two modeling approaches alongside each other on
the same landscape, and to compare their respective results
in a structured way. For the purposes of this paper we call
our approach aligning agent-based modeling with multi-objective
land-use allocation (ALABAMA).

ALABAMA should be distinguished from related approaches
based on backcasting, which have been tentatively discussed
in the literature. For instance, Haslauer et al. (2016) presented
a generic ABM-based explicit backcasting approach that could
potentially be used to backcast from the Pareto frontier generated
by means of biophysical optimization. A more qualitative
approach was suggested by Brunner et al. (2016), who used ABM
simulations to approximate normative scenarios — which could
also be generated by multi-objective optimization. However,
when using backcasting in combination with multi-objective
land-use optimization, the challenge is to choose a subset
of Pareto-optimal (non-dominated) landscape configurations
to be used in the backcasting procedure; for these solutions,
a “feasibility analysis” can be done by means of an ABM.
This would require “subsetting” the set of biophysically
optimal solutions, e.g., with the help of demand (preference)
information, obtained from surveys (Cavender-Bares et al., 2015;
Brunner et al, 2016). Those solutions from the subset that
are found infeasible (i.e., not attainable via backcasting) can
then be analyzed with respect to the boundary conditions as
mentioned above. Their analysis can provide useful information
about the relevance of the chosen boundary conditions.
The downside of this approach, however, is that it requires
subsetting and is therefore not applicable to all Pareto
optimal configurations (whose number is usually quite large).
Thus, “artificial” subsetting of the overall solution space
may exclude potentially interesting and policy-relevant cases.
Also, it is possible that none of the Pareto-optimal solutions
are suitable for backcasting. This would mean that no
Pareto-optimal solution is feasible, implying the need to
adapt the optimization procedure, e.g., by adding constraints
(see Strauch et al., 2019).

The approach we suggest, ALABAMA, follows a different path,
namely a structured comparison of the (full set of) biophysically
optimal landscapes with an exploration of the parameter space
of the ABM (Figure 1). Here, subsetting is neither necessary
nor desirable - instead, a large set of solutions (landscape
configurations) from the two model approaches is compared in
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FIGURE 1 | lllustration of the conceptual framework aligning agent-based modeling with multi-objective land-use allocation (ALABAMA).
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order to (i) check the economic, social, institutional feasibility
of the biophysically optimal configurations, and (ii) identify
boundary conditions of the ABM responsible for the gap between
the biophysically optimal and the feasible solutions. Ideally, the
insights from (ii) can then be used to adapt the ABM in a way
that helps move the system closer to the biophysical potential.
ALABAMA consists in comparing the Pareto frontier as
a whole with the results of an exploration of the parameter
space (i.e., sensitivity analysis) within the ABM. In this case,
all parameters of the ABM are varied. Subsequently, the set
of solutions in terms of ecosystem services can be used to
create a Pareto-optimal subset for comparison to the Pareto
frontier generated through biophysical optimization. Such a
comparison provides an overall picture of the relationship
between biophysical optimization results and ABM simulations
and can guide further analysis. In that sense, it offers
feedback to the ABM and helps identify and understand
differences between biophysically attainable and economically,
institutionally and socially feasible landscape configurations.
An analysis of the effects of different parameters on the
position of ABM solutions vis-a-vis the biophysical Pareto
frontier can then be used to identify crucial components,
assumptions and parameters responsible for the gap between
the two solution sets. This may include selecting a subset
of (policy-relevant or scientifically interesting) solutions and
analysing them in more detail. This kind of exercise can have
two consequences: either the assumptions responsible for the
gap are deemed realistic and “hard”; then the result is that
given some real-world boundary conditions (e.g., property rights
or the behavioral characteristics of agents), the biophysical
potential cannot be realized. Or the identification of crucial
but “soft” assumptions can ignite a search for (realistic, but
initially not considered) changes in the institutional setting,
such as novel policy instruments or more realistic behavioral
assumptions, that would help move the system closer to its
biophysical potential. The identified changes can subsequently be
implemented in the ABM in order to redo the analysis and check

whether they really move the ABM-modeled system closer to the
biophysical potential.

To explore the possibilities and limitations of the approach
outlined above, in the next section we present and discuss a
virtual case study, in which a simple landscape is biophysically
optimized and additionally analyzed by means of a simple,
conceptual ABM. We compare the results of both analyses and
use them to provide general insights into the advantages and
disadvantages of this approach.

VIRTUAL CASE STUDY: OPTIMIZATION
AND FEASIBILITY IN A VIRTUAL
LANDSCAPE

In our case study, we compared the results of a biophysical
land-use optimization using the Constrained Multi-objective
Optimization of Land-use Allocation (CoMOLA) tool (Strauch
etal., 2019) with an exploration of the parameter space in a simple
ABM for a virtual landscape.

Virtual Landscape and Ecosystem

Service Models
We worked with a virtual landscape based on a regular 15 x 15
grid with a cell size of 1 ha. For simplicity, the landscape consisted
of only two land uses: intensive and extensive grassland’.
Furthermore, we assumed a river flowing through the landscape
(Figure 2A; 25 out of 225 grid cells) and a heterogeneous
distribution of soil fertility (Figure 2B) ranging from 0.067
(lowest) to 1 (highest).

In the virtual case study, new options for the composition of
extensive and intensive grassland in the landscape were generated
(i.e., each grid cell can be converted to either extensive or

“Intensity in grassland management may be measured e.g., in terms of fertilization
or mowing/grazing intensity. For a discussion of the difficulties to provide
measures of intensive and extensive land use, see Beckmann et al. (2019).
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FIGURE 2 | Virtual land use (A) and soil fertility (B) map.
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intensive grassland). For the sake of simplicity, three conceptual
toy models were used to evaluate the landscapes’ provision of
ecosystem services (the same models were used in both COMOLA
and ABM); all three models returned normalized indices for each
ecosystem service:

e Agricultural yield (AY) was modeled as a function of
production intensity level P (with the value of 1.5 for
extensive grassland and 2 for intensive grassland) and soil
fertility F (Figure 2B), summarized over all 200 grassland
grid cells i:

>0 /BTt F) — 296.8974
B 45.9032

AY (1)

AY is normalized to range between 0 (all extensive) and
1 (all intensive).

e Habitat index (HI) was estimated as the total area (i.e., the
number of cells) of the two largest patches of extensive
grassland (A,x) divided by the total number of grassland
cells:

_ Ax

HI =
200

)
assuming that both increasing extent and connectivity of
extensive grassland are beneficial for biodiversity. Patches
were defined as contiguous extensive grassland cells using
the 4-neighbor rule (von Neumann neighborhood). HI can
range between 0 (all intensive) and 1 (all extensive).

e Water quality (WQ) was modeled as a function of the
Euclidean distance (D) between intensive grassland cells (i)
and their respective closest river cells:

I 1
21 D;

wQ=1- =210
Q 0.8635082

ifI>00rWQ=1ifI=0 (3)
where [ is the total number of intensive grassland cells, with
i€ {l,...,I}. Decreasing the number of intensive grassland
cells and/or increasing their distances to the river would
thus increase WQ, which is normalized to range between
0 (all intensive) and 1 (all extensive).

Biophysical Optimization
The virtual landscape was optimized for all three ecosystem
service indicators simultaneously (AY, HI, and WQ) using

CoMOLA. This tool can be used to couple any kind of
spatial statistics or simulation models with NSGA-II, a widely
used evolutionary multi-objective optimization algorithm
(Deb et al., 2002). It has proven useful for exploring biophysically
optimal land-use patterns in agricultural (e.g., Verhagen et al,
2018) and urban landscapes (Schwarz et al., 2020). COMOLA can
consider up to four objectives as well as constraints such as land
use change and minimum/maximum values for each of the land
use classes (Strauch et al., 2019). As we were interested in the full
biophysical optimum of the virtual landscape, constraints were
not applied in this study.

CoMOLA starts an evolutionary process by first creating a set
of different randomly generated landscapes. As the algorithm is
inspired by biological evolution, its terminology and principles
are likewise: each landscape is called an individual and is
represented by a genome, i.e., a string of integers encoding the
land use of each grid cell. All landscapes of one generation form
a population which changes over generations due to selection
and variation (i.e., crossover and mutation). Using the ecosystem
service models described above, each individual is assigned
fitness values representing the achieved values for the three
objectives. The genetic algorithm then applies a Pareto ranking
for each individual based on its fitness values. It archives best
individuals and selects individuals for mating to generate a
new (offspring) population. In mating, each offspring individual
is generated by a random combination (crossover) of two
genomes. The likelihood of mating increases for individuals with
a higher Pareto rank. Additional random mutations increase
the diversity of genomes to consider a wide range of different
spatial configurations. The entire procedure, from fitness value
calculation to offspring generation, is repeated for a pre-defined
number of generations.

Considering the vast number of possible landscapes, no
optimization algorithm can guarantee finding the global
optimum in a finite number of generations; yet, genetic
algorithms are known for their good performance in reasonable
run-time (Deb et al, 2002). We ran CoMOLA for 1000
generations with a population size of 500 (which amounts to
a total of 500,500 simulations), a crossover rate of 0.9, and a
mutation rate of 0.01. These settings performed well in pre-
tests and also in previous studies where CoOMOLA was used for
multi-objective optimization of land use (e.g., Strauch et al., 2019;
Schwarz et al., 2020). To evaluate the performance of COMOLA,
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we ran the same number of simulations (n = 500,500) based on
a Monte Carlo sampling (i.e., each time with a purely random
generation of land-use maps).

Agent-Based Model

The virtual landscape was also analyzed by means of a simple
ABM developed specifically for the purposes of this paper. For
this purpose, the grassland grid cells are interpreted as plots;
they are allocated to a variable number of agents. All agents are
either myopic income maximizers or satisficers (Simon, 1955)
who maximize income until they reach a threshold beyond which
they cease making any further changes in management of their
plots. The income threshold for the satisficers can be either
homogeneous for all agents or individually heterogeneous (i.e.,
each agent is randomly assigned her own income threshold).
The income derived by the agents consists of income from
agricultural production and agri-environmental payments. There
are no direct interactions between agents.

In the base variant of the model, there are 10 farmers, each
owning 20 randomly distributed plots within the landscape.
To incentivize environmentally beneficial extensification, three
kinds of payments are provided:

e Base payment: farmers receive a fixed payment for each
extensive grassland cell;

e Agglomeration bonus’: farmers receive a bonus based
on the number of extensively managed cells in the
neighborhood (von Neumann neighborhood) of each of
their extensive grassland cells;

e Water quality bonus: farmers receive a bonus for
extensively managed cells close to the river (distance
of either one or two cells).

Each payment can be switched on and off and has different
values (see Table 1). The income of agent j (II; the subscript j is
suppressed for simplicity) is assumed to be

20 20
M= pYit+ D A @)
i=1 i=1

where p is the price of grass (set to 1 for simplicity), Y; is the
yield from cell i, calculated in line with the ecosystem service
model (but without normalization), and A; is the sum of agri-
environmental payments the agent received for cell i. We also
assume that the landscape configuration is somewhat persistent:
each farmer can change management only for a limited number
of plots per period*.

A detailed ODD + D description (Miiller et al., 2013) of the
model can be found in the Supplementary Material S2.

Table 1 summarizes the parameter values used to explore
the parameter space in order to then compare the results to
CoMOLA (see next section). A full list of parameters can be found
in the ODD + D document (S2). For exploring the parameter

3The agglomeration bonus has been widely discussed in the economic literature;
see Parkhurst et al. (2002) and Krimer and Witzold (2018).

“This does not affect the equilibrium landscape configuration, only the speed at
which it is reached.

TABLE 1 | Parameter values used in the analysis.

Parameter Values
Number of agents 1,10
Bounded rationality TRUE, FALSE

Income threshold Uniform, Heterogeneous

0, 0.05,0.1,0.15,0.2,0.25
0,0.05,0.1,0.15,0.2,0.25
0,0.05,0.1,0.15,0.2,0.25

0,1,2

Base payment

Agglomeration bonus

Water quality bonus

Distance to river (for water quality bonus)

space, combinations of the parameters listed in Table 1 were run.
Because the random assignment of plots to farmers may have
effects on the results, each combination was run 10 times. The
run time was 100 periods (within which usually an equilibrium
was reached), resulting in altogether 77,760 runs. Each run
was evaluated after the last period by means of the ecosystem
service models; additionally, the total budget spent on the agri-
environmental payments and the mean income of the farmers
were calculated.

Comparison of Models

To demonstrate the informative power of comparing CoMOLA
and the ABM, we analyzed the relationship between the results
of the biophysical optimization with multiple subsets of the
ABM results (corresponding with different variants of the ABM;
Figure 3). For each variant and for the Monte Carlo simulation,
we extracted Pareto-optimal solutions (considering the results of
the ecosystem service models) to compare them with CoOMOLA's
set of Pareto-optimal solutions. As the visual comparison of
Pareto frontiers in more than two dimensions can be daunting,
we used the hypervolume (HV; Zitzler and Thiele, 1999) to
evaluate each of the different solution sets. HV is a widely
accepted multi-objective performance metric measuring both
convergence and diversity of non-dominated solutions without
requiring the knowledge of the true Pareto front for comparison
(Jiang et al., 2014). HV represents the volume in the objective
space that is dominated by the set of solutions given a certain
reference point (such as the origin of the coordinate system).
Higher HV values hence indicate that the solutions are closer
to the true Pareto front and, at the same time, that they are
more evenly scattered in the objective space (Jiang et al., 2014).
The analysis was done within the R environment (R Core Team,
2018) using the package “mco” (Mersmann, 2014). Moreover,
we computed the Euclidean distance of each Pareto-optimal
ABM and Monte Carlo solution to their respective closest
solution of CoMOLA.

Figure 3 visualizes the selection of ABM subsets in a
systematic manner. Note that not all thinkable subsets were
analyzed separately in the comparison with CoOMOLA. This could
have been done, but to make the paper more illustrative, we
selected the potentially most instructive variants of the ABM.
The relevant distinctions (see also ABM description in section
“Agent-Based Model”) are the rationality assumption (income
maximizing farmers vs. satisficing farmers), income threshold
for the satisficers variants (either homogeneous for all farmers
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FIGURE 3 | Overview of the different ABM variants. Those that were used in the comparison with COMOLA are marked with red arrows and include the respective

abbreviation.

or heterogeneous) and the presence of the three different agri-
environmental payment instruments.

Furthermore, we also created an ABM variant that was
supposed to “emulate” CoMOLA (one farmer; water quality
bonus function following the WQ model, Eq. 3), in order to
test whether both approaches are comparable with respect to
the virtual landscape. The results of this check can be found in
Supplementary Material, Figure S3.1.

RESULTS

The Pareto-optimal solutions of the biophysical landscape
optimization using CoMOLA span the largest hypervolume
(HV) among all experimental runs (HV of CoMOLA is twice
the HV of a simple Monte Carlo sampling with the same
number of tested solutions, see Table 2). Convergence of the
HV development (Figure 4) indicates that COMOLATs set of non-
dominated solutions is close to the true Pareto frontier. However,
some variants of the ABM resulted in only slightly lower HV:
ABM_max, ABM_sat_hom, and ABM_sat_het (explanation of
the abbreviations see Figure 3). These are variants in which
all three agri-environmental payments were included (base

TABLE 2 | Number of tested solutions (N° total) for each simulation experiment,
number of non-dominated solutions (N° non-dominated) within each set, and their
respective hypervolumes.

Method N° total N° non-dominated Hypervolume
CoMOLA 500,500 4467 0.42
Monte_Carlo 500,500 411 0.21
ABM_max 12,960 722 0.40
ABM_sat_hom 25,920 729 0.40
ABM_sat_het_base 720 167 0.26
ABM_sat_het_agg 4320 521 0.35
ABM_sat_het 25,920 500 0.39

For abbreviations of the ABM variants, consult Figure 3.

payment; agglomeration bonus; water quality bonus). Lower
HV were achieved by the two ABM variants in which only
one (ABM_sat_het_base) or two (ABM_sat_het_agg) payment
instruments were included. However, in both cases, the HV
was higher than in the case of the Monte Carlo sampled
set of landscapes.

The full set of Pareto-optimal solutions identified with
CoMOLA is shown in Figure 5. From analysing the example
maps (also shown in Figure 5), it is fair to assume that
the optimization identified at least near-optimal solutions. For
example, the numerically “best” compromise solution (i.e., the
solution that is closest to the mean of each objective) allocates
extensive grassland on one contiguous patch on each riverside
while intensively used grassland prevails at a greater river
distance and/or on more fertile soils. Maximum agricultural
yield is achieved in a purely intensively managed landscape,
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FIGURE 4 | Evolution of the hypervolume over all generations for the land use
optimization using CoOMOLA.
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whereas maximum water quality and habitat quality are achieved
in a purely extensively managed one (see also Supplementary
Material, Figure S3.2 for measures of correlation between the
three objectives).

In Figure 6, the main results of the comparison of the
ABM variants with the COMOLA optimization are presented.
To support interpretability of the 3-dimensional solution space,
we divided it by presenting three 2-dimensional scatter plots for
each comparison. In the first column, the relationship between
agricultural yield and water quality are depicted; the second
column depicts the relationship between agricultural yield and
habitat index; in the third column, we have water quality
and habitat index. Each row is the comparison of one ABM
variant (and, additionally, the Monte Carlo simulation) with
CoMOLA. The CoMOLA solutions are not directly included in

the diagrams; rather, for each non-dominated solution derived
from an ABM variant, its Euclidean distance to the respective
closest non-dominated solution of COMOLA is represented by
means of a color scale.

The visual comparisons reflect the effects of single agri-
environmental payments and behavioral assumptions and are
in line with the HV analysis presented above. Unsurprisingly,
according to the ecosystem service models, there is a trade-off
between agricultural yield and both environmental objectives,
water and habitat quality. Assuming only a base payment
for extensive grassland (ABM_sat_het base; Figure 6D),
comparably “poor” solutions were achieved (i.e, CoMOLA
clearly dominates this ABM variant), in particular with respect to
the environmental targets. The distance to COMOLA is relatively
smaller in boundary regions of the solution space (i.e., near the
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all payments.

upper limit of the single-objective domains). ABM solutions trade-off curve between agricultural yield and habitat index
improved after adding bonus payments for agglomeration of was less concave than for ABM_stat_het_base, but rather linear,
extensive grassland (ABM_sat_het_agg; Figure 6E). Here, the similar to the set of solutions found by CoMOLA. However,
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ABM_sat_het_agg still fails to achieve a more “opportune”
(i.e., convex) trade-off curve between agricultural yield and
water quality. Such a convex shape was achieved with all three
ABM variants (ABM_max, ABM_sat_hom, ABM_sat_het) in
which all environmental targets were addressed by means of
agri-environmental payments, adding a water quality bonus to
the base payment and the agglomeration bonus. In line with
the HV analysis, no clear differences could be found between
ABM_max, ABM_sat_hom, and ABM_sat_het, suggesting that
for this virtual case study, behavioral assumptions do not seem
to play a large role. This is partly related to the random setting
of income threshold levels for agents in the bounded rationality
(satisficing) variants. A comparison of non-dominated (Pareto-
optimal) solutions with the overall population shows that the
Pareto-optimal solutions in most cases have pretty high income
thresholds and are thus close to the ABM_max variant (see
Supplementary Material, Figure $3.3). In a real case study, the
income thresholds could possibly be determined empirically; in
our virtual case study, their random definition served as a kind
of sensitivity analysis.

Figure 7 offers another relevant perspective on the results:
it shows the relationship between the Pareto-optimal solutions
from the ABM and the total budget for agri-environmental
payments in the equilibrium. Not surprisingly, there is a
clear gradient from solutions with high agricultural yields
(corresponding to low budget for agri-environmental payments)
to solutions with high levels of the two non-provisioning
ecosystem services (high budget for agri-environmental
payments). There are, however, budget variations among
solutions close to each other, suggesting that total agri-
environmental budget can be a criterion to select a subset of
(cost-effective) solutions from a desirable region of the Pareto
frontier. The share of agri-environmental payments in total
incomes varied across ABM variants; single model runs reached
more than 25 per cent (max. 26.7), while average shares ranged
between 1.8-6.2 (median) and 4.5-8.3 (mean) (distributions of
mean incomes and budget shares across ABM variants can be
found in Supplementary Material, Figure $3.4).

DISCUSSION AND CONCLUSION

The virtual case study above is a first illustration of how the
ALABAMA approach can work. In order to appreciate its
relevance and contribution, we will first discuss the results of the
virtual case study, before then sketching out the potential and
challenges of applying ALABAMA to real-world cases.

Virtual Case Study: Insights and Limits

The aim of the virtual case study has been to demonstrate
how multi-objective land-use optimization and agent-based
modeling can be aligned with each other in order to explore
the economic, social and institutional feasibility of biophysically
optimal landscapes. Even though the virtual case study and the
models involved are very stylized, a number of insights can
still be drawn from them. Most importantly, both the visual
comparison of Pareto frontiers and the numerical comparison of

hypervolumes have shown that using specific policy instruments
for each ecosystem service helps to move closer to the
biophysical optimum. While this cannot be directly generalized,
the result is in line with economic theory of instrument mixes
(Braathen, 2007) (for more details, see section “Going Beyond
Virtual Landscapes: Potential and Challenges of ALABAMA”).
Possibly also due to the relatively simple behavioral assumptions,
the presence of all three agri-environmental payments was
more decisive for proximity to the biophysical optimum (in
terms of hypervolume) than the varying assumptions regarding
farmers’” behavior.

Contrasting the trade-off analysis among the three policy
objectives (production, water quality, habitat quality) with
information on the budget needed to achieve various Pareto-
optimal solutions has demonstrated the importance of non-
biophysical constraints such as the budget available to public
authorities for agri-environmental payments. In the real world,
there is only a limited amount of money that can be spent on
agri-environmental incentive payments (given opportunity costs,
i.e., foregone benefits that would result from spending the funds
on alternative public-good purposes). This implies a necessity to
design and select cost-effective policy instruments (e.g., Witzold
et al., 2016). In the context of ALABAMA, including a budget
constraint would largely reduce the number of “feasible” Pareto-
optimal solutions according to the ABM. As can be seen in
Figure 7, the reduction would not be symmetrical - rather,
the solution space would be reduced much more where the
levels of provision of public ecosystem services is high, as
compared to the solutions associated with high agricultural
yields. This is plausible, since the provision of public ecosystem
services requires the use of public funds (in the form of agri-
environmental payments). Furthermore, in an empirical case
study, it would be sensible to assume a budget constraint
depending on society’s maximum aggregate willingness to
pay for the promotion of environmental objectives. With a
broader spectrum of policy instruments, the use of a specified
budget constraint may help distinguish between relatively cost-
effective and cost-ineffective instruments or instrument designs,
thus complementing the information regarding the feasibility
of biophysically optimal landscapes with information about
differently efficient ways of achieving them.

The way we implemented bounded rationality (via randomly
set individual income thresholds beyond which farmers were
assumed to be “satisfied” and cease changing management)
had the consequence that there were no significant differences
between the Pareto frontiers derived from the maximizers vs.
the satisficers variants of the ABM. The alternative would have
been an arbitrary specification of the income threshold (in a real
case study, income thresholds would be an empirical matter and
can be assumed to be pretty stable). Due to this implementation
choice, the differences between the behavioral assumptions were
partly hidden. However, it turned out that Pareto-optimal ABM
solutions tended to be associated with higher mean income
thresholds (see Supplementary Material, Figure $3.3). Also, a
look at the distributions of values for the ecosystem service
indicators water quality and habitat index for maximizers vs.
satisficers shows that maximizer specifications tend to extreme
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solutions with very high or very low levels of ecosystem
service provision, while satisficers also create many landscapes
with intermediate levels of ecosystem service provision (see
Supplementary Material, Figure S3.5). The main reason for

this is that after reaching their respective income thresholds, the
satisficers stop changing management without having reached
an “equilibrium,” which would result from purely maximizing
behavior. Conversely, for maximizers, there is only a very narrow
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range of agri-environmental payment levels that do not “tip”
the system in an extreme state (i.e., either purely intensively or
purely extensively managed landscape). This adds to the more
general fact that the choice of the parameter range of the ABM
is decisive for the relative “intensity” with which different areas
of the Pareto frontier are explored. In our case, the payment
rates ranged from 0 to somewhat above the level beyond which
there is a 100% shift to extensive grassland in the equilibrium.
Thus, there are relatively many Pareto-optimal solutions with
high agricultural production, because for all payment levels
below a certain threshold (depending on yield distribution and
farmers’ income threshold levels) the end result was a Pareto-
optimal 100% intensive grassland landscape, independent of
the behavioral assumptions. This apparent sensitivity of system
behavior to the level of income thresholds may in practice lead
to interactions with policy instruments from other domains
that may influence income thresholds, such as e.g., universal
basic income”’.

Going Beyond Virtual Landscapes:
Potential and Challenges of ALABAMA

While the virtual case study provides some first impression
of the potential of ALABAMA, applying the approach to
real-world cases implies additional challenges - but it also
bears further potential. When applied to real-world case
studies, the aligning of agent-based modeling with multi-
objective land-use optimization will provide insights into: (i)
the biophysical potential of a landscape to provide multiple
ecosystem services; (ii) the gap between the status quo and
the biophysical potential; (iii) the economic, institutional
and social feasibility of the biophysically optimal landscape
configurations; (iv) the relevant policy instruments needed to
approach the biophysical optimum; as well as (v) the gap
between the biophysical optimum and what can be achieved
given economic, institutional and social constraints, including,
possibly, the reasons for its existence. These pieces of information
could inform policy-making processes aiming at increasing the
multifunctionality of landscapes.

The biophysical optimization can be considered as providing
a bundle of non-dominated solutions (landscape configurations),
which constitute, from society’s point of view, no-regret options
with respect to the use of the analyzed landscape - at least
assuming that all societally relevant objectives have been included
in the optimization procedure. However, the biophysically
optimal landscapes generated by multi-objective optimization
algorithms such as CoMOLA are not necessarily attainable
given institutional, social, behavioral and economic constraints.
Furthermore, it is not clear how they can be achieved. In this
sense, the role of the ABM is to identify attainable socio-
economically feasible solutions — and the policy paths leading
there. These policy paths will likely require the careful design of
an instrument mix - first, because, in line with the Tinbergen rule
(Tinbergen, 1952; Braathen, 2007), multifunctionality as policy
objective requires multiple policy instruments (e.g., multiple
agri-environmental payments, as in our virtual case study);

>We are thankful to a reviewer for pointing this out.

second, because the presence of various market failures, such as
incomplete property rights (Bartkowski et al., 2018), reinforces
this requirement (Lipsey and Lancaster, 1956; Schader et al,
2014). In fact, the latter is the very reason why in the most
cases, even the most sophisticated instrument mix will not
lead to reaching the biophysical optimum. In this context, the
ALABAMA approach has an important advantage: it allows
a broad comparison of biophysically attainable no-regret and
socio-economically feasible model representations of the world,
and thus may provide inspiration to the search for new ways to
change boundary conditions (e.g., by means of novel instruments,
not included in the initial version of the ABM) in order to
move closer to the biophysical Pareto frontier. This is especially
attractive when the gap between biophysical optimization and
ABM is large. The extensive literature on behavioral interventions
is relevant here (e.g., Klockner, 2013; Michie et al., 2014; Dessart
et al, 2019). As suggested above in the context of the virtual
case study, relevant constraints may be even found outside of the
domain of environmental policy.

Explaining the gap can help identify “hard constraints” that
cannot be overcome easily (e.g., property rights or financial or
technological barriers faced by farmers and/or administrators),
and “soft constraints” that can be overcome by changing
particular assumptions of the ABM (preferably without loss
of realism) or, especially, by adding new policy instruments
not thought of initially. Such “soft” constraints will likely be
highly context-specific and may include interactions with other
policy domains (e.g., residential development in the context of
agri-environmental policy), budget constraints or jurisdictional
responsibilities (in cases in which the most effective way of
closing the biophysical multifunctionality gap would require
coordination across national or other administrative borders).
This constraint analysis will depend on which parameters and
assumptions of the model are mainly responsible for the gap.
These insights can then be used as input into discussions
with stakeholders in order to make the approach particularly
policy relevant (Karner et al., 2019). For instance, participatory
approaches such as scenario discovery (Bryant and Lempert,
2010) could be used to identify particularly policy-relevant
aspects of the ALABAMA analysis. Stakeholder interactions can
be used to elicit preferences for the various solutions - in line with
Cavender-Bares et al. (2015), but going beyond their approach by
including not only the biophysical (ecosystem service) attributes
of the solutions, but also institutional and economic factors.
Alternatively, secondary preference information (e.g., from
willingness-to-pay surveys) could be used to identify particularly
“desirable” regions in the solution space and focus discussions
with stakeholders on those. In any case, both the choice and
specification of models and the analysis of the political and
societal implications of the results would strongly benefit from
stakeholder engagement.

By incorporating a dynamic modeling approach in ABM,
ALABAMA also allows for analysis of trajectories or pathways
toward a desired multifunctional landscape. This may be helpful
for conceptualizing and designing indicators (e.g., “milestones”)
to check whether the trajectory entered in the real world is in line
with the long-term policy objective of a specific multifunctional
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landscape. This would be particularly relevant for more complex
landscape and land-use reconfigurations, which make take time,
both in terms of implementation and environmental effects.
Also, multi-stage policy processes are thinkable, in which
policy instruments are not introduced all at once (e.g., because
some instruments may only need minor redesign, while others
would require a more time-consuming processes of design and
legislation), but sequentially - here, too, the dynamic perspective
provided by the ABM may be informative.

But applying ALABAMA to real-world cases, with more
complex models and real landscapes, does also come with
additional challenges - the virtual case study has only a proof-
of-concept character. For instance, due to restrictions in terms
of computational power, a full exploration of the parameter
space may be impossible or at least overly time- and resource
consuming if the ABM is structurally complex. This might
require a (multi-objective) optimization already within the ABM,
e.g., by means of BehaviorSearch in NetLogo (Stonedahl and
Wilensky, 2010; Railsback et al.,, 2017). Here, the results of a
multi-objective optimization within the ABM (i.e., including
variation of behavioral, economic and policy parameters) would
be compared to the results of biophysical optimization. The
optimization within the ABM itself may be highly informative -
however, without comparison to the biophysical optimization,
it would imply a loss of information regarding the relative
“loss” in optimality in provision of ecosystem services due
to behavioral, social, economic and institutional constraints.
Therefore, optimization within the ABM, aiming at reducing the
time required for the exploration of the parameter space, would
be a simplification of the process applied in our virtual case study,
where we first fully explored the parameter space and only then
filtered Pareto-optimal solutions.

More generally, a fully developed application of our
approach to a real-world case study would have rather high
requirements in terms of data, computational power and
expertise. This is a general challenge in the modeling of
social-ecological systems (Elsawah et al., 2020). In the case of
biophysical optimization of complex real-world case studies,
the exploration performance of genetic algorithms or other
metaheuristics decreases with increasing number of spatial
units and decision variables (Strauch et al., 2019). Accepting
some level of simplification (e.g., focusing on local/regional
studies and only on selected ecosystem services) remains a
necessary compromise. Nevertheless, our approach is very
much in line with the recent trend toward model coupling in
studying social-ecological systems (Robinson et al., 2018), which
allows for a flexible approach toward better understanding the
behavior and trajectories of these highly complex systems. While
challenging, such approaches have a high potential to provide
information relevant to societal preference-building and policy-
making processes.

Avenues for Future Research

Going from virtual to real landscapes in the application of
the ALABAMA approach requires responses to important
questions that were not central in our virtual case study.
For instance, what are the relevant ecosystem services and

how well can they be represented in models? Spatially explicit
assessments of ecosystem service supply still need considerable
progress, especially for quantifying individual species effects,
species diversity, functional traits, and their interaction with
ecosystem functions while considering effects of scale and
embracing good practice in model uncertainty quantification
and validation - see Lavorel et al. (2017), who comprehensively
reviewed the biophysical realism gap in ecosystem service
mapping approaches, and Elsawah et al. (2020) for a more general
perspective on these issues in the context of social-ecological
modeling. Given that some selection of ecosystem services is
required to make multi-objective optimization computationally
tractable, there is a need for research into methods and
criteria to make such selection structured, transparent and
policy-relevant.

Turning to ABM, further questions arise. For example, what
(types of) instruments are to be included and how can they be
parameterized? So far, the focus in social-ecological models has
mostly been on financial incentives such as area-based direct
payments and agri-environmental payments (e.g., Brady et al,
2012; Brunner et al.,, 2016), while other types of instruments
and broader instrument mixes remain understudied. Relatedly,
an important but understudied issue with high relevance for the
economic feasibility of instrument mixes aiming at biophysically
optimal provision of multiple ecosystem services are difficult-
to-represent, but potentially highly important factors such as
transaction costs (DeBoe and Stephenson, 2016), which may
render otherwise highly attractive policy mixes cost-ineffective,
or the conflict between legal and “economic” property rights
(Bartkowski et al., 2018). The explicit inclusion of such issues
in studies following the ALABAMA approach would strongly
increase their policy relevance. Another question regards which
behavioral models to choose and how to implement them -
there is a broad spectrum of potentially useful behavioral
models and theories (Groeneveld et al., 2017; Huber et al.,
2018), and no obvious way to select a “right” one. Rather,
each policy context and particular set of research questions
may require a different choice. Nonetheless, guidance and
criteria are needed for transparent choices of appropriate
behavioral assumptions and their implementation in the model
(Smajgl et al., 2011).

An open question for real-world case studies, which could not
be addressed comprehensively in our virtual case study, regards
how exactly the feedback from the structured comparison to
the agent-based model is supposed to work. As discussed above,
if it is found that “hard” boundary conditions are responsible
for the gap between ABM and the biophysical potential of the
landscape, little can be done to improve the results. However, if
“soft” boundary conditions are responsible, this should trigger a
structured (and previously planned, as far as possible) process
of improving the parameterization of the ABM and possibly
also adding components (for instance, different types of policy
instruments that cannot be implemented by simply adjusting
existing parameters). This feedback analysis will likely be highly
context-specific and will require a strong participatory element.

All the questions formulated above require intensive analysis
of the specific social-ecological system prior to modeling, by
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means of surveys, interviews, focus groups and secondary data
analysis. Also, they require careful and transparent planning
of the application of ALABAMA. Therefore, the next step in
order to provide responses needs to be a real-world application
of the approach.
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